Acyl-chain selectivity and physiological roles of Staphylococcus aureus fatty acid–binding proteins
Fatty acid (FA) kinase produces acyl-phosphate for the synthesis of membrane phospholipids in Gram-positive bacterial pathogens. FA kinase consists of a kinase protein (FakA) that phosphorylates an FA substrate bound to a second module, an FA-binding protein (FakB). Staphylococcus aureus expresses t...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2019-01, Vol.294 (1), p.38-49 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 49 |
---|---|
container_issue | 1 |
container_start_page | 38 |
container_title | The Journal of biological chemistry |
container_volume | 294 |
creator | Cuypers, Maxime G. Subramanian, Chitra Gullett, Jessica M. Frank, Matthew W. White, Stephen W. Rock, Charles O. |
description | Fatty acid (FA) kinase produces acyl-phosphate for the synthesis of membrane phospholipids in Gram-positive bacterial pathogens. FA kinase consists of a kinase protein (FakA) that phosphorylates an FA substrate bound to a second module, an FA-binding protein (FakB). Staphylococcus aureus expresses two distinct, but related, FakBs with different FA selectivities. Here, we report the structures of FakB1 bound to four saturated FAs at 1.6–1.93 Å resolution. We observed that the different FA structures are accommodated within a slightly curved hydrophobic cavity whose length is governed by the conformation of an isoleucine side chain at the end of the tunnel. The hydrophobic tunnel in FakB1 prevents the binding of cis-unsaturated FAs, which are instead accommodated by the kinked tunnel within the FakB2 protein. The differences in the FakB interiors are not propagated to the proteins' surfaces, preserving the protein–protein interactions with their three common partners, FakA, PlsX, and PlsY. Using cellular thermal shift analyses, we found that FakB1 binds FA in vivo, whereas a significant proportion of FakB2 does not. Incorporation of exogenous FA into phospholipid in ΔfakB1 and ΔfakB2 S. aureus knockout strains revealed that FakB1 does not efficiently activate unsaturated FAs. FakB2 preferred unsaturated FAs, but also allowed the incorporation of saturated FAs. These results are consistent with a model in which FakB1 primarily functions in the recycling of the saturated FAs produced by S. aureus metabolism, whereas FakB2 activates host-derived oleate, which S. aureus does not produce but is abundant at infection sites. |
doi_str_mv | 10.1074/jbc.RA118.006160 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6322867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820368721</els_id><sourcerecordid>2133824175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-c4171b360c02cd01ca29d428fdb8a7640edb0839c5b30b8af4df8e8eb43166f83</originalsourceid><addsrcrecordid>eNp1UU2LFDEQDaK4s6t3T9J42kuP-eqetAdhWFwVFgQ_wFtIV6pnsmSSMekemJv_wX_oLzFjr4sezKUg9erVe_UIecboktGVfHnbw_LjmjG1pLRlLX1AFowqUYuGfX1IFpRyVne8UWfkPOdbWp7s2GNyJqjkHWdqQXANR1_D1rhQZfQIozu48ViZYKv99phd9HHjwPgqRY-5ikP1aTSl4yNEgClXZkpYymDG0xg4-_P7j94F68Km2qc4ogv5CXk0GJ_x6V29IF-u33y-elfffHj7_mp9U0Mj6ViDZCvWi5YC5WApA8M7K7kabK_MqpUUbV_sddD0gpavQdpBocJeCta2gxIX5PXMu5_6HVrAMCbj9T65nUlHHY3T_3aC2-pNPOhWcK7aVSF4MRPEPDqdwY0IW4ghlMNoJjveKVlAl3dbUvw2YR71zmVA703AOGXNmRCKFy9NgdIZCinmnHC418KoPkWoS4T6d4R6jrCMPP_bw_3An8wK4NUMwHLJg8N00okB0Lp0kmmj-z_7L2mSryA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2133824175</pqid></control><display><type>article</type><title>Acyl-chain selectivity and physiological roles of Staphylococcus aureus fatty acid–binding proteins</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Cuypers, Maxime G. ; Subramanian, Chitra ; Gullett, Jessica M. ; Frank, Matthew W. ; White, Stephen W. ; Rock, Charles O.</creator><creatorcontrib>Cuypers, Maxime G. ; Subramanian, Chitra ; Gullett, Jessica M. ; Frank, Matthew W. ; White, Stephen W. ; Rock, Charles O. ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Fatty acid (FA) kinase produces acyl-phosphate for the synthesis of membrane phospholipids in Gram-positive bacterial pathogens. FA kinase consists of a kinase protein (FakA) that phosphorylates an FA substrate bound to a second module, an FA-binding protein (FakB). Staphylococcus aureus expresses two distinct, but related, FakBs with different FA selectivities. Here, we report the structures of FakB1 bound to four saturated FAs at 1.6–1.93 Å resolution. We observed that the different FA structures are accommodated within a slightly curved hydrophobic cavity whose length is governed by the conformation of an isoleucine side chain at the end of the tunnel. The hydrophobic tunnel in FakB1 prevents the binding of cis-unsaturated FAs, which are instead accommodated by the kinked tunnel within the FakB2 protein. The differences in the FakB interiors are not propagated to the proteins' surfaces, preserving the protein–protein interactions with their three common partners, FakA, PlsX, and PlsY. Using cellular thermal shift analyses, we found that FakB1 binds FA in vivo, whereas a significant proportion of FakB2 does not. Incorporation of exogenous FA into phospholipid in ΔfakB1 and ΔfakB2 S. aureus knockout strains revealed that FakB1 does not efficiently activate unsaturated FAs. FakB2 preferred unsaturated FAs, but also allowed the incorporation of saturated FAs. These results are consistent with a model in which FakB1 primarily functions in the recycling of the saturated FAs produced by S. aureus metabolism, whereas FakB2 activates host-derived oleate, which S. aureus does not produce but is abundant at infection sites.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA118.006160</identifier><identifier>PMID: 30429218</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>acyl-phosphate ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Editors' Picks ; fatty acid binding protein ; fatty acid kinase ; fatty acid metabolism ; Fatty Acid-Binding Proteins - chemistry ; Fatty Acid-Binding Proteins - genetics ; Fatty Acid-Binding Proteins - metabolism ; membrane lipid ; membrane phospholipid ; nutrient acquisition ; Oleic Acid - chemistry ; Oleic Acid - metabolism ; Staphylococcus aureus (S. aureus) ; Staphylococcus aureus - chemistry ; Staphylococcus aureus - genetics ; Staphylococcus aureus - metabolism ; Substrate Specificity ; X-ray crystallography</subject><ispartof>The Journal of biological chemistry, 2019-01, Vol.294 (1), p.38-49</ispartof><rights>2019 © 2019 Cuypers et al.</rights><rights>2019 Cuypers et al.</rights><rights>2019 Cuypers et al. 2019 Cuypers et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-c4171b360c02cd01ca29d428fdb8a7640edb0839c5b30b8af4df8e8eb43166f83</citedby><cites>FETCH-LOGICAL-c540t-c4171b360c02cd01ca29d428fdb8a7640edb0839c5b30b8af4df8e8eb43166f83</cites><orcidid>0000-0003-1101-5307 ; 0000-0001-8648-4189 ; 0000000311015307 ; 0000000186484189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6322867/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6322867/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30429218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1492984$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cuypers, Maxime G.</creatorcontrib><creatorcontrib>Subramanian, Chitra</creatorcontrib><creatorcontrib>Gullett, Jessica M.</creatorcontrib><creatorcontrib>Frank, Matthew W.</creatorcontrib><creatorcontrib>White, Stephen W.</creatorcontrib><creatorcontrib>Rock, Charles O.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Acyl-chain selectivity and physiological roles of Staphylococcus aureus fatty acid–binding proteins</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Fatty acid (FA) kinase produces acyl-phosphate for the synthesis of membrane phospholipids in Gram-positive bacterial pathogens. FA kinase consists of a kinase protein (FakA) that phosphorylates an FA substrate bound to a second module, an FA-binding protein (FakB). Staphylococcus aureus expresses two distinct, but related, FakBs with different FA selectivities. Here, we report the structures of FakB1 bound to four saturated FAs at 1.6–1.93 Å resolution. We observed that the different FA structures are accommodated within a slightly curved hydrophobic cavity whose length is governed by the conformation of an isoleucine side chain at the end of the tunnel. The hydrophobic tunnel in FakB1 prevents the binding of cis-unsaturated FAs, which are instead accommodated by the kinked tunnel within the FakB2 protein. The differences in the FakB interiors are not propagated to the proteins' surfaces, preserving the protein–protein interactions with their three common partners, FakA, PlsX, and PlsY. Using cellular thermal shift analyses, we found that FakB1 binds FA in vivo, whereas a significant proportion of FakB2 does not. Incorporation of exogenous FA into phospholipid in ΔfakB1 and ΔfakB2 S. aureus knockout strains revealed that FakB1 does not efficiently activate unsaturated FAs. FakB2 preferred unsaturated FAs, but also allowed the incorporation of saturated FAs. These results are consistent with a model in which FakB1 primarily functions in the recycling of the saturated FAs produced by S. aureus metabolism, whereas FakB2 activates host-derived oleate, which S. aureus does not produce but is abundant at infection sites.</description><subject>acyl-phosphate</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Editors' Picks</subject><subject>fatty acid binding protein</subject><subject>fatty acid kinase</subject><subject>fatty acid metabolism</subject><subject>Fatty Acid-Binding Proteins - chemistry</subject><subject>Fatty Acid-Binding Proteins - genetics</subject><subject>Fatty Acid-Binding Proteins - metabolism</subject><subject>membrane lipid</subject><subject>membrane phospholipid</subject><subject>nutrient acquisition</subject><subject>Oleic Acid - chemistry</subject><subject>Oleic Acid - metabolism</subject><subject>Staphylococcus aureus (S. aureus)</subject><subject>Staphylococcus aureus - chemistry</subject><subject>Staphylococcus aureus - genetics</subject><subject>Staphylococcus aureus - metabolism</subject><subject>Substrate Specificity</subject><subject>X-ray crystallography</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1UU2LFDEQDaK4s6t3T9J42kuP-eqetAdhWFwVFgQ_wFtIV6pnsmSSMekemJv_wX_oLzFjr4sezKUg9erVe_UIecboktGVfHnbw_LjmjG1pLRlLX1AFowqUYuGfX1IFpRyVne8UWfkPOdbWp7s2GNyJqjkHWdqQXANR1_D1rhQZfQIozu48ViZYKv99phd9HHjwPgqRY-5ikP1aTSl4yNEgClXZkpYymDG0xg4-_P7j94F68Km2qc4ogv5CXk0GJ_x6V29IF-u33y-elfffHj7_mp9U0Mj6ViDZCvWi5YC5WApA8M7K7kabK_MqpUUbV_sddD0gpavQdpBocJeCta2gxIX5PXMu5_6HVrAMCbj9T65nUlHHY3T_3aC2-pNPOhWcK7aVSF4MRPEPDqdwY0IW4ghlMNoJjveKVlAl3dbUvw2YR71zmVA703AOGXNmRCKFy9NgdIZCinmnHC418KoPkWoS4T6d4R6jrCMPP_bw_3An8wK4NUMwHLJg8N00okB0Lp0kmmj-z_7L2mSryA</recordid><startdate>20190104</startdate><enddate>20190104</enddate><creator>Cuypers, Maxime G.</creator><creator>Subramanian, Chitra</creator><creator>Gullett, Jessica M.</creator><creator>Frank, Matthew W.</creator><creator>White, Stephen W.</creator><creator>Rock, Charles O.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1101-5307</orcidid><orcidid>https://orcid.org/0000-0001-8648-4189</orcidid><orcidid>https://orcid.org/0000000311015307</orcidid><orcidid>https://orcid.org/0000000186484189</orcidid></search><sort><creationdate>20190104</creationdate><title>Acyl-chain selectivity and physiological roles of Staphylococcus aureus fatty acid–binding proteins</title><author>Cuypers, Maxime G. ; Subramanian, Chitra ; Gullett, Jessica M. ; Frank, Matthew W. ; White, Stephen W. ; Rock, Charles O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-c4171b360c02cd01ca29d428fdb8a7640edb0839c5b30b8af4df8e8eb43166f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>acyl-phosphate</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Editors' Picks</topic><topic>fatty acid binding protein</topic><topic>fatty acid kinase</topic><topic>fatty acid metabolism</topic><topic>Fatty Acid-Binding Proteins - chemistry</topic><topic>Fatty Acid-Binding Proteins - genetics</topic><topic>Fatty Acid-Binding Proteins - metabolism</topic><topic>membrane lipid</topic><topic>membrane phospholipid</topic><topic>nutrient acquisition</topic><topic>Oleic Acid - chemistry</topic><topic>Oleic Acid - metabolism</topic><topic>Staphylococcus aureus (S. aureus)</topic><topic>Staphylococcus aureus - chemistry</topic><topic>Staphylococcus aureus - genetics</topic><topic>Staphylococcus aureus - metabolism</topic><topic>Substrate Specificity</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cuypers, Maxime G.</creatorcontrib><creatorcontrib>Subramanian, Chitra</creatorcontrib><creatorcontrib>Gullett, Jessica M.</creatorcontrib><creatorcontrib>Frank, Matthew W.</creatorcontrib><creatorcontrib>White, Stephen W.</creatorcontrib><creatorcontrib>Rock, Charles O.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cuypers, Maxime G.</au><au>Subramanian, Chitra</au><au>Gullett, Jessica M.</au><au>Frank, Matthew W.</au><au>White, Stephen W.</au><au>Rock, Charles O.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acyl-chain selectivity and physiological roles of Staphylococcus aureus fatty acid–binding proteins</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2019-01-04</date><risdate>2019</risdate><volume>294</volume><issue>1</issue><spage>38</spage><epage>49</epage><pages>38-49</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Fatty acid (FA) kinase produces acyl-phosphate for the synthesis of membrane phospholipids in Gram-positive bacterial pathogens. FA kinase consists of a kinase protein (FakA) that phosphorylates an FA substrate bound to a second module, an FA-binding protein (FakB). Staphylococcus aureus expresses two distinct, but related, FakBs with different FA selectivities. Here, we report the structures of FakB1 bound to four saturated FAs at 1.6–1.93 Å resolution. We observed that the different FA structures are accommodated within a slightly curved hydrophobic cavity whose length is governed by the conformation of an isoleucine side chain at the end of the tunnel. The hydrophobic tunnel in FakB1 prevents the binding of cis-unsaturated FAs, which are instead accommodated by the kinked tunnel within the FakB2 protein. The differences in the FakB interiors are not propagated to the proteins' surfaces, preserving the protein–protein interactions with their three common partners, FakA, PlsX, and PlsY. Using cellular thermal shift analyses, we found that FakB1 binds FA in vivo, whereas a significant proportion of FakB2 does not. Incorporation of exogenous FA into phospholipid in ΔfakB1 and ΔfakB2 S. aureus knockout strains revealed that FakB1 does not efficiently activate unsaturated FAs. FakB2 preferred unsaturated FAs, but also allowed the incorporation of saturated FAs. These results are consistent with a model in which FakB1 primarily functions in the recycling of the saturated FAs produced by S. aureus metabolism, whereas FakB2 activates host-derived oleate, which S. aureus does not produce but is abundant at infection sites.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30429218</pmid><doi>10.1074/jbc.RA118.006160</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1101-5307</orcidid><orcidid>https://orcid.org/0000-0001-8648-4189</orcidid><orcidid>https://orcid.org/0000000311015307</orcidid><orcidid>https://orcid.org/0000000186484189</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2019-01, Vol.294 (1), p.38-49 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6322867 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | acyl-phosphate Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Editors' Picks fatty acid binding protein fatty acid kinase fatty acid metabolism Fatty Acid-Binding Proteins - chemistry Fatty Acid-Binding Proteins - genetics Fatty Acid-Binding Proteins - metabolism membrane lipid membrane phospholipid nutrient acquisition Oleic Acid - chemistry Oleic Acid - metabolism Staphylococcus aureus (S. aureus) Staphylococcus aureus - chemistry Staphylococcus aureus - genetics Staphylococcus aureus - metabolism Substrate Specificity X-ray crystallography |
title | Acyl-chain selectivity and physiological roles of Staphylococcus aureus fatty acid–binding proteins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A21%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acyl-chain%20selectivity%20and%20physiological%20roles%20of%20Staphylococcus%20aureus%20fatty%20acid%E2%80%93binding%20proteins&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Cuypers,%20Maxime%20G.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2019-01-04&rft.volume=294&rft.issue=1&rft.spage=38&rft.epage=49&rft.pages=38-49&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA118.006160&rft_dat=%3Cproquest_pubme%3E2133824175%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2133824175&rft_id=info:pmid/30429218&rft_els_id=S0021925820368721&rfr_iscdi=true |