Efficient 2-phosphoglycolate degradation is required to maintain carbon assimilation and allocation in the C₄ plant Flaveria bidentis
Photorespiration is indispensable for oxygenic photosynthesis since it detoxifies and recycles 2-phosphoglycolate (2PG), which is the primary oxygenation product of Rubisco. However, C₄ plant species typically display very low rates of photorespiration due to their efficient biochemical carbon-conce...
Gespeichert in:
Veröffentlicht in: | Journal of experimental botany 2019-01, Vol.70 (2), p.575-587 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 587 |
---|---|
container_issue | 2 |
container_start_page | 575 |
container_title | Journal of experimental botany |
container_volume | 70 |
creator | Levey, Myles Timm, Stefan Mettler-Altmann, Tabea Borghi, Gian Luca Koczor, Maria Arrivault, Stéphanie Weber, Andreas PM Bauwe, Hermann Gowik, Udo Westhoff, Peter |
description | Photorespiration is indispensable for oxygenic photosynthesis since it detoxifies and recycles 2-phosphoglycolate (2PG), which is the primary oxygenation product of Rubisco. However, C₄ plant species typically display very low rates of photorespiration due to their efficient biochemical carbon-concentrating mechanism. Thus, the broader relevance of photorespiration in these organisms remains unclear. In this study, we assessed the importance of a functional photorespiratory pathway in the C₄ plant Flaveria bidentis using knockdown of the first enzymatic step, namely 2PG phosphatase (PGLP). The isolated RNAi lines showed strongly reduced amounts of PGLP protein, but distinct signs of the photorespiratory phenotype only emerged below 5% residual PGLP protein. Lines with this characteristic were stunted in growth, had strongly increased 2PG content, exhibited accelerated leaf senescence, and accumulated high amounts of branched-chain and aromatic amino acids, which are both characteristics of incipient carbon starvation. Oxygen-dependent gas-exchange measurements consistently suggested the cumulative impairment of ribulose-1,5-bisphosphate regeneration with increased photorespiratory pressure. Our results indicate that photorespiration is essential for maintaining high rates of C₄ photosynthesis by preventing the 2PG-mediated inhibition of carbon utilization efficiency. However, considerably higher 2PG accumulation can be tolerated compared to equivalent lines of C₃ plants due to the differential distribution of specific enzymatic steps between the mesophyll and bundle sheath cells. |
doi_str_mv | 10.1093/jxb/ery370 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6322630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26961428</jstor_id><oup_id>10.1093/jxb/ery370</oup_id><sourcerecordid>26961428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-fd060581db43b61a0bdf0f167c26a1d5922d65e1cdfb7a65a7a8d19142b0888e3</originalsourceid><addsrcrecordid>eNp9kU-LFDEQxYO4uOPoxbuSiyBCu_nTSXdfBBl2dWHBi55DdZKeyZDu9Cbdi3MVwe_pJzFLj8N62UNRh_rVe0k9hF5R8oGShl_sf7QXNh54RZ6gFS0lKVjJ6VO0IoSxgjSiOkfPU9oTQgQR4hk654SLitdyhX5fdp3Tzg4TZsW4CynX1h908DBZbOw2goHJhQG7hKO9nV20Bk8B9-CGKRfWENs8hpRc7_zCwmAweB_0cXXA087izZ-fv_DoIXtdebiz0QFuncneLr1AZx34ZF8e-xp9v7r8tvlS3Hz9fL35dFNo3pRT0RkiiaipaUveSgqkNR3pqKw0k0CNaBgzUliqTddWIAVUUBva0JK1pK5ry9fo46I7zm1vjc7mEbwao-shHlQAp_6fDG6ntuFOSc6YzHdbo3dHgRhuZ5sm1bukrc_fsmFOilEmWCNIeY--X1AdQ0rRdicbStR9cionp5bkMvzm4cNO6L-oMvB2AcI8Pi70euH2aQrxRDLZyHyGmv8F6Z6wUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2125295040</pqid></control><display><type>article</type><title>Efficient 2-phosphoglycolate degradation is required to maintain carbon assimilation and allocation in the C₄ plant Flaveria bidentis</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Levey, Myles ; Timm, Stefan ; Mettler-Altmann, Tabea ; Borghi, Gian Luca ; Koczor, Maria ; Arrivault, Stéphanie ; Weber, Andreas PM ; Bauwe, Hermann ; Gowik, Udo ; Westhoff, Peter</creator><creatorcontrib>Levey, Myles ; Timm, Stefan ; Mettler-Altmann, Tabea ; Borghi, Gian Luca ; Koczor, Maria ; Arrivault, Stéphanie ; Weber, Andreas PM ; Bauwe, Hermann ; Gowik, Udo ; Westhoff, Peter</creatorcontrib><description>Photorespiration is indispensable for oxygenic photosynthesis since it detoxifies and recycles 2-phosphoglycolate (2PG), which is the primary oxygenation product of Rubisco. However, C₄ plant species typically display very low rates of photorespiration due to their efficient biochemical carbon-concentrating mechanism. Thus, the broader relevance of photorespiration in these organisms remains unclear. In this study, we assessed the importance of a functional photorespiratory pathway in the C₄ plant Flaveria bidentis using knockdown of the first enzymatic step, namely 2PG phosphatase (PGLP). The isolated RNAi lines showed strongly reduced amounts of PGLP protein, but distinct signs of the photorespiratory phenotype only emerged below 5% residual PGLP protein. Lines with this characteristic were stunted in growth, had strongly increased 2PG content, exhibited accelerated leaf senescence, and accumulated high amounts of branched-chain and aromatic amino acids, which are both characteristics of incipient carbon starvation. Oxygen-dependent gas-exchange measurements consistently suggested the cumulative impairment of ribulose-1,5-bisphosphate regeneration with increased photorespiratory pressure. Our results indicate that photorespiration is essential for maintaining high rates of C₄ photosynthesis by preventing the 2PG-mediated inhibition of carbon utilization efficiency. However, considerably higher 2PG accumulation can be tolerated compared to equivalent lines of C₃ plants due to the differential distribution of specific enzymatic steps between the mesophyll and bundle sheath cells.</description><identifier>ISSN: 0022-0957</identifier><identifier>EISSN: 1460-2431</identifier><identifier>DOI: 10.1093/jxb/ery370</identifier><identifier>PMID: 30357386</identifier><language>eng</language><publisher>UK: Oxford University Press</publisher><subject>Amino Acids - metabolism ; Carbon Dioxide - metabolism ; Flaveria - metabolism ; Glycolates - metabolism ; Phosphoric Monoester Hydrolases - metabolism ; Photosynthesis ; Photosynthesis and Metabolism ; Plants, Genetically Modified ; Research Papers</subject><ispartof>Journal of experimental botany, 2019-01, Vol.70 (2), p.575-587</ispartof><rights>The Author(s) 2018</rights><rights>The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Experimental Biology. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-fd060581db43b61a0bdf0f167c26a1d5922d65e1cdfb7a65a7a8d19142b0888e3</citedby><cites>FETCH-LOGICAL-c394t-fd060581db43b61a0bdf0f167c26a1d5922d65e1cdfb7a65a7a8d19142b0888e3</cites><orcidid>0000-0002-9161-4889 ; 0000-0003-3105-6296 ; 0000-0003-0970-4672 ; 0000-0001-7802-8925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1583,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30357386$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Levey, Myles</creatorcontrib><creatorcontrib>Timm, Stefan</creatorcontrib><creatorcontrib>Mettler-Altmann, Tabea</creatorcontrib><creatorcontrib>Borghi, Gian Luca</creatorcontrib><creatorcontrib>Koczor, Maria</creatorcontrib><creatorcontrib>Arrivault, Stéphanie</creatorcontrib><creatorcontrib>Weber, Andreas PM</creatorcontrib><creatorcontrib>Bauwe, Hermann</creatorcontrib><creatorcontrib>Gowik, Udo</creatorcontrib><creatorcontrib>Westhoff, Peter</creatorcontrib><title>Efficient 2-phosphoglycolate degradation is required to maintain carbon assimilation and allocation in the C₄ plant Flaveria bidentis</title><title>Journal of experimental botany</title><addtitle>J Exp Bot</addtitle><description>Photorespiration is indispensable for oxygenic photosynthesis since it detoxifies and recycles 2-phosphoglycolate (2PG), which is the primary oxygenation product of Rubisco. However, C₄ plant species typically display very low rates of photorespiration due to their efficient biochemical carbon-concentrating mechanism. Thus, the broader relevance of photorespiration in these organisms remains unclear. In this study, we assessed the importance of a functional photorespiratory pathway in the C₄ plant Flaveria bidentis using knockdown of the first enzymatic step, namely 2PG phosphatase (PGLP). The isolated RNAi lines showed strongly reduced amounts of PGLP protein, but distinct signs of the photorespiratory phenotype only emerged below 5% residual PGLP protein. Lines with this characteristic were stunted in growth, had strongly increased 2PG content, exhibited accelerated leaf senescence, and accumulated high amounts of branched-chain and aromatic amino acids, which are both characteristics of incipient carbon starvation. Oxygen-dependent gas-exchange measurements consistently suggested the cumulative impairment of ribulose-1,5-bisphosphate regeneration with increased photorespiratory pressure. Our results indicate that photorespiration is essential for maintaining high rates of C₄ photosynthesis by preventing the 2PG-mediated inhibition of carbon utilization efficiency. However, considerably higher 2PG accumulation can be tolerated compared to equivalent lines of C₃ plants due to the differential distribution of specific enzymatic steps between the mesophyll and bundle sheath cells.</description><subject>Amino Acids - metabolism</subject><subject>Carbon Dioxide - metabolism</subject><subject>Flaveria - metabolism</subject><subject>Glycolates - metabolism</subject><subject>Phosphoric Monoester Hydrolases - metabolism</subject><subject>Photosynthesis</subject><subject>Photosynthesis and Metabolism</subject><subject>Plants, Genetically Modified</subject><subject>Research Papers</subject><issn>0022-0957</issn><issn>1460-2431</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kU-LFDEQxYO4uOPoxbuSiyBCu_nTSXdfBBl2dWHBi55DdZKeyZDu9Cbdi3MVwe_pJzFLj8N62UNRh_rVe0k9hF5R8oGShl_sf7QXNh54RZ6gFS0lKVjJ6VO0IoSxgjSiOkfPU9oTQgQR4hk654SLitdyhX5fdp3Tzg4TZsW4CynX1h908DBZbOw2goHJhQG7hKO9nV20Bk8B9-CGKRfWENs8hpRc7_zCwmAweB_0cXXA087izZ-fv_DoIXtdebiz0QFuncneLr1AZx34ZF8e-xp9v7r8tvlS3Hz9fL35dFNo3pRT0RkiiaipaUveSgqkNR3pqKw0k0CNaBgzUliqTddWIAVUUBva0JK1pK5ry9fo46I7zm1vjc7mEbwao-shHlQAp_6fDG6ntuFOSc6YzHdbo3dHgRhuZ5sm1bukrc_fsmFOilEmWCNIeY--X1AdQ0rRdicbStR9cionp5bkMvzm4cNO6L-oMvB2AcI8Pi70euH2aQrxRDLZyHyGmv8F6Z6wUA</recordid><startdate>20190107</startdate><enddate>20190107</enddate><creator>Levey, Myles</creator><creator>Timm, Stefan</creator><creator>Mettler-Altmann, Tabea</creator><creator>Borghi, Gian Luca</creator><creator>Koczor, Maria</creator><creator>Arrivault, Stéphanie</creator><creator>Weber, Andreas PM</creator><creator>Bauwe, Hermann</creator><creator>Gowik, Udo</creator><creator>Westhoff, Peter</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9161-4889</orcidid><orcidid>https://orcid.org/0000-0003-3105-6296</orcidid><orcidid>https://orcid.org/0000-0003-0970-4672</orcidid><orcidid>https://orcid.org/0000-0001-7802-8925</orcidid></search><sort><creationdate>20190107</creationdate><title>Efficient 2-phosphoglycolate degradation is required to maintain carbon assimilation and allocation in the C₄ plant Flaveria bidentis</title><author>Levey, Myles ; Timm, Stefan ; Mettler-Altmann, Tabea ; Borghi, Gian Luca ; Koczor, Maria ; Arrivault, Stéphanie ; Weber, Andreas PM ; Bauwe, Hermann ; Gowik, Udo ; Westhoff, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-fd060581db43b61a0bdf0f167c26a1d5922d65e1cdfb7a65a7a8d19142b0888e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amino Acids - metabolism</topic><topic>Carbon Dioxide - metabolism</topic><topic>Flaveria - metabolism</topic><topic>Glycolates - metabolism</topic><topic>Phosphoric Monoester Hydrolases - metabolism</topic><topic>Photosynthesis</topic><topic>Photosynthesis and Metabolism</topic><topic>Plants, Genetically Modified</topic><topic>Research Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levey, Myles</creatorcontrib><creatorcontrib>Timm, Stefan</creatorcontrib><creatorcontrib>Mettler-Altmann, Tabea</creatorcontrib><creatorcontrib>Borghi, Gian Luca</creatorcontrib><creatorcontrib>Koczor, Maria</creatorcontrib><creatorcontrib>Arrivault, Stéphanie</creatorcontrib><creatorcontrib>Weber, Andreas PM</creatorcontrib><creatorcontrib>Bauwe, Hermann</creatorcontrib><creatorcontrib>Gowik, Udo</creatorcontrib><creatorcontrib>Westhoff, Peter</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of experimental botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levey, Myles</au><au>Timm, Stefan</au><au>Mettler-Altmann, Tabea</au><au>Borghi, Gian Luca</au><au>Koczor, Maria</au><au>Arrivault, Stéphanie</au><au>Weber, Andreas PM</au><au>Bauwe, Hermann</au><au>Gowik, Udo</au><au>Westhoff, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient 2-phosphoglycolate degradation is required to maintain carbon assimilation and allocation in the C₄ plant Flaveria bidentis</atitle><jtitle>Journal of experimental botany</jtitle><addtitle>J Exp Bot</addtitle><date>2019-01-07</date><risdate>2019</risdate><volume>70</volume><issue>2</issue><spage>575</spage><epage>587</epage><pages>575-587</pages><issn>0022-0957</issn><eissn>1460-2431</eissn><abstract>Photorespiration is indispensable for oxygenic photosynthesis since it detoxifies and recycles 2-phosphoglycolate (2PG), which is the primary oxygenation product of Rubisco. However, C₄ plant species typically display very low rates of photorespiration due to their efficient biochemical carbon-concentrating mechanism. Thus, the broader relevance of photorespiration in these organisms remains unclear. In this study, we assessed the importance of a functional photorespiratory pathway in the C₄ plant Flaveria bidentis using knockdown of the first enzymatic step, namely 2PG phosphatase (PGLP). The isolated RNAi lines showed strongly reduced amounts of PGLP protein, but distinct signs of the photorespiratory phenotype only emerged below 5% residual PGLP protein. Lines with this characteristic were stunted in growth, had strongly increased 2PG content, exhibited accelerated leaf senescence, and accumulated high amounts of branched-chain and aromatic amino acids, which are both characteristics of incipient carbon starvation. Oxygen-dependent gas-exchange measurements consistently suggested the cumulative impairment of ribulose-1,5-bisphosphate regeneration with increased photorespiratory pressure. Our results indicate that photorespiration is essential for maintaining high rates of C₄ photosynthesis by preventing the 2PG-mediated inhibition of carbon utilization efficiency. However, considerably higher 2PG accumulation can be tolerated compared to equivalent lines of C₃ plants due to the differential distribution of specific enzymatic steps between the mesophyll and bundle sheath cells.</abstract><cop>UK</cop><pub>Oxford University Press</pub><pmid>30357386</pmid><doi>10.1093/jxb/ery370</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9161-4889</orcidid><orcidid>https://orcid.org/0000-0003-3105-6296</orcidid><orcidid>https://orcid.org/0000-0003-0970-4672</orcidid><orcidid>https://orcid.org/0000-0001-7802-8925</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0957 |
ispartof | Journal of experimental botany, 2019-01, Vol.70 (2), p.575-587 |
issn | 0022-0957 1460-2431 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6322630 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Amino Acids - metabolism Carbon Dioxide - metabolism Flaveria - metabolism Glycolates - metabolism Phosphoric Monoester Hydrolases - metabolism Photosynthesis Photosynthesis and Metabolism Plants, Genetically Modified Research Papers |
title | Efficient 2-phosphoglycolate degradation is required to maintain carbon assimilation and allocation in the C₄ plant Flaveria bidentis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A44%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%202-phosphoglycolate%20degradation%20is%20required%20to%20maintain%20carbon%20assimilation%20and%20allocation%20in%20the%20C%E2%82%84%20plant%20Flaveria%20bidentis&rft.jtitle=Journal%20of%20experimental%20botany&rft.au=Levey,%20Myles&rft.date=2019-01-07&rft.volume=70&rft.issue=2&rft.spage=575&rft.epage=587&rft.pages=575-587&rft.issn=0022-0957&rft.eissn=1460-2431&rft_id=info:doi/10.1093/jxb/ery370&rft_dat=%3Cjstor_pubme%3E26961428%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2125295040&rft_id=info:pmid/30357386&rft_jstor_id=26961428&rft_oup_id=10.1093/jxb/ery370&rfr_iscdi=true |