Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize

Summary CRISPR/Cas9 and Cas12a (Cpf1) nucleases are two of the most powerful genome editing tools in plants. In this work, we compared their activities by targeting maize glossy2 gene coding region that has overlapping sequences recognized by both nucleases. We introduced constructs carrying SpCas9‐...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant biotechnology journal 2019-02, Vol.17 (2), p.362-372
Hauptverfasser: Lee, Keunsub, Zhang, Yingxiao, Kleinstiver, Benjamin P., Guo, Jimmy A., Aryee, Martin J., Miller, Jonah, Malzahn, Aimee, Zarecor, Scott, Lawrence‐Dill, Carolyn J., Joung, J. Keith, Qi, Yiping, Wang, Kan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 372
container_issue 2
container_start_page 362
container_title Plant biotechnology journal
container_volume 17
creator Lee, Keunsub
Zhang, Yingxiao
Kleinstiver, Benjamin P.
Guo, Jimmy A.
Aryee, Martin J.
Miller, Jonah
Malzahn, Aimee
Zarecor, Scott
Lawrence‐Dill, Carolyn J.
Joung, J. Keith
Qi, Yiping
Wang, Kan
description Summary CRISPR/Cas9 and Cas12a (Cpf1) nucleases are two of the most powerful genome editing tools in plants. In this work, we compared their activities by targeting maize glossy2 gene coding region that has overlapping sequences recognized by both nucleases. We introduced constructs carrying SpCas9‐guide RNA (gRNA) and LbCas12a‐CRISPR RNA (crRNA) into maize inbred B104 embryos using Agrobacterium‐mediated transformation. On‐target mutation analysis showed that 90%–100% of the Cas9‐edited T0 plants carried indel mutations and 63%–77% of them were homozygous or biallelic mutants. In contrast, 0%–60% of Cas12a‐edited T0 plants had on‐target mutations. We then conducted CIRCLE‐seq analysis to identify genome‐wide potential off‐target sites for Cas9. A total of 18 and 67 potential off‐targets were identified for the two gRNAs, respectively, with an average of five mismatches compared to the target sites. Sequencing analysis of a selected subset of the off‐target sites revealed no detectable level of mutations in the T1 plants, which constitutively express Cas9 nuclease and gRNAs. In conclusion, our results suggest that the CRISPR/Cas9 system used in this study is highly efficient and specific for genome editing in maize, while CRISPR/Cas12a needs further optimization for improved editing efficiency.
doi_str_mv 10.1111/pbi.12982
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6320322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A733296061</galeid><sourcerecordid>A733296061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6212-3f43a4273adee292140cb930a61ec3dbe8c27227e9bfbf68c35052f5fa119e9d3</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhiMEoqVw4AVQJC5w2F177NjrC9Kyou1KlVoVOFuOM15cJfYSJ0Xl6XE37QqQah88Gn_zz9h_UbylZE7zWuxqP6eglvCsOKZcyJkUFTw_xJwfFa9SuiEEqKjEy-IIlJIgAY6LemUHf-sHj6k0oSnTDq133k6Z6Mr19ebr1fVibZLaAzmgYMow2hZNyoyLfTmYfosDNmU3DmaLAZNPpQ9lZ_xvfF28cKZN-ObhPCm-n375tj6fXVyebdari5kVQGHGHGeGg2SmQQQFlBNbK0aMoGhZU-PS3o8sUdWudmJpWUUqcJUzlCpUDTspPk26u7HusLEYht60etf7zvR3Ohqv_70J_ofexlstGBAGkAU-PAj08eeIadCdTxbb1gSMY9JQAQclK84z-v4_9CaOfcjP0_mPJZOK76n5RG1Ni9oHF3Nfm3eDnbcxoPM5v5KMgRJE0FzwcSqwfUypR3eYnhJ9b7XOVuu91Zl99_dzD-SjtxlYTMCv3OXuaSV99XkzSf4ByhSydw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2167379444</pqid></control><display><type>article</type><title>Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lee, Keunsub ; Zhang, Yingxiao ; Kleinstiver, Benjamin P. ; Guo, Jimmy A. ; Aryee, Martin J. ; Miller, Jonah ; Malzahn, Aimee ; Zarecor, Scott ; Lawrence‐Dill, Carolyn J. ; Joung, J. Keith ; Qi, Yiping ; Wang, Kan</creator><creatorcontrib>Lee, Keunsub ; Zhang, Yingxiao ; Kleinstiver, Benjamin P. ; Guo, Jimmy A. ; Aryee, Martin J. ; Miller, Jonah ; Malzahn, Aimee ; Zarecor, Scott ; Lawrence‐Dill, Carolyn J. ; Joung, J. Keith ; Qi, Yiping ; Wang, Kan</creatorcontrib><description>Summary CRISPR/Cas9 and Cas12a (Cpf1) nucleases are two of the most powerful genome editing tools in plants. In this work, we compared their activities by targeting maize glossy2 gene coding region that has overlapping sequences recognized by both nucleases. We introduced constructs carrying SpCas9‐guide RNA (gRNA) and LbCas12a‐CRISPR RNA (crRNA) into maize inbred B104 embryos using Agrobacterium‐mediated transformation. On‐target mutation analysis showed that 90%–100% of the Cas9‐edited T0 plants carried indel mutations and 63%–77% of them were homozygous or biallelic mutants. In contrast, 0%–60% of Cas12a‐edited T0 plants had on‐target mutations. We then conducted CIRCLE‐seq analysis to identify genome‐wide potential off‐target sites for Cas9. A total of 18 and 67 potential off‐targets were identified for the two gRNAs, respectively, with an average of five mismatches compared to the target sites. Sequencing analysis of a selected subset of the off‐target sites revealed no detectable level of mutations in the T1 plants, which constitutively express Cas9 nuclease and gRNAs. In conclusion, our results suggest that the CRISPR/Cas9 system used in this study is highly efficient and specific for genome editing in maize, while CRISPR/Cas12a needs further optimization for improved editing efficiency.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.12982</identifier><identifier>PMID: 29972722</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Agrobacterium ; biotechnology ; Cas12a (Cpf1) ; CIRCLE‐seq ; Comparative analysis ; Corn ; CRISPR ; CRISPR-Cas Systems ; CRISPR/Cas ; DNA binding proteins ; Editing ; Embryos ; Endonucleases - genetics ; Endonucleases - metabolism ; Gene Editing - methods ; Gene sequencing ; Gene Targeting - methods ; genes ; Genetic transformation ; genome editing ; Genome, Plant - genetics ; Genomes ; Genomics ; gRNA ; homozygosity ; Inbreeding ; Mutagenesis ; Mutation ; mutational analysis ; Nuclease ; Nucleases ; off‐target ; Plants ; Ribonucleic acid ; RNA ; RNA, Guide, CRISPR-Cas Systems - genetics ; Sequence Alignment ; Site-directed mutagenesis ; Target recognition ; Zea mays ; Zea mays - enzymology ; Zea mays - genetics</subject><ispartof>Plant biotechnology journal, 2019-02, Vol.17 (2), p.362-372</ispartof><rights>2018 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>COPYRIGHT 2019 John Wiley &amp; Sons, Inc.</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6212-3f43a4273adee292140cb930a61ec3dbe8c27227e9bfbf68c35052f5fa119e9d3</citedby><cites>FETCH-LOGICAL-c6212-3f43a4273adee292140cb930a61ec3dbe8c27227e9bfbf68c35052f5fa119e9d3</cites><orcidid>0000-0003-2474-5800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.12982$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.12982$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,1411,11542,27903,27904,45553,45554,46031,46455</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29972722$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Keunsub</creatorcontrib><creatorcontrib>Zhang, Yingxiao</creatorcontrib><creatorcontrib>Kleinstiver, Benjamin P.</creatorcontrib><creatorcontrib>Guo, Jimmy A.</creatorcontrib><creatorcontrib>Aryee, Martin J.</creatorcontrib><creatorcontrib>Miller, Jonah</creatorcontrib><creatorcontrib>Malzahn, Aimee</creatorcontrib><creatorcontrib>Zarecor, Scott</creatorcontrib><creatorcontrib>Lawrence‐Dill, Carolyn J.</creatorcontrib><creatorcontrib>Joung, J. Keith</creatorcontrib><creatorcontrib>Qi, Yiping</creatorcontrib><creatorcontrib>Wang, Kan</creatorcontrib><title>Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary CRISPR/Cas9 and Cas12a (Cpf1) nucleases are two of the most powerful genome editing tools in plants. In this work, we compared their activities by targeting maize glossy2 gene coding region that has overlapping sequences recognized by both nucleases. We introduced constructs carrying SpCas9‐guide RNA (gRNA) and LbCas12a‐CRISPR RNA (crRNA) into maize inbred B104 embryos using Agrobacterium‐mediated transformation. On‐target mutation analysis showed that 90%–100% of the Cas9‐edited T0 plants carried indel mutations and 63%–77% of them were homozygous or biallelic mutants. In contrast, 0%–60% of Cas12a‐edited T0 plants had on‐target mutations. We then conducted CIRCLE‐seq analysis to identify genome‐wide potential off‐target sites for Cas9. A total of 18 and 67 potential off‐targets were identified for the two gRNAs, respectively, with an average of five mismatches compared to the target sites. Sequencing analysis of a selected subset of the off‐target sites revealed no detectable level of mutations in the T1 plants, which constitutively express Cas9 nuclease and gRNAs. In conclusion, our results suggest that the CRISPR/Cas9 system used in this study is highly efficient and specific for genome editing in maize, while CRISPR/Cas12a needs further optimization for improved editing efficiency.</description><subject>Agrobacterium</subject><subject>biotechnology</subject><subject>Cas12a (Cpf1)</subject><subject>CIRCLE‐seq</subject><subject>Comparative analysis</subject><subject>Corn</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>CRISPR/Cas</subject><subject>DNA binding proteins</subject><subject>Editing</subject><subject>Embryos</subject><subject>Endonucleases - genetics</subject><subject>Endonucleases - metabolism</subject><subject>Gene Editing - methods</subject><subject>Gene sequencing</subject><subject>Gene Targeting - methods</subject><subject>genes</subject><subject>Genetic transformation</subject><subject>genome editing</subject><subject>Genome, Plant - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>gRNA</subject><subject>homozygosity</subject><subject>Inbreeding</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>mutational analysis</subject><subject>Nuclease</subject><subject>Nucleases</subject><subject>off‐target</subject><subject>Plants</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Guide, CRISPR-Cas Systems - genetics</subject><subject>Sequence Alignment</subject><subject>Site-directed mutagenesis</subject><subject>Target recognition</subject><subject>Zea mays</subject><subject>Zea mays - enzymology</subject><subject>Zea mays - genetics</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kcFu1DAQhiMEoqVw4AVQJC5w2F177NjrC9Kyou1KlVoVOFuOM15cJfYSJ0Xl6XE37QqQah88Gn_zz9h_UbylZE7zWuxqP6eglvCsOKZcyJkUFTw_xJwfFa9SuiEEqKjEy-IIlJIgAY6LemUHf-sHj6k0oSnTDq133k6Z6Mr19ebr1fVibZLaAzmgYMow2hZNyoyLfTmYfosDNmU3DmaLAZNPpQ9lZ_xvfF28cKZN-ObhPCm-n375tj6fXVyebdari5kVQGHGHGeGg2SmQQQFlBNbK0aMoGhZU-PS3o8sUdWudmJpWUUqcJUzlCpUDTspPk26u7HusLEYht60etf7zvR3Ohqv_70J_ofexlstGBAGkAU-PAj08eeIadCdTxbb1gSMY9JQAQclK84z-v4_9CaOfcjP0_mPJZOK76n5RG1Ni9oHF3Nfm3eDnbcxoPM5v5KMgRJE0FzwcSqwfUypR3eYnhJ9b7XOVuu91Zl99_dzD-SjtxlYTMCv3OXuaSV99XkzSf4ByhSydw</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Lee, Keunsub</creator><creator>Zhang, Yingxiao</creator><creator>Kleinstiver, Benjamin P.</creator><creator>Guo, Jimmy A.</creator><creator>Aryee, Martin J.</creator><creator>Miller, Jonah</creator><creator>Malzahn, Aimee</creator><creator>Zarecor, Scott</creator><creator>Lawrence‐Dill, Carolyn J.</creator><creator>Joung, J. Keith</creator><creator>Qi, Yiping</creator><creator>Wang, Kan</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2474-5800</orcidid></search><sort><creationdate>201902</creationdate><title>Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize</title><author>Lee, Keunsub ; Zhang, Yingxiao ; Kleinstiver, Benjamin P. ; Guo, Jimmy A. ; Aryee, Martin J. ; Miller, Jonah ; Malzahn, Aimee ; Zarecor, Scott ; Lawrence‐Dill, Carolyn J. ; Joung, J. Keith ; Qi, Yiping ; Wang, Kan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6212-3f43a4273adee292140cb930a61ec3dbe8c27227e9bfbf68c35052f5fa119e9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agrobacterium</topic><topic>biotechnology</topic><topic>Cas12a (Cpf1)</topic><topic>CIRCLE‐seq</topic><topic>Comparative analysis</topic><topic>Corn</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>CRISPR/Cas</topic><topic>DNA binding proteins</topic><topic>Editing</topic><topic>Embryos</topic><topic>Endonucleases - genetics</topic><topic>Endonucleases - metabolism</topic><topic>Gene Editing - methods</topic><topic>Gene sequencing</topic><topic>Gene Targeting - methods</topic><topic>genes</topic><topic>Genetic transformation</topic><topic>genome editing</topic><topic>Genome, Plant - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>gRNA</topic><topic>homozygosity</topic><topic>Inbreeding</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>mutational analysis</topic><topic>Nuclease</topic><topic>Nucleases</topic><topic>off‐target</topic><topic>Plants</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Guide, CRISPR-Cas Systems - genetics</topic><topic>Sequence Alignment</topic><topic>Site-directed mutagenesis</topic><topic>Target recognition</topic><topic>Zea mays</topic><topic>Zea mays - enzymology</topic><topic>Zea mays - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Keunsub</creatorcontrib><creatorcontrib>Zhang, Yingxiao</creatorcontrib><creatorcontrib>Kleinstiver, Benjamin P.</creatorcontrib><creatorcontrib>Guo, Jimmy A.</creatorcontrib><creatorcontrib>Aryee, Martin J.</creatorcontrib><creatorcontrib>Miller, Jonah</creatorcontrib><creatorcontrib>Malzahn, Aimee</creatorcontrib><creatorcontrib>Zarecor, Scott</creatorcontrib><creatorcontrib>Lawrence‐Dill, Carolyn J.</creatorcontrib><creatorcontrib>Joung, J. Keith</creatorcontrib><creatorcontrib>Qi, Yiping</creatorcontrib><creatorcontrib>Wang, Kan</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Keunsub</au><au>Zhang, Yingxiao</au><au>Kleinstiver, Benjamin P.</au><au>Guo, Jimmy A.</au><au>Aryee, Martin J.</au><au>Miller, Jonah</au><au>Malzahn, Aimee</au><au>Zarecor, Scott</au><au>Lawrence‐Dill, Carolyn J.</au><au>Joung, J. Keith</au><au>Qi, Yiping</au><au>Wang, Kan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2019-02</date><risdate>2019</risdate><volume>17</volume><issue>2</issue><spage>362</spage><epage>372</epage><pages>362-372</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Summary CRISPR/Cas9 and Cas12a (Cpf1) nucleases are two of the most powerful genome editing tools in plants. In this work, we compared their activities by targeting maize glossy2 gene coding region that has overlapping sequences recognized by both nucleases. We introduced constructs carrying SpCas9‐guide RNA (gRNA) and LbCas12a‐CRISPR RNA (crRNA) into maize inbred B104 embryos using Agrobacterium‐mediated transformation. On‐target mutation analysis showed that 90%–100% of the Cas9‐edited T0 plants carried indel mutations and 63%–77% of them were homozygous or biallelic mutants. In contrast, 0%–60% of Cas12a‐edited T0 plants had on‐target mutations. We then conducted CIRCLE‐seq analysis to identify genome‐wide potential off‐target sites for Cas9. A total of 18 and 67 potential off‐targets were identified for the two gRNAs, respectively, with an average of five mismatches compared to the target sites. Sequencing analysis of a selected subset of the off‐target sites revealed no detectable level of mutations in the T1 plants, which constitutively express Cas9 nuclease and gRNAs. In conclusion, our results suggest that the CRISPR/Cas9 system used in this study is highly efficient and specific for genome editing in maize, while CRISPR/Cas12a needs further optimization for improved editing efficiency.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>29972722</pmid><doi>10.1111/pbi.12982</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2474-5800</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1467-7644
ispartof Plant biotechnology journal, 2019-02, Vol.17 (2), p.362-372
issn 1467-7644
1467-7652
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6320322
source MEDLINE; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals
subjects Agrobacterium
biotechnology
Cas12a (Cpf1)
CIRCLE‐seq
Comparative analysis
Corn
CRISPR
CRISPR-Cas Systems
CRISPR/Cas
DNA binding proteins
Editing
Embryos
Endonucleases - genetics
Endonucleases - metabolism
Gene Editing - methods
Gene sequencing
Gene Targeting - methods
genes
Genetic transformation
genome editing
Genome, Plant - genetics
Genomes
Genomics
gRNA
homozygosity
Inbreeding
Mutagenesis
Mutation
mutational analysis
Nuclease
Nucleases
off‐target
Plants
Ribonucleic acid
RNA
RNA, Guide, CRISPR-Cas Systems - genetics
Sequence Alignment
Site-directed mutagenesis
Target recognition
Zea mays
Zea mays - enzymology
Zea mays - genetics
title Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A26%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activities%20and%20specificities%20of%20CRISPR/Cas9%20and%20Cas12a%20nucleases%20for%20targeted%20mutagenesis%20in%20maize&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Lee,%20Keunsub&rft.date=2019-02&rft.volume=17&rft.issue=2&rft.spage=362&rft.epage=372&rft.pages=362-372&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.12982&rft_dat=%3Cgale_pubme%3EA733296061%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2167379444&rft_id=info:pmid/29972722&rft_galeid=A733296061&rfr_iscdi=true