Linking Endoplasmic Reticular Stress and Alternative Splicing

RNA splicing patterns in antibody-secreting cells are shaped by endoplasmic reticulum stress, (eleven-nineteen lysine-rich leukemia gene 2) induction, and changes in the levels of s. Endoplasmic reticulum stress induces the unfolded protein response comprising a highly conserved set of genes crucial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2018-12, Vol.19 (12), p.3919
Hauptverfasser: Carew, Nolan T, Nelson, Ashley M, Liang, Zhitao, Smith, Sage M, Milcarek, Christine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 3919
container_title International journal of molecular sciences
container_volume 19
creator Carew, Nolan T
Nelson, Ashley M
Liang, Zhitao
Smith, Sage M
Milcarek, Christine
description RNA splicing patterns in antibody-secreting cells are shaped by endoplasmic reticulum stress, (eleven-nineteen lysine-rich leukemia gene 2) induction, and changes in the levels of s. Endoplasmic reticulum stress induces the unfolded protein response comprising a highly conserved set of genes crucial for cell survival; among these is Ire1, whose auto-phosphorylation drives it to acquire a regulated mRNA decay activity. The mRNA-modifying function of phosphorylated Ire1 non-canonically splices Xbp1 mRNA and yet degrades other cellular mRNAs with related motifs. Naïve splenic B cells will activate Ire1 phosphorylation early on after lipopolysaccharide (LPS) stimulation, within 18 h; large-scale changes in mRNA content and splicing patterns result. Inhibition of the mRNA-degradation function of Ire1 is correlated with further differences in the splicing patterns and a reduction in the mRNA factors for snRNA transcription. Some of the >4000 splicing changes seen at 18 h after LPS stimulation persist into the late stages of antibody secretion, up to 72 h. Meanwhile some early splicing changes are supplanted by new splicing changes introduced by the up-regulation of ELL2, a transcription elongation factor. ELL2 is necessary for immunoglobulin secretion and does this by changing mRNA processing patterns of immunoglobulin heavy chain and >5000 other genes.
doi_str_mv 10.3390/ijms19123919
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6321306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2157652870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-ea262db60ff520b32701783ef7a7b8b82b38b41f4a5d853588b57ee98bb6a6343</originalsourceid><addsrcrecordid>eNpdkUtLAzEUhYMotj52rmXAjQtH85xkFgql1AcUBKvrkMxkampmpiYzBf-9kdZSXd0L97uHczgAnCF4TUgOb-yiDihHmOQo3wNDRDFOIcz4_s4-AEchLCDEBLP8EAwIZJTSPB-C26ltPmwzTyZN2S6dCrUtkhfT2aJ3yiezzpsQEtWUych1xjeqsyuTzJbOFvHrBBxUygVzupnH4O1-8jp-TKfPD0_j0TQtKBddahTOcKkzWFUMQ00wh4gLYiquuBZaYE2EpqiiipWCESaEZtyYXGidqYxQcgzu1rrLXtemLEzTeeXk0tta-S_ZKiv_Xhr7LuftSmYEIwKzKHC5EfDtZ29CJ2sbCuOcakzbB4kR4xnDgsOIXvxDF20fg7tIMYGjP0R4pK7WVOHbELyptmYQlD-9yN1eIn6-G2AL_xZBvgFyO4j5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582853137</pqid></control><display><type>article</type><title>Linking Endoplasmic Reticular Stress and Alternative Splicing</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Carew, Nolan T ; Nelson, Ashley M ; Liang, Zhitao ; Smith, Sage M ; Milcarek, Christine</creator><creatorcontrib>Carew, Nolan T ; Nelson, Ashley M ; Liang, Zhitao ; Smith, Sage M ; Milcarek, Christine</creatorcontrib><description>RNA splicing patterns in antibody-secreting cells are shaped by endoplasmic reticulum stress, (eleven-nineteen lysine-rich leukemia gene 2) induction, and changes in the levels of s. Endoplasmic reticulum stress induces the unfolded protein response comprising a highly conserved set of genes crucial for cell survival; among these is Ire1, whose auto-phosphorylation drives it to acquire a regulated mRNA decay activity. The mRNA-modifying function of phosphorylated Ire1 non-canonically splices Xbp1 mRNA and yet degrades other cellular mRNAs with related motifs. Naïve splenic B cells will activate Ire1 phosphorylation early on after lipopolysaccharide (LPS) stimulation, within 18 h; large-scale changes in mRNA content and splicing patterns result. Inhibition of the mRNA-degradation function of Ire1 is correlated with further differences in the splicing patterns and a reduction in the mRNA factors for snRNA transcription. Some of the &gt;4000 splicing changes seen at 18 h after LPS stimulation persist into the late stages of antibody secretion, up to 72 h. Meanwhile some early splicing changes are supplanted by new splicing changes introduced by the up-regulation of ELL2, a transcription elongation factor. ELL2 is necessary for immunoglobulin secretion and does this by changing mRNA processing patterns of immunoglobulin heavy chain and &gt;5000 other genes.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms19123919</identifier><identifier>PMID: 30544499</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alternative splicing ; Alternative Splicing - genetics ; Alternative Splicing - physiology ; Animals ; Antibodies ; Apoptosis ; B-Lymphocytes - metabolism ; Cytoplasm ; Elongation ; Endoplasmic reticulum ; Endoplasmic Reticulum Stress - genetics ; Endoplasmic Reticulum Stress - physiology ; Enzymes ; Gene regulation ; Genes ; Humans ; Immunoglobulins ; Insects ; Kinases ; Leukemia ; Lipopolysaccharides ; Liver ; Lymphocytes B ; Lysine ; Metabolism ; mRNA processing ; mRNA turnover ; Phosphorylation ; Protein folding ; Protein synthesis ; Review ; RNA Splicing - genetics ; RNA, Messenger - metabolism ; snRNA ; Spleen ; Splicing ; Stimulation ; Transcription factors ; Unfolded Protein Response - genetics ; Unfolded Protein Response - physiology</subject><ispartof>International journal of molecular sciences, 2018-12, Vol.19 (12), p.3919</ispartof><rights>2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-ea262db60ff520b32701783ef7a7b8b82b38b41f4a5d853588b57ee98bb6a6343</citedby><cites>FETCH-LOGICAL-c478t-ea262db60ff520b32701783ef7a7b8b82b38b41f4a5d853588b57ee98bb6a6343</cites><orcidid>0000-0002-6995-6823</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6321306/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6321306/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30544499$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carew, Nolan T</creatorcontrib><creatorcontrib>Nelson, Ashley M</creatorcontrib><creatorcontrib>Liang, Zhitao</creatorcontrib><creatorcontrib>Smith, Sage M</creatorcontrib><creatorcontrib>Milcarek, Christine</creatorcontrib><title>Linking Endoplasmic Reticular Stress and Alternative Splicing</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>RNA splicing patterns in antibody-secreting cells are shaped by endoplasmic reticulum stress, (eleven-nineteen lysine-rich leukemia gene 2) induction, and changes in the levels of s. Endoplasmic reticulum stress induces the unfolded protein response comprising a highly conserved set of genes crucial for cell survival; among these is Ire1, whose auto-phosphorylation drives it to acquire a regulated mRNA decay activity. The mRNA-modifying function of phosphorylated Ire1 non-canonically splices Xbp1 mRNA and yet degrades other cellular mRNAs with related motifs. Naïve splenic B cells will activate Ire1 phosphorylation early on after lipopolysaccharide (LPS) stimulation, within 18 h; large-scale changes in mRNA content and splicing patterns result. Inhibition of the mRNA-degradation function of Ire1 is correlated with further differences in the splicing patterns and a reduction in the mRNA factors for snRNA transcription. Some of the &gt;4000 splicing changes seen at 18 h after LPS stimulation persist into the late stages of antibody secretion, up to 72 h. Meanwhile some early splicing changes are supplanted by new splicing changes introduced by the up-regulation of ELL2, a transcription elongation factor. ELL2 is necessary for immunoglobulin secretion and does this by changing mRNA processing patterns of immunoglobulin heavy chain and &gt;5000 other genes.</description><subject>Alternative splicing</subject><subject>Alternative Splicing - genetics</subject><subject>Alternative Splicing - physiology</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Apoptosis</subject><subject>B-Lymphocytes - metabolism</subject><subject>Cytoplasm</subject><subject>Elongation</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum Stress - genetics</subject><subject>Endoplasmic Reticulum Stress - physiology</subject><subject>Enzymes</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Humans</subject><subject>Immunoglobulins</subject><subject>Insects</subject><subject>Kinases</subject><subject>Leukemia</subject><subject>Lipopolysaccharides</subject><subject>Liver</subject><subject>Lymphocytes B</subject><subject>Lysine</subject><subject>Metabolism</subject><subject>mRNA processing</subject><subject>mRNA turnover</subject><subject>Phosphorylation</subject><subject>Protein folding</subject><subject>Protein synthesis</subject><subject>Review</subject><subject>RNA Splicing - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>snRNA</subject><subject>Spleen</subject><subject>Splicing</subject><subject>Stimulation</subject><subject>Transcription factors</subject><subject>Unfolded Protein Response - genetics</subject><subject>Unfolded Protein Response - physiology</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkUtLAzEUhYMotj52rmXAjQtH85xkFgql1AcUBKvrkMxkampmpiYzBf-9kdZSXd0L97uHczgAnCF4TUgOb-yiDihHmOQo3wNDRDFOIcz4_s4-AEchLCDEBLP8EAwIZJTSPB-C26ltPmwzTyZN2S6dCrUtkhfT2aJ3yiezzpsQEtWUych1xjeqsyuTzJbOFvHrBBxUygVzupnH4O1-8jp-TKfPD0_j0TQtKBddahTOcKkzWFUMQ00wh4gLYiquuBZaYE2EpqiiipWCESaEZtyYXGidqYxQcgzu1rrLXtemLEzTeeXk0tta-S_ZKiv_Xhr7LuftSmYEIwKzKHC5EfDtZ29CJ2sbCuOcakzbB4kR4xnDgsOIXvxDF20fg7tIMYGjP0R4pK7WVOHbELyptmYQlD-9yN1eIn6-G2AL_xZBvgFyO4j5</recordid><startdate>20181207</startdate><enddate>20181207</enddate><creator>Carew, Nolan T</creator><creator>Nelson, Ashley M</creator><creator>Liang, Zhitao</creator><creator>Smith, Sage M</creator><creator>Milcarek, Christine</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6995-6823</orcidid></search><sort><creationdate>20181207</creationdate><title>Linking Endoplasmic Reticular Stress and Alternative Splicing</title><author>Carew, Nolan T ; Nelson, Ashley M ; Liang, Zhitao ; Smith, Sage M ; Milcarek, Christine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-ea262db60ff520b32701783ef7a7b8b82b38b41f4a5d853588b57ee98bb6a6343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alternative splicing</topic><topic>Alternative Splicing - genetics</topic><topic>Alternative Splicing - physiology</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Apoptosis</topic><topic>B-Lymphocytes - metabolism</topic><topic>Cytoplasm</topic><topic>Elongation</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum Stress - genetics</topic><topic>Endoplasmic Reticulum Stress - physiology</topic><topic>Enzymes</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Humans</topic><topic>Immunoglobulins</topic><topic>Insects</topic><topic>Kinases</topic><topic>Leukemia</topic><topic>Lipopolysaccharides</topic><topic>Liver</topic><topic>Lymphocytes B</topic><topic>Lysine</topic><topic>Metabolism</topic><topic>mRNA processing</topic><topic>mRNA turnover</topic><topic>Phosphorylation</topic><topic>Protein folding</topic><topic>Protein synthesis</topic><topic>Review</topic><topic>RNA Splicing - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>snRNA</topic><topic>Spleen</topic><topic>Splicing</topic><topic>Stimulation</topic><topic>Transcription factors</topic><topic>Unfolded Protein Response - genetics</topic><topic>Unfolded Protein Response - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carew, Nolan T</creatorcontrib><creatorcontrib>Nelson, Ashley M</creatorcontrib><creatorcontrib>Liang, Zhitao</creatorcontrib><creatorcontrib>Smith, Sage M</creatorcontrib><creatorcontrib>Milcarek, Christine</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carew, Nolan T</au><au>Nelson, Ashley M</au><au>Liang, Zhitao</au><au>Smith, Sage M</au><au>Milcarek, Christine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linking Endoplasmic Reticular Stress and Alternative Splicing</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2018-12-07</date><risdate>2018</risdate><volume>19</volume><issue>12</issue><spage>3919</spage><pages>3919-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>RNA splicing patterns in antibody-secreting cells are shaped by endoplasmic reticulum stress, (eleven-nineteen lysine-rich leukemia gene 2) induction, and changes in the levels of s. Endoplasmic reticulum stress induces the unfolded protein response comprising a highly conserved set of genes crucial for cell survival; among these is Ire1, whose auto-phosphorylation drives it to acquire a regulated mRNA decay activity. The mRNA-modifying function of phosphorylated Ire1 non-canonically splices Xbp1 mRNA and yet degrades other cellular mRNAs with related motifs. Naïve splenic B cells will activate Ire1 phosphorylation early on after lipopolysaccharide (LPS) stimulation, within 18 h; large-scale changes in mRNA content and splicing patterns result. Inhibition of the mRNA-degradation function of Ire1 is correlated with further differences in the splicing patterns and a reduction in the mRNA factors for snRNA transcription. Some of the &gt;4000 splicing changes seen at 18 h after LPS stimulation persist into the late stages of antibody secretion, up to 72 h. Meanwhile some early splicing changes are supplanted by new splicing changes introduced by the up-regulation of ELL2, a transcription elongation factor. ELL2 is necessary for immunoglobulin secretion and does this by changing mRNA processing patterns of immunoglobulin heavy chain and &gt;5000 other genes.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30544499</pmid><doi>10.3390/ijms19123919</doi><orcidid>https://orcid.org/0000-0002-6995-6823</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2018-12, Vol.19 (12), p.3919
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6321306
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Alternative splicing
Alternative Splicing - genetics
Alternative Splicing - physiology
Animals
Antibodies
Apoptosis
B-Lymphocytes - metabolism
Cytoplasm
Elongation
Endoplasmic reticulum
Endoplasmic Reticulum Stress - genetics
Endoplasmic Reticulum Stress - physiology
Enzymes
Gene regulation
Genes
Humans
Immunoglobulins
Insects
Kinases
Leukemia
Lipopolysaccharides
Liver
Lymphocytes B
Lysine
Metabolism
mRNA processing
mRNA turnover
Phosphorylation
Protein folding
Protein synthesis
Review
RNA Splicing - genetics
RNA, Messenger - metabolism
snRNA
Spleen
Splicing
Stimulation
Transcription factors
Unfolded Protein Response - genetics
Unfolded Protein Response - physiology
title Linking Endoplasmic Reticular Stress and Alternative Splicing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A56%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linking%20Endoplasmic%20Reticular%20Stress%20and%20Alternative%20Splicing&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Carew,%20Nolan%20T&rft.date=2018-12-07&rft.volume=19&rft.issue=12&rft.spage=3919&rft.pages=3919-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms19123919&rft_dat=%3Cproquest_pubme%3E2157652870%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582853137&rft_id=info:pmid/30544499&rfr_iscdi=true