Detecting moderate or complex congenital heart defects in adults from an electronic health records system
The prevalence of moderate or complex (moderate-complex) congenital heart defects (CHDs) among adults is increasing due to improved survival, but many patients experience lapses in specialty care or their CHDs are undocumented in the medical system. There is, to date, no efficient approach to identi...
Gespeichert in:
Veröffentlicht in: | Journal of the American Medical Informatics Association : JAMIA 2018-12, Vol.25 (12), p.1634-1642 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1642 |
---|---|
container_issue | 12 |
container_start_page | 1634 |
container_title | Journal of the American Medical Informatics Association : JAMIA |
container_volume | 25 |
creator | Diallo, Alpha Oumar Krishnaswamy, Asha Shapira, Stuart K Oster, Matthew E George, Mary G Adams, Jenna C Walker, Elizabeth R Weiss, Paul Ali, Mohammed K Book, Wendy |
description | The prevalence of moderate or complex (moderate-complex) congenital heart defects (CHDs) among adults is increasing due to improved survival, but many patients experience lapses in specialty care or their CHDs are undocumented in the medical system. There is, to date, no efficient approach to identify this population.
To develop and assess the performance of a risk score to identify adults aged 20-60 years with undocumented specific moderate-complex CHDs from electronic health records (EHR).
We used a case-control study (596 adults with specific moderate-complex CHDs and 2384 controls). We extracted age, race/ethnicity, electrocardiogram (EKG), and blood tests from routine outpatient visits (1/2009 through 12/2012). We used multivariable logistic regression models and a split-sample (4: 1 ratio) approach to develop and internally validate the risk score, respectively. We generated receiver operating characteristic (ROC) c-statistics and Brier scores to assess the ability of models to predict the presence of specific moderate-complex CHDs.
Out of six models, the non-blood biomarker model that included age, sex, and EKG parameters offered a high ROC c-statistic of 0.96 [95% confidence interval: 0.95, 0.97] and low Brier score (0.05) relative to the other models. The adult moderate-complex congenital heart defect risk score demonstrated good accuracy with 96.4% sensitivity and 80.0% specificity at a threshold score of 10.
A simple risk score based on age, sex, and EKG parameters offers early proof of concept and may help accurately identify adults with specific moderate-complex CHDs from routine EHR systems who may benefit from specialty care. |
doi_str_mv | 10.1093/jamia/ocy127 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6319253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2155927570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-707f82e011439dbdb8c26ef119aa39afab1fda494f6906fdf6b573f8f92d92ac3</originalsourceid><addsrcrecordid>eNpVkc1rVDEUxYMo9kN3XUuWLpw2Hy_vTTaC1NYKBTcWugv3JTczKXnJmGSK89_72mlLXZ0D58e5Fw4hJ5ydcqbl2R1MAc6y3XExvCGHXIlhoYfu9u0rf0COar1jjPdCqvfkQDLVcS7UIQnfsaFtIa3olB0WaEhzoTZPm4h_Z00rTKFBpGuE0qhDP-OVhkTBbePsfMkThUQxzkHJKdgHNLY1LWhzcZXWXW04fSDvPMSKH5_0mNxcXvw-v1pc__rx8_zb9cLKZdcWAxv8UiDjvJPajW5cWtGj51wDSA0eRu4ddLrzvWa9d74f1SD90mvhtAArj8nXfe9mO07oLKZWIJpNCROUnckQzP9JCmuzyveml1wLJeeCz08FJf_ZYm1mCtVijJAwb6sRXCktBjWwGf2yR23JtRb0L2c4Mw_rmMd1zH6dGf_0-rUX-HkO-Q-dSZD5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2155927570</pqid></control><display><type>article</type><title>Detecting moderate or complex congenital heart defects in adults from an electronic health records system</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>PubMed Central</source><creator>Diallo, Alpha Oumar ; Krishnaswamy, Asha ; Shapira, Stuart K ; Oster, Matthew E ; George, Mary G ; Adams, Jenna C ; Walker, Elizabeth R ; Weiss, Paul ; Ali, Mohammed K ; Book, Wendy</creator><creatorcontrib>Diallo, Alpha Oumar ; Krishnaswamy, Asha ; Shapira, Stuart K ; Oster, Matthew E ; George, Mary G ; Adams, Jenna C ; Walker, Elizabeth R ; Weiss, Paul ; Ali, Mohammed K ; Book, Wendy</creatorcontrib><description>The prevalence of moderate or complex (moderate-complex) congenital heart defects (CHDs) among adults is increasing due to improved survival, but many patients experience lapses in specialty care or their CHDs are undocumented in the medical system. There is, to date, no efficient approach to identify this population.
To develop and assess the performance of a risk score to identify adults aged 20-60 years with undocumented specific moderate-complex CHDs from electronic health records (EHR).
We used a case-control study (596 adults with specific moderate-complex CHDs and 2384 controls). We extracted age, race/ethnicity, electrocardiogram (EKG), and blood tests from routine outpatient visits (1/2009 through 12/2012). We used multivariable logistic regression models and a split-sample (4: 1 ratio) approach to develop and internally validate the risk score, respectively. We generated receiver operating characteristic (ROC) c-statistics and Brier scores to assess the ability of models to predict the presence of specific moderate-complex CHDs.
Out of six models, the non-blood biomarker model that included age, sex, and EKG parameters offered a high ROC c-statistic of 0.96 [95% confidence interval: 0.95, 0.97] and low Brier score (0.05) relative to the other models. The adult moderate-complex congenital heart defect risk score demonstrated good accuracy with 96.4% sensitivity and 80.0% specificity at a threshold score of 10.
A simple risk score based on age, sex, and EKG parameters offers early proof of concept and may help accurately identify adults with specific moderate-complex CHDs from routine EHR systems who may benefit from specialty care.</description><identifier>ISSN: 1527-974X</identifier><identifier>ISSN: 1067-5027</identifier><identifier>EISSN: 1527-974X</identifier><identifier>DOI: 10.1093/jamia/ocy127</identifier><identifier>PMID: 30541125</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Adult ; Age Factors ; Algorithms ; Biomarkers ; Case-Control Studies ; Electrocardiography ; Electronic Health Records ; Female ; Heart Defects, Congenital - diagnosis ; Humans ; Logistic Models ; Male ; Middle Aged ; Research and Applications ; Risk ; ROC Curve ; Sex Factors ; Young Adult</subject><ispartof>Journal of the American Medical Informatics Association : JAMIA, 2018-12, Vol.25 (12), p.1634-1642</ispartof><rights>The Author(s) 2018. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-707f82e011439dbdb8c26ef119aa39afab1fda494f6906fdf6b573f8f92d92ac3</citedby><cites>FETCH-LOGICAL-c384t-707f82e011439dbdb8c26ef119aa39afab1fda494f6906fdf6b573f8f92d92ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6319253/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6319253/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30541125$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Diallo, Alpha Oumar</creatorcontrib><creatorcontrib>Krishnaswamy, Asha</creatorcontrib><creatorcontrib>Shapira, Stuart K</creatorcontrib><creatorcontrib>Oster, Matthew E</creatorcontrib><creatorcontrib>George, Mary G</creatorcontrib><creatorcontrib>Adams, Jenna C</creatorcontrib><creatorcontrib>Walker, Elizabeth R</creatorcontrib><creatorcontrib>Weiss, Paul</creatorcontrib><creatorcontrib>Ali, Mohammed K</creatorcontrib><creatorcontrib>Book, Wendy</creatorcontrib><title>Detecting moderate or complex congenital heart defects in adults from an electronic health records system</title><title>Journal of the American Medical Informatics Association : JAMIA</title><addtitle>J Am Med Inform Assoc</addtitle><description>The prevalence of moderate or complex (moderate-complex) congenital heart defects (CHDs) among adults is increasing due to improved survival, but many patients experience lapses in specialty care or their CHDs are undocumented in the medical system. There is, to date, no efficient approach to identify this population.
To develop and assess the performance of a risk score to identify adults aged 20-60 years with undocumented specific moderate-complex CHDs from electronic health records (EHR).
We used a case-control study (596 adults with specific moderate-complex CHDs and 2384 controls). We extracted age, race/ethnicity, electrocardiogram (EKG), and blood tests from routine outpatient visits (1/2009 through 12/2012). We used multivariable logistic regression models and a split-sample (4: 1 ratio) approach to develop and internally validate the risk score, respectively. We generated receiver operating characteristic (ROC) c-statistics and Brier scores to assess the ability of models to predict the presence of specific moderate-complex CHDs.
Out of six models, the non-blood biomarker model that included age, sex, and EKG parameters offered a high ROC c-statistic of 0.96 [95% confidence interval: 0.95, 0.97] and low Brier score (0.05) relative to the other models. The adult moderate-complex congenital heart defect risk score demonstrated good accuracy with 96.4% sensitivity and 80.0% specificity at a threshold score of 10.
A simple risk score based on age, sex, and EKG parameters offers early proof of concept and may help accurately identify adults with specific moderate-complex CHDs from routine EHR systems who may benefit from specialty care.</description><subject>Adult</subject><subject>Age Factors</subject><subject>Algorithms</subject><subject>Biomarkers</subject><subject>Case-Control Studies</subject><subject>Electrocardiography</subject><subject>Electronic Health Records</subject><subject>Female</subject><subject>Heart Defects, Congenital - diagnosis</subject><subject>Humans</subject><subject>Logistic Models</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Research and Applications</subject><subject>Risk</subject><subject>ROC Curve</subject><subject>Sex Factors</subject><subject>Young Adult</subject><issn>1527-974X</issn><issn>1067-5027</issn><issn>1527-974X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1rVDEUxYMo9kN3XUuWLpw2Hy_vTTaC1NYKBTcWugv3JTczKXnJmGSK89_72mlLXZ0D58e5Fw4hJ5ydcqbl2R1MAc6y3XExvCGHXIlhoYfu9u0rf0COar1jjPdCqvfkQDLVcS7UIQnfsaFtIa3olB0WaEhzoTZPm4h_Z00rTKFBpGuE0qhDP-OVhkTBbePsfMkThUQxzkHJKdgHNLY1LWhzcZXWXW04fSDvPMSKH5_0mNxcXvw-v1pc__rx8_zb9cLKZdcWAxv8UiDjvJPajW5cWtGj51wDSA0eRu4ddLrzvWa9d74f1SD90mvhtAArj8nXfe9mO07oLKZWIJpNCROUnckQzP9JCmuzyveml1wLJeeCz08FJf_ZYm1mCtVijJAwb6sRXCktBjWwGf2yR23JtRb0L2c4Mw_rmMd1zH6dGf_0-rUX-HkO-Q-dSZD5</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Diallo, Alpha Oumar</creator><creator>Krishnaswamy, Asha</creator><creator>Shapira, Stuart K</creator><creator>Oster, Matthew E</creator><creator>George, Mary G</creator><creator>Adams, Jenna C</creator><creator>Walker, Elizabeth R</creator><creator>Weiss, Paul</creator><creator>Ali, Mohammed K</creator><creator>Book, Wendy</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20181201</creationdate><title>Detecting moderate or complex congenital heart defects in adults from an electronic health records system</title><author>Diallo, Alpha Oumar ; Krishnaswamy, Asha ; Shapira, Stuart K ; Oster, Matthew E ; George, Mary G ; Adams, Jenna C ; Walker, Elizabeth R ; Weiss, Paul ; Ali, Mohammed K ; Book, Wendy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-707f82e011439dbdb8c26ef119aa39afab1fda494f6906fdf6b573f8f92d92ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult</topic><topic>Age Factors</topic><topic>Algorithms</topic><topic>Biomarkers</topic><topic>Case-Control Studies</topic><topic>Electrocardiography</topic><topic>Electronic Health Records</topic><topic>Female</topic><topic>Heart Defects, Congenital - diagnosis</topic><topic>Humans</topic><topic>Logistic Models</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Research and Applications</topic><topic>Risk</topic><topic>ROC Curve</topic><topic>Sex Factors</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diallo, Alpha Oumar</creatorcontrib><creatorcontrib>Krishnaswamy, Asha</creatorcontrib><creatorcontrib>Shapira, Stuart K</creatorcontrib><creatorcontrib>Oster, Matthew E</creatorcontrib><creatorcontrib>George, Mary G</creatorcontrib><creatorcontrib>Adams, Jenna C</creatorcontrib><creatorcontrib>Walker, Elizabeth R</creatorcontrib><creatorcontrib>Weiss, Paul</creatorcontrib><creatorcontrib>Ali, Mohammed K</creatorcontrib><creatorcontrib>Book, Wendy</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Medical Informatics Association : JAMIA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diallo, Alpha Oumar</au><au>Krishnaswamy, Asha</au><au>Shapira, Stuart K</au><au>Oster, Matthew E</au><au>George, Mary G</au><au>Adams, Jenna C</au><au>Walker, Elizabeth R</au><au>Weiss, Paul</au><au>Ali, Mohammed K</au><au>Book, Wendy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting moderate or complex congenital heart defects in adults from an electronic health records system</atitle><jtitle>Journal of the American Medical Informatics Association : JAMIA</jtitle><addtitle>J Am Med Inform Assoc</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>25</volume><issue>12</issue><spage>1634</spage><epage>1642</epage><pages>1634-1642</pages><issn>1527-974X</issn><issn>1067-5027</issn><eissn>1527-974X</eissn><abstract>The prevalence of moderate or complex (moderate-complex) congenital heart defects (CHDs) among adults is increasing due to improved survival, but many patients experience lapses in specialty care or their CHDs are undocumented in the medical system. There is, to date, no efficient approach to identify this population.
To develop and assess the performance of a risk score to identify adults aged 20-60 years with undocumented specific moderate-complex CHDs from electronic health records (EHR).
We used a case-control study (596 adults with specific moderate-complex CHDs and 2384 controls). We extracted age, race/ethnicity, electrocardiogram (EKG), and blood tests from routine outpatient visits (1/2009 through 12/2012). We used multivariable logistic regression models and a split-sample (4: 1 ratio) approach to develop and internally validate the risk score, respectively. We generated receiver operating characteristic (ROC) c-statistics and Brier scores to assess the ability of models to predict the presence of specific moderate-complex CHDs.
Out of six models, the non-blood biomarker model that included age, sex, and EKG parameters offered a high ROC c-statistic of 0.96 [95% confidence interval: 0.95, 0.97] and low Brier score (0.05) relative to the other models. The adult moderate-complex congenital heart defect risk score demonstrated good accuracy with 96.4% sensitivity and 80.0% specificity at a threshold score of 10.
A simple risk score based on age, sex, and EKG parameters offers early proof of concept and may help accurately identify adults with specific moderate-complex CHDs from routine EHR systems who may benefit from specialty care.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>30541125</pmid><doi>10.1093/jamia/ocy127</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1527-974X |
ispartof | Journal of the American Medical Informatics Association : JAMIA, 2018-12, Vol.25 (12), p.1634-1642 |
issn | 1527-974X 1067-5027 1527-974X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6319253 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); PubMed Central |
subjects | Adult Age Factors Algorithms Biomarkers Case-Control Studies Electrocardiography Electronic Health Records Female Heart Defects, Congenital - diagnosis Humans Logistic Models Male Middle Aged Research and Applications Risk ROC Curve Sex Factors Young Adult |
title | Detecting moderate or complex congenital heart defects in adults from an electronic health records system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A20%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20moderate%20or%20complex%20congenital%20heart%20defects%20in%20adults%20from%20an%20electronic%20health%20records%20system&rft.jtitle=Journal%20of%20the%20American%20Medical%20Informatics%20Association%20:%20JAMIA&rft.au=Diallo,%20Alpha%20Oumar&rft.date=2018-12-01&rft.volume=25&rft.issue=12&rft.spage=1634&rft.epage=1642&rft.pages=1634-1642&rft.issn=1527-974X&rft.eissn=1527-974X&rft_id=info:doi/10.1093/jamia/ocy127&rft_dat=%3Cproquest_pubme%3E2155927570%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2155927570&rft_id=info:pmid/30541125&rfr_iscdi=true |