Efficient 2-phosphoglycolate degradation is required to maintain carbon assimilation and allocation in the C₄ plant Flaveria bidentis

Photorespiration is indispensable for oxygenic photosynthesis since it detoxifies and recycles 2-phosphoglycolate (2PG), which is the primary oxygenation product of Rubisco. However, C₄ plant species typically display very low rates of photorespiration due to their efficient biochemical carbon-conce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany 2019-01, Vol.70 (2), p.575-587
Hauptverfasser: Levey, Myles, Timm, Stefan, Mettler-Altmann, Tabea, Borghi, Gian Luca, Koczor, Maria, Arrivault, Stéphanie, Weber, Andreas PM, Bauwe, Hermann, Gowik, Udo, Westhoff, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 587
container_issue 2
container_start_page 575
container_title Journal of experimental botany
container_volume 70
creator Levey, Myles
Timm, Stefan
Mettler-Altmann, Tabea
Borghi, Gian Luca
Koczor, Maria
Arrivault, Stéphanie
Weber, Andreas PM
Bauwe, Hermann
Gowik, Udo
Westhoff, Peter
description Photorespiration is indispensable for oxygenic photosynthesis since it detoxifies and recycles 2-phosphoglycolate (2PG), which is the primary oxygenation product of Rubisco. However, C₄ plant species typically display very low rates of photorespiration due to their efficient biochemical carbon-concentrating mechanism. Thus, the broader relevance of photorespiration in these organisms remains unclear. In this study, we assessed the importance of a functional photorespiratory pathway in the C₄ plant Flaveria bidentis using knockdown of the first enzymatic step, namely 2PG phosphatase (PGLP). The isolated RNAi lines showed strongly reduced amounts of PGLP protein, but distinct signs of the photorespiratory phenotype only emerged below 5% residual PGLP protein. Lines with this characteristic were stunted in growth, had strongly increased 2PG content, exhibited accelerated leaf senescence, and accumulated high amounts of branched-chain and aromatic amino acids, which are both characteristics of incipient carbon starvation. Oxygen-dependent gas-exchange measurements consistently suggested the cumulative impairment of ribulose-1,5-bisphosphate regeneration with increased photorespiratory pressure. Our results indicate that photorespiration is essential for maintaining high rates of C₄ photosynthesis by preventing the 2PG-mediated inhibition of carbon utilization efficiency. However, considerably higher 2PG accumulation can be tolerated compared to equivalent lines of C₃ plants due to the differential distribution of specific enzymatic steps between the mesophyll and bundle sheath cells.
doi_str_mv 10.1093/jxb/ery370
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6322630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26961428</jstor_id><oup_id>10.1093/jxb/ery370</oup_id><sourcerecordid>26961428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-fd060581db43b61a0bdf0f167c26a1d5922d65e1cdfb7a65a7a8d19142b0888e3</originalsourceid><addsrcrecordid>eNp9kU-LFDEQxYO4uOPoxbuSiyBCu_nTSXdfBBl2dWHBi55DdZKeyZDu9Cbdi3MVwe_pJzFLj8N62UNRh_rVe0k9hF5R8oGShl_sf7QXNh54RZ6gFS0lKVjJ6VO0IoSxgjSiOkfPU9oTQgQR4hk654SLitdyhX5fdp3Tzg4TZsW4CynX1h908DBZbOw2goHJhQG7hKO9nV20Bk8B9-CGKRfWENs8hpRc7_zCwmAweB_0cXXA087izZ-fv_DoIXtdebiz0QFuncneLr1AZx34ZF8e-xp9v7r8tvlS3Hz9fL35dFNo3pRT0RkiiaipaUveSgqkNR3pqKw0k0CNaBgzUliqTddWIAVUUBva0JK1pK5ry9fo46I7zm1vjc7mEbwao-shHlQAp_6fDG6ntuFOSc6YzHdbo3dHgRhuZ5sm1bukrc_fsmFOilEmWCNIeY--X1AdQ0rRdicbStR9cionp5bkMvzm4cNO6L-oMvB2AcI8Pi70euH2aQrxRDLZyHyGmv8F6Z6wUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2125295040</pqid></control><display><type>article</type><title>Efficient 2-phosphoglycolate degradation is required to maintain carbon assimilation and allocation in the C₄ plant Flaveria bidentis</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Levey, Myles ; Timm, Stefan ; Mettler-Altmann, Tabea ; Borghi, Gian Luca ; Koczor, Maria ; Arrivault, Stéphanie ; Weber, Andreas PM ; Bauwe, Hermann ; Gowik, Udo ; Westhoff, Peter</creator><creatorcontrib>Levey, Myles ; Timm, Stefan ; Mettler-Altmann, Tabea ; Borghi, Gian Luca ; Koczor, Maria ; Arrivault, Stéphanie ; Weber, Andreas PM ; Bauwe, Hermann ; Gowik, Udo ; Westhoff, Peter</creatorcontrib><description>Photorespiration is indispensable for oxygenic photosynthesis since it detoxifies and recycles 2-phosphoglycolate (2PG), which is the primary oxygenation product of Rubisco. However, C₄ plant species typically display very low rates of photorespiration due to their efficient biochemical carbon-concentrating mechanism. Thus, the broader relevance of photorespiration in these organisms remains unclear. In this study, we assessed the importance of a functional photorespiratory pathway in the C₄ plant Flaveria bidentis using knockdown of the first enzymatic step, namely 2PG phosphatase (PGLP). The isolated RNAi lines showed strongly reduced amounts of PGLP protein, but distinct signs of the photorespiratory phenotype only emerged below 5% residual PGLP protein. Lines with this characteristic were stunted in growth, had strongly increased 2PG content, exhibited accelerated leaf senescence, and accumulated high amounts of branched-chain and aromatic amino acids, which are both characteristics of incipient carbon starvation. Oxygen-dependent gas-exchange measurements consistently suggested the cumulative impairment of ribulose-1,5-bisphosphate regeneration with increased photorespiratory pressure. Our results indicate that photorespiration is essential for maintaining high rates of C₄ photosynthesis by preventing the 2PG-mediated inhibition of carbon utilization efficiency. However, considerably higher 2PG accumulation can be tolerated compared to equivalent lines of C₃ plants due to the differential distribution of specific enzymatic steps between the mesophyll and bundle sheath cells.</description><identifier>ISSN: 0022-0957</identifier><identifier>EISSN: 1460-2431</identifier><identifier>DOI: 10.1093/jxb/ery370</identifier><identifier>PMID: 30357386</identifier><language>eng</language><publisher>UK: Oxford University Press</publisher><subject>Amino Acids - metabolism ; Carbon Dioxide - metabolism ; Flaveria - metabolism ; Glycolates - metabolism ; Phosphoric Monoester Hydrolases - metabolism ; Photosynthesis ; Photosynthesis and Metabolism ; Plants, Genetically Modified ; Research Papers</subject><ispartof>Journal of experimental botany, 2019-01, Vol.70 (2), p.575-587</ispartof><rights>The Author(s) 2018</rights><rights>The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Experimental Biology. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-fd060581db43b61a0bdf0f167c26a1d5922d65e1cdfb7a65a7a8d19142b0888e3</citedby><cites>FETCH-LOGICAL-c394t-fd060581db43b61a0bdf0f167c26a1d5922d65e1cdfb7a65a7a8d19142b0888e3</cites><orcidid>0000-0002-9161-4889 ; 0000-0003-3105-6296 ; 0000-0003-0970-4672 ; 0000-0001-7802-8925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1583,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30357386$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Levey, Myles</creatorcontrib><creatorcontrib>Timm, Stefan</creatorcontrib><creatorcontrib>Mettler-Altmann, Tabea</creatorcontrib><creatorcontrib>Borghi, Gian Luca</creatorcontrib><creatorcontrib>Koczor, Maria</creatorcontrib><creatorcontrib>Arrivault, Stéphanie</creatorcontrib><creatorcontrib>Weber, Andreas PM</creatorcontrib><creatorcontrib>Bauwe, Hermann</creatorcontrib><creatorcontrib>Gowik, Udo</creatorcontrib><creatorcontrib>Westhoff, Peter</creatorcontrib><title>Efficient 2-phosphoglycolate degradation is required to maintain carbon assimilation and allocation in the C₄ plant Flaveria bidentis</title><title>Journal of experimental botany</title><addtitle>J Exp Bot</addtitle><description>Photorespiration is indispensable for oxygenic photosynthesis since it detoxifies and recycles 2-phosphoglycolate (2PG), which is the primary oxygenation product of Rubisco. However, C₄ plant species typically display very low rates of photorespiration due to their efficient biochemical carbon-concentrating mechanism. Thus, the broader relevance of photorespiration in these organisms remains unclear. In this study, we assessed the importance of a functional photorespiratory pathway in the C₄ plant Flaveria bidentis using knockdown of the first enzymatic step, namely 2PG phosphatase (PGLP). The isolated RNAi lines showed strongly reduced amounts of PGLP protein, but distinct signs of the photorespiratory phenotype only emerged below 5% residual PGLP protein. Lines with this characteristic were stunted in growth, had strongly increased 2PG content, exhibited accelerated leaf senescence, and accumulated high amounts of branched-chain and aromatic amino acids, which are both characteristics of incipient carbon starvation. Oxygen-dependent gas-exchange measurements consistently suggested the cumulative impairment of ribulose-1,5-bisphosphate regeneration with increased photorespiratory pressure. Our results indicate that photorespiration is essential for maintaining high rates of C₄ photosynthesis by preventing the 2PG-mediated inhibition of carbon utilization efficiency. However, considerably higher 2PG accumulation can be tolerated compared to equivalent lines of C₃ plants due to the differential distribution of specific enzymatic steps between the mesophyll and bundle sheath cells.</description><subject>Amino Acids - metabolism</subject><subject>Carbon Dioxide - metabolism</subject><subject>Flaveria - metabolism</subject><subject>Glycolates - metabolism</subject><subject>Phosphoric Monoester Hydrolases - metabolism</subject><subject>Photosynthesis</subject><subject>Photosynthesis and Metabolism</subject><subject>Plants, Genetically Modified</subject><subject>Research Papers</subject><issn>0022-0957</issn><issn>1460-2431</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kU-LFDEQxYO4uOPoxbuSiyBCu_nTSXdfBBl2dWHBi55DdZKeyZDu9Cbdi3MVwe_pJzFLj8N62UNRh_rVe0k9hF5R8oGShl_sf7QXNh54RZ6gFS0lKVjJ6VO0IoSxgjSiOkfPU9oTQgQR4hk654SLitdyhX5fdp3Tzg4TZsW4CynX1h908DBZbOw2goHJhQG7hKO9nV20Bk8B9-CGKRfWENs8hpRc7_zCwmAweB_0cXXA087izZ-fv_DoIXtdebiz0QFuncneLr1AZx34ZF8e-xp9v7r8tvlS3Hz9fL35dFNo3pRT0RkiiaipaUveSgqkNR3pqKw0k0CNaBgzUliqTddWIAVUUBva0JK1pK5ry9fo46I7zm1vjc7mEbwao-shHlQAp_6fDG6ntuFOSc6YzHdbo3dHgRhuZ5sm1bukrc_fsmFOilEmWCNIeY--X1AdQ0rRdicbStR9cionp5bkMvzm4cNO6L-oMvB2AcI8Pi70euH2aQrxRDLZyHyGmv8F6Z6wUA</recordid><startdate>20190107</startdate><enddate>20190107</enddate><creator>Levey, Myles</creator><creator>Timm, Stefan</creator><creator>Mettler-Altmann, Tabea</creator><creator>Borghi, Gian Luca</creator><creator>Koczor, Maria</creator><creator>Arrivault, Stéphanie</creator><creator>Weber, Andreas PM</creator><creator>Bauwe, Hermann</creator><creator>Gowik, Udo</creator><creator>Westhoff, Peter</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9161-4889</orcidid><orcidid>https://orcid.org/0000-0003-3105-6296</orcidid><orcidid>https://orcid.org/0000-0003-0970-4672</orcidid><orcidid>https://orcid.org/0000-0001-7802-8925</orcidid></search><sort><creationdate>20190107</creationdate><title>Efficient 2-phosphoglycolate degradation is required to maintain carbon assimilation and allocation in the C₄ plant Flaveria bidentis</title><author>Levey, Myles ; Timm, Stefan ; Mettler-Altmann, Tabea ; Borghi, Gian Luca ; Koczor, Maria ; Arrivault, Stéphanie ; Weber, Andreas PM ; Bauwe, Hermann ; Gowik, Udo ; Westhoff, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-fd060581db43b61a0bdf0f167c26a1d5922d65e1cdfb7a65a7a8d19142b0888e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amino Acids - metabolism</topic><topic>Carbon Dioxide - metabolism</topic><topic>Flaveria - metabolism</topic><topic>Glycolates - metabolism</topic><topic>Phosphoric Monoester Hydrolases - metabolism</topic><topic>Photosynthesis</topic><topic>Photosynthesis and Metabolism</topic><topic>Plants, Genetically Modified</topic><topic>Research Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levey, Myles</creatorcontrib><creatorcontrib>Timm, Stefan</creatorcontrib><creatorcontrib>Mettler-Altmann, Tabea</creatorcontrib><creatorcontrib>Borghi, Gian Luca</creatorcontrib><creatorcontrib>Koczor, Maria</creatorcontrib><creatorcontrib>Arrivault, Stéphanie</creatorcontrib><creatorcontrib>Weber, Andreas PM</creatorcontrib><creatorcontrib>Bauwe, Hermann</creatorcontrib><creatorcontrib>Gowik, Udo</creatorcontrib><creatorcontrib>Westhoff, Peter</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of experimental botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levey, Myles</au><au>Timm, Stefan</au><au>Mettler-Altmann, Tabea</au><au>Borghi, Gian Luca</au><au>Koczor, Maria</au><au>Arrivault, Stéphanie</au><au>Weber, Andreas PM</au><au>Bauwe, Hermann</au><au>Gowik, Udo</au><au>Westhoff, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient 2-phosphoglycolate degradation is required to maintain carbon assimilation and allocation in the C₄ plant Flaveria bidentis</atitle><jtitle>Journal of experimental botany</jtitle><addtitle>J Exp Bot</addtitle><date>2019-01-07</date><risdate>2019</risdate><volume>70</volume><issue>2</issue><spage>575</spage><epage>587</epage><pages>575-587</pages><issn>0022-0957</issn><eissn>1460-2431</eissn><abstract>Photorespiration is indispensable for oxygenic photosynthesis since it detoxifies and recycles 2-phosphoglycolate (2PG), which is the primary oxygenation product of Rubisco. However, C₄ plant species typically display very low rates of photorespiration due to their efficient biochemical carbon-concentrating mechanism. Thus, the broader relevance of photorespiration in these organisms remains unclear. In this study, we assessed the importance of a functional photorespiratory pathway in the C₄ plant Flaveria bidentis using knockdown of the first enzymatic step, namely 2PG phosphatase (PGLP). The isolated RNAi lines showed strongly reduced amounts of PGLP protein, but distinct signs of the photorespiratory phenotype only emerged below 5% residual PGLP protein. Lines with this characteristic were stunted in growth, had strongly increased 2PG content, exhibited accelerated leaf senescence, and accumulated high amounts of branched-chain and aromatic amino acids, which are both characteristics of incipient carbon starvation. Oxygen-dependent gas-exchange measurements consistently suggested the cumulative impairment of ribulose-1,5-bisphosphate regeneration with increased photorespiratory pressure. Our results indicate that photorespiration is essential for maintaining high rates of C₄ photosynthesis by preventing the 2PG-mediated inhibition of carbon utilization efficiency. However, considerably higher 2PG accumulation can be tolerated compared to equivalent lines of C₃ plants due to the differential distribution of specific enzymatic steps between the mesophyll and bundle sheath cells.</abstract><cop>UK</cop><pub>Oxford University Press</pub><pmid>30357386</pmid><doi>10.1093/jxb/ery370</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9161-4889</orcidid><orcidid>https://orcid.org/0000-0003-3105-6296</orcidid><orcidid>https://orcid.org/0000-0003-0970-4672</orcidid><orcidid>https://orcid.org/0000-0001-7802-8925</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0957
ispartof Journal of experimental botany, 2019-01, Vol.70 (2), p.575-587
issn 0022-0957
1460-2431
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6322630
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Amino Acids - metabolism
Carbon Dioxide - metabolism
Flaveria - metabolism
Glycolates - metabolism
Phosphoric Monoester Hydrolases - metabolism
Photosynthesis
Photosynthesis and Metabolism
Plants, Genetically Modified
Research Papers
title Efficient 2-phosphoglycolate degradation is required to maintain carbon assimilation and allocation in the C₄ plant Flaveria bidentis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A44%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%202-phosphoglycolate%20degradation%20is%20required%20to%20maintain%20carbon%20assimilation%20and%20allocation%20in%20the%20C%E2%82%84%20plant%20Flaveria%20bidentis&rft.jtitle=Journal%20of%20experimental%20botany&rft.au=Levey,%20Myles&rft.date=2019-01-07&rft.volume=70&rft.issue=2&rft.spage=575&rft.epage=587&rft.pages=575-587&rft.issn=0022-0957&rft.eissn=1460-2431&rft_id=info:doi/10.1093/jxb/ery370&rft_dat=%3Cjstor_pubme%3E26961428%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2125295040&rft_id=info:pmid/30357386&rft_jstor_id=26961428&rft_oup_id=10.1093/jxb/ery370&rfr_iscdi=true