Acyl-chain selectivity and physiological roles of Staphylococcus aureus fatty acid–binding proteins

Fatty acid (FA) kinase produces acyl-phosphate for the synthesis of membrane phospholipids in Gram-positive bacterial pathogens. FA kinase consists of a kinase protein (FakA) that phosphorylates an FA substrate bound to a second module, an FA-binding protein (FakB). Staphylococcus aureus expresses t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2019-01, Vol.294 (1), p.38-49
Hauptverfasser: Cuypers, Maxime G., Subramanian, Chitra, Gullett, Jessica M., Frank, Matthew W., White, Stephen W., Rock, Charles O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 49
container_issue 1
container_start_page 38
container_title The Journal of biological chemistry
container_volume 294
creator Cuypers, Maxime G.
Subramanian, Chitra
Gullett, Jessica M.
Frank, Matthew W.
White, Stephen W.
Rock, Charles O.
description Fatty acid (FA) kinase produces acyl-phosphate for the synthesis of membrane phospholipids in Gram-positive bacterial pathogens. FA kinase consists of a kinase protein (FakA) that phosphorylates an FA substrate bound to a second module, an FA-binding protein (FakB). Staphylococcus aureus expresses two distinct, but related, FakBs with different FA selectivities. Here, we report the structures of FakB1 bound to four saturated FAs at 1.6–1.93 Å resolution. We observed that the different FA structures are accommodated within a slightly curved hydrophobic cavity whose length is governed by the conformation of an isoleucine side chain at the end of the tunnel. The hydrophobic tunnel in FakB1 prevents the binding of cis-unsaturated FAs, which are instead accommodated by the kinked tunnel within the FakB2 protein. The differences in the FakB interiors are not propagated to the proteins' surfaces, preserving the protein–protein interactions with their three common partners, FakA, PlsX, and PlsY. Using cellular thermal shift analyses, we found that FakB1 binds FA in vivo, whereas a significant proportion of FakB2 does not. Incorporation of exogenous FA into phospholipid in ΔfakB1 and ΔfakB2 S. aureus knockout strains revealed that FakB1 does not efficiently activate unsaturated FAs. FakB2 preferred unsaturated FAs, but also allowed the incorporation of saturated FAs. These results are consistent with a model in which FakB1 primarily functions in the recycling of the saturated FAs produced by S. aureus metabolism, whereas FakB2 activates host-derived oleate, which S. aureus does not produce but is abundant at infection sites.
doi_str_mv 10.1074/jbc.RA118.006160
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6322867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820368721</els_id><sourcerecordid>2133824175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-c4171b360c02cd01ca29d428fdb8a7640edb0839c5b30b8af4df8e8eb43166f83</originalsourceid><addsrcrecordid>eNp1UU2LFDEQDaK4s6t3T9J42kuP-eqetAdhWFwVFgQ_wFtIV6pnsmSSMekemJv_wX_oLzFjr4sezKUg9erVe_UIecboktGVfHnbw_LjmjG1pLRlLX1AFowqUYuGfX1IFpRyVne8UWfkPOdbWp7s2GNyJqjkHWdqQXANR1_D1rhQZfQIozu48ViZYKv99phd9HHjwPgqRY-5ikP1aTSl4yNEgClXZkpYymDG0xg4-_P7j94F68Km2qc4ogv5CXk0GJ_x6V29IF-u33y-elfffHj7_mp9U0Mj6ViDZCvWi5YC5WApA8M7K7kabK_MqpUUbV_sddD0gpavQdpBocJeCta2gxIX5PXMu5_6HVrAMCbj9T65nUlHHY3T_3aC2-pNPOhWcK7aVSF4MRPEPDqdwY0IW4ghlMNoJjveKVlAl3dbUvw2YR71zmVA703AOGXNmRCKFy9NgdIZCinmnHC418KoPkWoS4T6d4R6jrCMPP_bw_3An8wK4NUMwHLJg8N00okB0Lp0kmmj-z_7L2mSryA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2133824175</pqid></control><display><type>article</type><title>Acyl-chain selectivity and physiological roles of Staphylococcus aureus fatty acid–binding proteins</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Cuypers, Maxime G. ; Subramanian, Chitra ; Gullett, Jessica M. ; Frank, Matthew W. ; White, Stephen W. ; Rock, Charles O.</creator><creatorcontrib>Cuypers, Maxime G. ; Subramanian, Chitra ; Gullett, Jessica M. ; Frank, Matthew W. ; White, Stephen W. ; Rock, Charles O. ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Fatty acid (FA) kinase produces acyl-phosphate for the synthesis of membrane phospholipids in Gram-positive bacterial pathogens. FA kinase consists of a kinase protein (FakA) that phosphorylates an FA substrate bound to a second module, an FA-binding protein (FakB). Staphylococcus aureus expresses two distinct, but related, FakBs with different FA selectivities. Here, we report the structures of FakB1 bound to four saturated FAs at 1.6–1.93 Å resolution. We observed that the different FA structures are accommodated within a slightly curved hydrophobic cavity whose length is governed by the conformation of an isoleucine side chain at the end of the tunnel. The hydrophobic tunnel in FakB1 prevents the binding of cis-unsaturated FAs, which are instead accommodated by the kinked tunnel within the FakB2 protein. The differences in the FakB interiors are not propagated to the proteins' surfaces, preserving the protein–protein interactions with their three common partners, FakA, PlsX, and PlsY. Using cellular thermal shift analyses, we found that FakB1 binds FA in vivo, whereas a significant proportion of FakB2 does not. Incorporation of exogenous FA into phospholipid in ΔfakB1 and ΔfakB2 S. aureus knockout strains revealed that FakB1 does not efficiently activate unsaturated FAs. FakB2 preferred unsaturated FAs, but also allowed the incorporation of saturated FAs. These results are consistent with a model in which FakB1 primarily functions in the recycling of the saturated FAs produced by S. aureus metabolism, whereas FakB2 activates host-derived oleate, which S. aureus does not produce but is abundant at infection sites.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA118.006160</identifier><identifier>PMID: 30429218</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>acyl-phosphate ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Editors' Picks ; fatty acid binding protein ; fatty acid kinase ; fatty acid metabolism ; Fatty Acid-Binding Proteins - chemistry ; Fatty Acid-Binding Proteins - genetics ; Fatty Acid-Binding Proteins - metabolism ; membrane lipid ; membrane phospholipid ; nutrient acquisition ; Oleic Acid - chemistry ; Oleic Acid - metabolism ; Staphylococcus aureus (S. aureus) ; Staphylococcus aureus - chemistry ; Staphylococcus aureus - genetics ; Staphylococcus aureus - metabolism ; Substrate Specificity ; X-ray crystallography</subject><ispartof>The Journal of biological chemistry, 2019-01, Vol.294 (1), p.38-49</ispartof><rights>2019 © 2019 Cuypers et al.</rights><rights>2019 Cuypers et al.</rights><rights>2019 Cuypers et al. 2019 Cuypers et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-c4171b360c02cd01ca29d428fdb8a7640edb0839c5b30b8af4df8e8eb43166f83</citedby><cites>FETCH-LOGICAL-c540t-c4171b360c02cd01ca29d428fdb8a7640edb0839c5b30b8af4df8e8eb43166f83</cites><orcidid>0000-0003-1101-5307 ; 0000-0001-8648-4189 ; 0000000311015307 ; 0000000186484189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6322867/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6322867/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30429218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1492984$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cuypers, Maxime G.</creatorcontrib><creatorcontrib>Subramanian, Chitra</creatorcontrib><creatorcontrib>Gullett, Jessica M.</creatorcontrib><creatorcontrib>Frank, Matthew W.</creatorcontrib><creatorcontrib>White, Stephen W.</creatorcontrib><creatorcontrib>Rock, Charles O.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Acyl-chain selectivity and physiological roles of Staphylococcus aureus fatty acid–binding proteins</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Fatty acid (FA) kinase produces acyl-phosphate for the synthesis of membrane phospholipids in Gram-positive bacterial pathogens. FA kinase consists of a kinase protein (FakA) that phosphorylates an FA substrate bound to a second module, an FA-binding protein (FakB). Staphylococcus aureus expresses two distinct, but related, FakBs with different FA selectivities. Here, we report the structures of FakB1 bound to four saturated FAs at 1.6–1.93 Å resolution. We observed that the different FA structures are accommodated within a slightly curved hydrophobic cavity whose length is governed by the conformation of an isoleucine side chain at the end of the tunnel. The hydrophobic tunnel in FakB1 prevents the binding of cis-unsaturated FAs, which are instead accommodated by the kinked tunnel within the FakB2 protein. The differences in the FakB interiors are not propagated to the proteins' surfaces, preserving the protein–protein interactions with their three common partners, FakA, PlsX, and PlsY. Using cellular thermal shift analyses, we found that FakB1 binds FA in vivo, whereas a significant proportion of FakB2 does not. Incorporation of exogenous FA into phospholipid in ΔfakB1 and ΔfakB2 S. aureus knockout strains revealed that FakB1 does not efficiently activate unsaturated FAs. FakB2 preferred unsaturated FAs, but also allowed the incorporation of saturated FAs. These results are consistent with a model in which FakB1 primarily functions in the recycling of the saturated FAs produced by S. aureus metabolism, whereas FakB2 activates host-derived oleate, which S. aureus does not produce but is abundant at infection sites.</description><subject>acyl-phosphate</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Editors' Picks</subject><subject>fatty acid binding protein</subject><subject>fatty acid kinase</subject><subject>fatty acid metabolism</subject><subject>Fatty Acid-Binding Proteins - chemistry</subject><subject>Fatty Acid-Binding Proteins - genetics</subject><subject>Fatty Acid-Binding Proteins - metabolism</subject><subject>membrane lipid</subject><subject>membrane phospholipid</subject><subject>nutrient acquisition</subject><subject>Oleic Acid - chemistry</subject><subject>Oleic Acid - metabolism</subject><subject>Staphylococcus aureus (S. aureus)</subject><subject>Staphylococcus aureus - chemistry</subject><subject>Staphylococcus aureus - genetics</subject><subject>Staphylococcus aureus - metabolism</subject><subject>Substrate Specificity</subject><subject>X-ray crystallography</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1UU2LFDEQDaK4s6t3T9J42kuP-eqetAdhWFwVFgQ_wFtIV6pnsmSSMekemJv_wX_oLzFjr4sezKUg9erVe_UIecboktGVfHnbw_LjmjG1pLRlLX1AFowqUYuGfX1IFpRyVne8UWfkPOdbWp7s2GNyJqjkHWdqQXANR1_D1rhQZfQIozu48ViZYKv99phd9HHjwPgqRY-5ikP1aTSl4yNEgClXZkpYymDG0xg4-_P7j94F68Km2qc4ogv5CXk0GJ_x6V29IF-u33y-elfffHj7_mp9U0Mj6ViDZCvWi5YC5WApA8M7K7kabK_MqpUUbV_sddD0gpavQdpBocJeCta2gxIX5PXMu5_6HVrAMCbj9T65nUlHHY3T_3aC2-pNPOhWcK7aVSF4MRPEPDqdwY0IW4ghlMNoJjveKVlAl3dbUvw2YR71zmVA703AOGXNmRCKFy9NgdIZCinmnHC418KoPkWoS4T6d4R6jrCMPP_bw_3An8wK4NUMwHLJg8N00okB0Lp0kmmj-z_7L2mSryA</recordid><startdate>20190104</startdate><enddate>20190104</enddate><creator>Cuypers, Maxime G.</creator><creator>Subramanian, Chitra</creator><creator>Gullett, Jessica M.</creator><creator>Frank, Matthew W.</creator><creator>White, Stephen W.</creator><creator>Rock, Charles O.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1101-5307</orcidid><orcidid>https://orcid.org/0000-0001-8648-4189</orcidid><orcidid>https://orcid.org/0000000311015307</orcidid><orcidid>https://orcid.org/0000000186484189</orcidid></search><sort><creationdate>20190104</creationdate><title>Acyl-chain selectivity and physiological roles of Staphylococcus aureus fatty acid–binding proteins</title><author>Cuypers, Maxime G. ; Subramanian, Chitra ; Gullett, Jessica M. ; Frank, Matthew W. ; White, Stephen W. ; Rock, Charles O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-c4171b360c02cd01ca29d428fdb8a7640edb0839c5b30b8af4df8e8eb43166f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>acyl-phosphate</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Editors' Picks</topic><topic>fatty acid binding protein</topic><topic>fatty acid kinase</topic><topic>fatty acid metabolism</topic><topic>Fatty Acid-Binding Proteins - chemistry</topic><topic>Fatty Acid-Binding Proteins - genetics</topic><topic>Fatty Acid-Binding Proteins - metabolism</topic><topic>membrane lipid</topic><topic>membrane phospholipid</topic><topic>nutrient acquisition</topic><topic>Oleic Acid - chemistry</topic><topic>Oleic Acid - metabolism</topic><topic>Staphylococcus aureus (S. aureus)</topic><topic>Staphylococcus aureus - chemistry</topic><topic>Staphylococcus aureus - genetics</topic><topic>Staphylococcus aureus - metabolism</topic><topic>Substrate Specificity</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cuypers, Maxime G.</creatorcontrib><creatorcontrib>Subramanian, Chitra</creatorcontrib><creatorcontrib>Gullett, Jessica M.</creatorcontrib><creatorcontrib>Frank, Matthew W.</creatorcontrib><creatorcontrib>White, Stephen W.</creatorcontrib><creatorcontrib>Rock, Charles O.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cuypers, Maxime G.</au><au>Subramanian, Chitra</au><au>Gullett, Jessica M.</au><au>Frank, Matthew W.</au><au>White, Stephen W.</au><au>Rock, Charles O.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acyl-chain selectivity and physiological roles of Staphylococcus aureus fatty acid–binding proteins</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2019-01-04</date><risdate>2019</risdate><volume>294</volume><issue>1</issue><spage>38</spage><epage>49</epage><pages>38-49</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Fatty acid (FA) kinase produces acyl-phosphate for the synthesis of membrane phospholipids in Gram-positive bacterial pathogens. FA kinase consists of a kinase protein (FakA) that phosphorylates an FA substrate bound to a second module, an FA-binding protein (FakB). Staphylococcus aureus expresses two distinct, but related, FakBs with different FA selectivities. Here, we report the structures of FakB1 bound to four saturated FAs at 1.6–1.93 Å resolution. We observed that the different FA structures are accommodated within a slightly curved hydrophobic cavity whose length is governed by the conformation of an isoleucine side chain at the end of the tunnel. The hydrophobic tunnel in FakB1 prevents the binding of cis-unsaturated FAs, which are instead accommodated by the kinked tunnel within the FakB2 protein. The differences in the FakB interiors are not propagated to the proteins' surfaces, preserving the protein–protein interactions with their three common partners, FakA, PlsX, and PlsY. Using cellular thermal shift analyses, we found that FakB1 binds FA in vivo, whereas a significant proportion of FakB2 does not. Incorporation of exogenous FA into phospholipid in ΔfakB1 and ΔfakB2 S. aureus knockout strains revealed that FakB1 does not efficiently activate unsaturated FAs. FakB2 preferred unsaturated FAs, but also allowed the incorporation of saturated FAs. These results are consistent with a model in which FakB1 primarily functions in the recycling of the saturated FAs produced by S. aureus metabolism, whereas FakB2 activates host-derived oleate, which S. aureus does not produce but is abundant at infection sites.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30429218</pmid><doi>10.1074/jbc.RA118.006160</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1101-5307</orcidid><orcidid>https://orcid.org/0000-0001-8648-4189</orcidid><orcidid>https://orcid.org/0000000311015307</orcidid><orcidid>https://orcid.org/0000000186484189</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2019-01, Vol.294 (1), p.38-49
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6322867
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects acyl-phosphate
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Editors' Picks
fatty acid binding protein
fatty acid kinase
fatty acid metabolism
Fatty Acid-Binding Proteins - chemistry
Fatty Acid-Binding Proteins - genetics
Fatty Acid-Binding Proteins - metabolism
membrane lipid
membrane phospholipid
nutrient acquisition
Oleic Acid - chemistry
Oleic Acid - metabolism
Staphylococcus aureus (S. aureus)
Staphylococcus aureus - chemistry
Staphylococcus aureus - genetics
Staphylococcus aureus - metabolism
Substrate Specificity
X-ray crystallography
title Acyl-chain selectivity and physiological roles of Staphylococcus aureus fatty acid–binding proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A21%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acyl-chain%20selectivity%20and%20physiological%20roles%20of%20Staphylococcus%20aureus%20fatty%20acid%E2%80%93binding%20proteins&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Cuypers,%20Maxime%20G.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2019-01-04&rft.volume=294&rft.issue=1&rft.spage=38&rft.epage=49&rft.pages=38-49&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA118.006160&rft_dat=%3Cproquest_pubme%3E2133824175%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2133824175&rft_id=info:pmid/30429218&rft_els_id=S0021925820368721&rfr_iscdi=true