Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize
Summary CRISPR/Cas9 and Cas12a (Cpf1) nucleases are two of the most powerful genome editing tools in plants. In this work, we compared their activities by targeting maize glossy2 gene coding region that has overlapping sequences recognized by both nucleases. We introduced constructs carrying SpCas9‐...
Gespeichert in:
Veröffentlicht in: | Plant biotechnology journal 2019-02, Vol.17 (2), p.362-372 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 372 |
---|---|
container_issue | 2 |
container_start_page | 362 |
container_title | Plant biotechnology journal |
container_volume | 17 |
creator | Lee, Keunsub Zhang, Yingxiao Kleinstiver, Benjamin P. Guo, Jimmy A. Aryee, Martin J. Miller, Jonah Malzahn, Aimee Zarecor, Scott Lawrence‐Dill, Carolyn J. Joung, J. Keith Qi, Yiping Wang, Kan |
description | Summary
CRISPR/Cas9 and Cas12a (Cpf1) nucleases are two of the most powerful genome editing tools in plants. In this work, we compared their activities by targeting maize glossy2 gene coding region that has overlapping sequences recognized by both nucleases. We introduced constructs carrying SpCas9‐guide RNA (gRNA) and LbCas12a‐CRISPR RNA (crRNA) into maize inbred B104 embryos using Agrobacterium‐mediated transformation. On‐target mutation analysis showed that 90%–100% of the Cas9‐edited T0 plants carried indel mutations and 63%–77% of them were homozygous or biallelic mutants. In contrast, 0%–60% of Cas12a‐edited T0 plants had on‐target mutations. We then conducted CIRCLE‐seq analysis to identify genome‐wide potential off‐target sites for Cas9. A total of 18 and 67 potential off‐targets were identified for the two gRNAs, respectively, with an average of five mismatches compared to the target sites. Sequencing analysis of a selected subset of the off‐target sites revealed no detectable level of mutations in the T1 plants, which constitutively express Cas9 nuclease and gRNAs. In conclusion, our results suggest that the CRISPR/Cas9 system used in this study is highly efficient and specific for genome editing in maize, while CRISPR/Cas12a needs further optimization for improved editing efficiency. |
doi_str_mv | 10.1111/pbi.12982 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6320322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A733296061</galeid><sourcerecordid>A733296061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6212-3f43a4273adee292140cb930a61ec3dbe8c27227e9bfbf68c35052f5fa119e9d3</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhiMEoqVw4AVQJC5w2F177NjrC9Kyou1KlVoVOFuOM15cJfYSJ0Xl6XE37QqQah88Gn_zz9h_UbylZE7zWuxqP6eglvCsOKZcyJkUFTw_xJwfFa9SuiEEqKjEy-IIlJIgAY6LemUHf-sHj6k0oSnTDq133k6Z6Mr19ebr1fVibZLaAzmgYMow2hZNyoyLfTmYfosDNmU3DmaLAZNPpQ9lZ_xvfF28cKZN-ObhPCm-n375tj6fXVyebdari5kVQGHGHGeGg2SmQQQFlBNbK0aMoGhZU-PS3o8sUdWudmJpWUUqcJUzlCpUDTspPk26u7HusLEYht60etf7zvR3Ohqv_70J_ofexlstGBAGkAU-PAj08eeIadCdTxbb1gSMY9JQAQclK84z-v4_9CaOfcjP0_mPJZOK76n5RG1Ni9oHF3Nfm3eDnbcxoPM5v5KMgRJE0FzwcSqwfUypR3eYnhJ9b7XOVuu91Zl99_dzD-SjtxlYTMCv3OXuaSV99XkzSf4ByhSydw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2167379444</pqid></control><display><type>article</type><title>Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lee, Keunsub ; Zhang, Yingxiao ; Kleinstiver, Benjamin P. ; Guo, Jimmy A. ; Aryee, Martin J. ; Miller, Jonah ; Malzahn, Aimee ; Zarecor, Scott ; Lawrence‐Dill, Carolyn J. ; Joung, J. Keith ; Qi, Yiping ; Wang, Kan</creator><creatorcontrib>Lee, Keunsub ; Zhang, Yingxiao ; Kleinstiver, Benjamin P. ; Guo, Jimmy A. ; Aryee, Martin J. ; Miller, Jonah ; Malzahn, Aimee ; Zarecor, Scott ; Lawrence‐Dill, Carolyn J. ; Joung, J. Keith ; Qi, Yiping ; Wang, Kan</creatorcontrib><description>Summary
CRISPR/Cas9 and Cas12a (Cpf1) nucleases are two of the most powerful genome editing tools in plants. In this work, we compared their activities by targeting maize glossy2 gene coding region that has overlapping sequences recognized by both nucleases. We introduced constructs carrying SpCas9‐guide RNA (gRNA) and LbCas12a‐CRISPR RNA (crRNA) into maize inbred B104 embryos using Agrobacterium‐mediated transformation. On‐target mutation analysis showed that 90%–100% of the Cas9‐edited T0 plants carried indel mutations and 63%–77% of them were homozygous or biallelic mutants. In contrast, 0%–60% of Cas12a‐edited T0 plants had on‐target mutations. We then conducted CIRCLE‐seq analysis to identify genome‐wide potential off‐target sites for Cas9. A total of 18 and 67 potential off‐targets were identified for the two gRNAs, respectively, with an average of five mismatches compared to the target sites. Sequencing analysis of a selected subset of the off‐target sites revealed no detectable level of mutations in the T1 plants, which constitutively express Cas9 nuclease and gRNAs. In conclusion, our results suggest that the CRISPR/Cas9 system used in this study is highly efficient and specific for genome editing in maize, while CRISPR/Cas12a needs further optimization for improved editing efficiency.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.12982</identifier><identifier>PMID: 29972722</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Agrobacterium ; biotechnology ; Cas12a (Cpf1) ; CIRCLE‐seq ; Comparative analysis ; Corn ; CRISPR ; CRISPR-Cas Systems ; CRISPR/Cas ; DNA binding proteins ; Editing ; Embryos ; Endonucleases - genetics ; Endonucleases - metabolism ; Gene Editing - methods ; Gene sequencing ; Gene Targeting - methods ; genes ; Genetic transformation ; genome editing ; Genome, Plant - genetics ; Genomes ; Genomics ; gRNA ; homozygosity ; Inbreeding ; Mutagenesis ; Mutation ; mutational analysis ; Nuclease ; Nucleases ; off‐target ; Plants ; Ribonucleic acid ; RNA ; RNA, Guide, CRISPR-Cas Systems - genetics ; Sequence Alignment ; Site-directed mutagenesis ; Target recognition ; Zea mays ; Zea mays - enzymology ; Zea mays - genetics</subject><ispartof>Plant biotechnology journal, 2019-02, Vol.17 (2), p.362-372</ispartof><rights>2018 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>COPYRIGHT 2019 John Wiley & Sons, Inc.</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6212-3f43a4273adee292140cb930a61ec3dbe8c27227e9bfbf68c35052f5fa119e9d3</citedby><cites>FETCH-LOGICAL-c6212-3f43a4273adee292140cb930a61ec3dbe8c27227e9bfbf68c35052f5fa119e9d3</cites><orcidid>0000-0003-2474-5800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.12982$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.12982$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,1411,11542,27903,27904,45553,45554,46031,46455</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29972722$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Keunsub</creatorcontrib><creatorcontrib>Zhang, Yingxiao</creatorcontrib><creatorcontrib>Kleinstiver, Benjamin P.</creatorcontrib><creatorcontrib>Guo, Jimmy A.</creatorcontrib><creatorcontrib>Aryee, Martin J.</creatorcontrib><creatorcontrib>Miller, Jonah</creatorcontrib><creatorcontrib>Malzahn, Aimee</creatorcontrib><creatorcontrib>Zarecor, Scott</creatorcontrib><creatorcontrib>Lawrence‐Dill, Carolyn J.</creatorcontrib><creatorcontrib>Joung, J. Keith</creatorcontrib><creatorcontrib>Qi, Yiping</creatorcontrib><creatorcontrib>Wang, Kan</creatorcontrib><title>Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary
CRISPR/Cas9 and Cas12a (Cpf1) nucleases are two of the most powerful genome editing tools in plants. In this work, we compared their activities by targeting maize glossy2 gene coding region that has overlapping sequences recognized by both nucleases. We introduced constructs carrying SpCas9‐guide RNA (gRNA) and LbCas12a‐CRISPR RNA (crRNA) into maize inbred B104 embryos using Agrobacterium‐mediated transformation. On‐target mutation analysis showed that 90%–100% of the Cas9‐edited T0 plants carried indel mutations and 63%–77% of them were homozygous or biallelic mutants. In contrast, 0%–60% of Cas12a‐edited T0 plants had on‐target mutations. We then conducted CIRCLE‐seq analysis to identify genome‐wide potential off‐target sites for Cas9. A total of 18 and 67 potential off‐targets were identified for the two gRNAs, respectively, with an average of five mismatches compared to the target sites. Sequencing analysis of a selected subset of the off‐target sites revealed no detectable level of mutations in the T1 plants, which constitutively express Cas9 nuclease and gRNAs. In conclusion, our results suggest that the CRISPR/Cas9 system used in this study is highly efficient and specific for genome editing in maize, while CRISPR/Cas12a needs further optimization for improved editing efficiency.</description><subject>Agrobacterium</subject><subject>biotechnology</subject><subject>Cas12a (Cpf1)</subject><subject>CIRCLE‐seq</subject><subject>Comparative analysis</subject><subject>Corn</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>CRISPR/Cas</subject><subject>DNA binding proteins</subject><subject>Editing</subject><subject>Embryos</subject><subject>Endonucleases - genetics</subject><subject>Endonucleases - metabolism</subject><subject>Gene Editing - methods</subject><subject>Gene sequencing</subject><subject>Gene Targeting - methods</subject><subject>genes</subject><subject>Genetic transformation</subject><subject>genome editing</subject><subject>Genome, Plant - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>gRNA</subject><subject>homozygosity</subject><subject>Inbreeding</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>mutational analysis</subject><subject>Nuclease</subject><subject>Nucleases</subject><subject>off‐target</subject><subject>Plants</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Guide, CRISPR-Cas Systems - genetics</subject><subject>Sequence Alignment</subject><subject>Site-directed mutagenesis</subject><subject>Target recognition</subject><subject>Zea mays</subject><subject>Zea mays - enzymology</subject><subject>Zea mays - genetics</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kcFu1DAQhiMEoqVw4AVQJC5w2F177NjrC9Kyou1KlVoVOFuOM15cJfYSJ0Xl6XE37QqQah88Gn_zz9h_UbylZE7zWuxqP6eglvCsOKZcyJkUFTw_xJwfFa9SuiEEqKjEy-IIlJIgAY6LemUHf-sHj6k0oSnTDq133k6Z6Mr19ebr1fVibZLaAzmgYMow2hZNyoyLfTmYfosDNmU3DmaLAZNPpQ9lZ_xvfF28cKZN-ObhPCm-n375tj6fXVyebdari5kVQGHGHGeGg2SmQQQFlBNbK0aMoGhZU-PS3o8sUdWudmJpWUUqcJUzlCpUDTspPk26u7HusLEYht60etf7zvR3Ohqv_70J_ofexlstGBAGkAU-PAj08eeIadCdTxbb1gSMY9JQAQclK84z-v4_9CaOfcjP0_mPJZOK76n5RG1Ni9oHF3Nfm3eDnbcxoPM5v5KMgRJE0FzwcSqwfUypR3eYnhJ9b7XOVuu91Zl99_dzD-SjtxlYTMCv3OXuaSV99XkzSf4ByhSydw</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Lee, Keunsub</creator><creator>Zhang, Yingxiao</creator><creator>Kleinstiver, Benjamin P.</creator><creator>Guo, Jimmy A.</creator><creator>Aryee, Martin J.</creator><creator>Miller, Jonah</creator><creator>Malzahn, Aimee</creator><creator>Zarecor, Scott</creator><creator>Lawrence‐Dill, Carolyn J.</creator><creator>Joung, J. Keith</creator><creator>Qi, Yiping</creator><creator>Wang, Kan</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2474-5800</orcidid></search><sort><creationdate>201902</creationdate><title>Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize</title><author>Lee, Keunsub ; Zhang, Yingxiao ; Kleinstiver, Benjamin P. ; Guo, Jimmy A. ; Aryee, Martin J. ; Miller, Jonah ; Malzahn, Aimee ; Zarecor, Scott ; Lawrence‐Dill, Carolyn J. ; Joung, J. Keith ; Qi, Yiping ; Wang, Kan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6212-3f43a4273adee292140cb930a61ec3dbe8c27227e9bfbf68c35052f5fa119e9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agrobacterium</topic><topic>biotechnology</topic><topic>Cas12a (Cpf1)</topic><topic>CIRCLE‐seq</topic><topic>Comparative analysis</topic><topic>Corn</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>CRISPR/Cas</topic><topic>DNA binding proteins</topic><topic>Editing</topic><topic>Embryos</topic><topic>Endonucleases - genetics</topic><topic>Endonucleases - metabolism</topic><topic>Gene Editing - methods</topic><topic>Gene sequencing</topic><topic>Gene Targeting - methods</topic><topic>genes</topic><topic>Genetic transformation</topic><topic>genome editing</topic><topic>Genome, Plant - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>gRNA</topic><topic>homozygosity</topic><topic>Inbreeding</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>mutational analysis</topic><topic>Nuclease</topic><topic>Nucleases</topic><topic>off‐target</topic><topic>Plants</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Guide, CRISPR-Cas Systems - genetics</topic><topic>Sequence Alignment</topic><topic>Site-directed mutagenesis</topic><topic>Target recognition</topic><topic>Zea mays</topic><topic>Zea mays - enzymology</topic><topic>Zea mays - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Keunsub</creatorcontrib><creatorcontrib>Zhang, Yingxiao</creatorcontrib><creatorcontrib>Kleinstiver, Benjamin P.</creatorcontrib><creatorcontrib>Guo, Jimmy A.</creatorcontrib><creatorcontrib>Aryee, Martin J.</creatorcontrib><creatorcontrib>Miller, Jonah</creatorcontrib><creatorcontrib>Malzahn, Aimee</creatorcontrib><creatorcontrib>Zarecor, Scott</creatorcontrib><creatorcontrib>Lawrence‐Dill, Carolyn J.</creatorcontrib><creatorcontrib>Joung, J. Keith</creatorcontrib><creatorcontrib>Qi, Yiping</creatorcontrib><creatorcontrib>Wang, Kan</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Keunsub</au><au>Zhang, Yingxiao</au><au>Kleinstiver, Benjamin P.</au><au>Guo, Jimmy A.</au><au>Aryee, Martin J.</au><au>Miller, Jonah</au><au>Malzahn, Aimee</au><au>Zarecor, Scott</au><au>Lawrence‐Dill, Carolyn J.</au><au>Joung, J. Keith</au><au>Qi, Yiping</au><au>Wang, Kan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2019-02</date><risdate>2019</risdate><volume>17</volume><issue>2</issue><spage>362</spage><epage>372</epage><pages>362-372</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Summary
CRISPR/Cas9 and Cas12a (Cpf1) nucleases are two of the most powerful genome editing tools in plants. In this work, we compared their activities by targeting maize glossy2 gene coding region that has overlapping sequences recognized by both nucleases. We introduced constructs carrying SpCas9‐guide RNA (gRNA) and LbCas12a‐CRISPR RNA (crRNA) into maize inbred B104 embryos using Agrobacterium‐mediated transformation. On‐target mutation analysis showed that 90%–100% of the Cas9‐edited T0 plants carried indel mutations and 63%–77% of them were homozygous or biallelic mutants. In contrast, 0%–60% of Cas12a‐edited T0 plants had on‐target mutations. We then conducted CIRCLE‐seq analysis to identify genome‐wide potential off‐target sites for Cas9. A total of 18 and 67 potential off‐targets were identified for the two gRNAs, respectively, with an average of five mismatches compared to the target sites. Sequencing analysis of a selected subset of the off‐target sites revealed no detectable level of mutations in the T1 plants, which constitutively express Cas9 nuclease and gRNAs. In conclusion, our results suggest that the CRISPR/Cas9 system used in this study is highly efficient and specific for genome editing in maize, while CRISPR/Cas12a needs further optimization for improved editing efficiency.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>29972722</pmid><doi>10.1111/pbi.12982</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2474-5800</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1467-7644 |
ispartof | Plant biotechnology journal, 2019-02, Vol.17 (2), p.362-372 |
issn | 1467-7644 1467-7652 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6320322 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals |
subjects | Agrobacterium biotechnology Cas12a (Cpf1) CIRCLE‐seq Comparative analysis Corn CRISPR CRISPR-Cas Systems CRISPR/Cas DNA binding proteins Editing Embryos Endonucleases - genetics Endonucleases - metabolism Gene Editing - methods Gene sequencing Gene Targeting - methods genes Genetic transformation genome editing Genome, Plant - genetics Genomes Genomics gRNA homozygosity Inbreeding Mutagenesis Mutation mutational analysis Nuclease Nucleases off‐target Plants Ribonucleic acid RNA RNA, Guide, CRISPR-Cas Systems - genetics Sequence Alignment Site-directed mutagenesis Target recognition Zea mays Zea mays - enzymology Zea mays - genetics |
title | Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A26%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activities%20and%20specificities%20of%20CRISPR/Cas9%20and%20Cas12a%20nucleases%20for%20targeted%20mutagenesis%20in%20maize&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Lee,%20Keunsub&rft.date=2019-02&rft.volume=17&rft.issue=2&rft.spage=362&rft.epage=372&rft.pages=362-372&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.12982&rft_dat=%3Cgale_pubme%3EA733296061%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2167379444&rft_id=info:pmid/29972722&rft_galeid=A733296061&rfr_iscdi=true |