Approaches for creating comparable measures of alcohol use symptoms: Harmonization with eight studies of criminal justice populations

•Moderated nonlinear factor analysis is a tool for pooled analysis.•MNLFA scores had more desirable properties than pooled cut-scores and sum scores.•MNLFA scores showed strongly predictive validity than other scores.•MNLFA is a promising tool for harmonization in pooled data analysis.. With increas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drug and alcohol dependence 2019-01, Vol.194, p.59-68
Hauptverfasser: Hussong, Andrea M., Gottfredson, Nisha C., Bauer, Dan J., Curran, Patrick J., Haroon, Maleeha, Chandler, Redonna, Kahana, Shoshana Y., Delaney, Joseph A.C., Altice, Frederick L., Beckwith, Curt G., Feaster, Daniel J., Flynn, Patrick M., Gordon, Michael S., Knight, Kevin, Kuo, Irene, Ouellet, Lawrence J., Quan, Vu M., Seal, David W., Springer, Sandra A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue
container_start_page 59
container_title Drug and alcohol dependence
container_volume 194
creator Hussong, Andrea M.
Gottfredson, Nisha C.
Bauer, Dan J.
Curran, Patrick J.
Haroon, Maleeha
Chandler, Redonna
Kahana, Shoshana Y.
Delaney, Joseph A.C.
Altice, Frederick L.
Beckwith, Curt G.
Feaster, Daniel J.
Flynn, Patrick M.
Gordon, Michael S.
Knight, Kevin
Kuo, Irene
Ouellet, Lawrence J.
Quan, Vu M.
Seal, David W.
Springer, Sandra A.
description •Moderated nonlinear factor analysis is a tool for pooled analysis.•MNLFA scores had more desirable properties than pooled cut-scores and sum scores.•MNLFA scores showed strongly predictive validity than other scores.•MNLFA is a promising tool for harmonization in pooled data analysis.. With increasing data archives comprised of studies with similar measurement, optimal methods for data harmonization and measurement scoring are a pressing need. We compare three methods for harmonizing and scoring the AUDIT as administered with minimal variation across 11 samples from eight study sites within the STTR (Seek-Test-Treat-Retain) Research Harmonization Initiative. Descriptive statistics and predictive validity results for cut-scores, sum scores, and Moderated Nonlinear Factor Analysis scores (MNLFA; a psychometric harmonization method) are presented. Across the eight study sites, sample sizes ranged from 50 to 2405 and target populations varied based on sampling frame, location, and inclusion/exclusion criteria. The pooled sample included 4667 participants (82% male, 52% Black, 24% White, 13% Hispanic, and 8% Asian/ Pacific Islander; mean age of 38.9 years). Participants completed the AUDIT at baseline in all studies. After logical harmonization of items, we scored the AUDIT using three methods: published cut-scores, sum scores, and MNLFA. We found greater variation, fewer floor effects, and the ability to directly address missing data in MNLFA scores as compared to cut-scores and sum scores. MNLFA scores showed stronger associations with binge drinking and clearer study differences than did other scores. MNLFA scores are a promising tool for data harmonization and scoring in pooled data analysis. Model complexity with large multi-study applications, however, may require new statistical advances to fully realize the benefits of this approach.
doi_str_mv 10.1016/j.drugalcdep.2018.10.003
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6312501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0376871618305076</els_id><sourcerecordid>2132235824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-2c4f09d0ccb3560286cdb8af42dd464b801c300ab0a0f55e949e3188aafa5c5d3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EokvhKyBLXLhkGTuJ43BAKhVQpEpc4Gw59mTjVRIH22lV7v3e9bKl_LngiyXP770ZzyOEMtgyYOLNfmvDutOjsbhsOTCZn7cA5SOyYbJpC4BKPCYbKBtRyIaJE_Isxj3kI1p4Sk5KqBiXrdyQ27NlCV6bASPtfaAmoE5u3lHjp0UH3Y1IJ9RxDRnwPc09_eBHukak8WZakp_iW3qhw-Rn9yNL_UyvXRoout2QaEyrdUelCW5ysx7pfo3JGaSLX9bxpyI-J096PUZ8cX-fkm8fP3w9vyguv3z6fH52WZgamlRwU_XQWjCmK2sBXApjO6n7iltbiaqTwEwJoDvQ0Nc1tlWLJZNS617XprblKXl39F3WbkJrcE5Bj2rJo-lwo7x26u_K7Aa181dKlIzXwLLB63uD4L-vGJOaXDQ4jnpGv0bFWcl5WUteZfTVP-jeryEv4EA1ogGQkmdKHikTfIwB-4dhGKhD1mqvfmetDlkfKjnrLH3552cehL_CzcD7I4B5pVcOg4rG4WzQuoAmKevd_7vcAbiAxI4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2176700882</pqid></control><display><type>article</type><title>Approaches for creating comparable measures of alcohol use symptoms: Harmonization with eight studies of criminal justice populations</title><source>MEDLINE</source><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>Access via ScienceDirect (Elsevier)</source><creator>Hussong, Andrea M. ; Gottfredson, Nisha C. ; Bauer, Dan J. ; Curran, Patrick J. ; Haroon, Maleeha ; Chandler, Redonna ; Kahana, Shoshana Y. ; Delaney, Joseph A.C. ; Altice, Frederick L. ; Beckwith, Curt G. ; Feaster, Daniel J. ; Flynn, Patrick M. ; Gordon, Michael S. ; Knight, Kevin ; Kuo, Irene ; Ouellet, Lawrence J. ; Quan, Vu M. ; Seal, David W. ; Springer, Sandra A.</creator><creatorcontrib>Hussong, Andrea M. ; Gottfredson, Nisha C. ; Bauer, Dan J. ; Curran, Patrick J. ; Haroon, Maleeha ; Chandler, Redonna ; Kahana, Shoshana Y. ; Delaney, Joseph A.C. ; Altice, Frederick L. ; Beckwith, Curt G. ; Feaster, Daniel J. ; Flynn, Patrick M. ; Gordon, Michael S. ; Knight, Kevin ; Kuo, Irene ; Ouellet, Lawrence J. ; Quan, Vu M. ; Seal, David W. ; Springer, Sandra A.</creatorcontrib><description>•Moderated nonlinear factor analysis is a tool for pooled analysis.•MNLFA scores had more desirable properties than pooled cut-scores and sum scores.•MNLFA scores showed strongly predictive validity than other scores.•MNLFA is a promising tool for harmonization in pooled data analysis.. With increasing data archives comprised of studies with similar measurement, optimal methods for data harmonization and measurement scoring are a pressing need. We compare three methods for harmonizing and scoring the AUDIT as administered with minimal variation across 11 samples from eight study sites within the STTR (Seek-Test-Treat-Retain) Research Harmonization Initiative. Descriptive statistics and predictive validity results for cut-scores, sum scores, and Moderated Nonlinear Factor Analysis scores (MNLFA; a psychometric harmonization method) are presented. Across the eight study sites, sample sizes ranged from 50 to 2405 and target populations varied based on sampling frame, location, and inclusion/exclusion criteria. The pooled sample included 4667 participants (82% male, 52% Black, 24% White, 13% Hispanic, and 8% Asian/ Pacific Islander; mean age of 38.9 years). Participants completed the AUDIT at baseline in all studies. After logical harmonization of items, we scored the AUDIT using three methods: published cut-scores, sum scores, and MNLFA. We found greater variation, fewer floor effects, and the ability to directly address missing data in MNLFA scores as compared to cut-scores and sum scores. MNLFA scores showed stronger associations with binge drinking and clearer study differences than did other scores. MNLFA scores are a promising tool for data harmonization and scoring in pooled data analysis. Model complexity with large multi-study applications, however, may require new statistical advances to fully realize the benefits of this approach.</description><identifier>ISSN: 0376-8716</identifier><identifier>EISSN: 1879-0046</identifier><identifier>DOI: 10.1016/j.drugalcdep.2018.10.003</identifier><identifier>PMID: 30412898</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Addictive behaviors ; Adult ; Alcohol Drinking - epidemiology ; Alcohol Drinking - psychology ; Alcohol Drinking - trends ; Alcohol use ; Alcohols ; Binge drinking ; Crime ; Criminal justice ; Criminal Law - trends ; Data analysis ; Data harmonization ; Data pooling ; Data processing ; Drinking behavior ; Drinking severity ; Factor analysis ; Factor Analysis, Statistical ; Female ; Harmonization ; Humans ; Integrative data analysis ; Judicial system ; Male ; Measurement ; Measurement methods ; Middle Aged ; Missing data ; Nonlinear analysis ; Nonlinear Dynamics ; Population Surveillance - methods ; Populations ; Predictive validity ; Sampling ; Signs and symptoms ; Statistical analysis ; Statistical methods</subject><ispartof>Drug and alcohol dependence, 2019-01, Vol.194, p.59-68</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright © 2018 Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier Science Ltd. Jan 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-2c4f09d0ccb3560286cdb8af42dd464b801c300ab0a0f55e949e3188aafa5c5d3</citedby><cites>FETCH-LOGICAL-c507t-2c4f09d0ccb3560286cdb8af42dd464b801c300ab0a0f55e949e3188aafa5c5d3</cites><orcidid>0000-0002-3437-0216 ; 0000-0002-6692-9096 ; 0000-0001-9117-1718</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.drugalcdep.2018.10.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,30999,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30412898$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hussong, Andrea M.</creatorcontrib><creatorcontrib>Gottfredson, Nisha C.</creatorcontrib><creatorcontrib>Bauer, Dan J.</creatorcontrib><creatorcontrib>Curran, Patrick J.</creatorcontrib><creatorcontrib>Haroon, Maleeha</creatorcontrib><creatorcontrib>Chandler, Redonna</creatorcontrib><creatorcontrib>Kahana, Shoshana Y.</creatorcontrib><creatorcontrib>Delaney, Joseph A.C.</creatorcontrib><creatorcontrib>Altice, Frederick L.</creatorcontrib><creatorcontrib>Beckwith, Curt G.</creatorcontrib><creatorcontrib>Feaster, Daniel J.</creatorcontrib><creatorcontrib>Flynn, Patrick M.</creatorcontrib><creatorcontrib>Gordon, Michael S.</creatorcontrib><creatorcontrib>Knight, Kevin</creatorcontrib><creatorcontrib>Kuo, Irene</creatorcontrib><creatorcontrib>Ouellet, Lawrence J.</creatorcontrib><creatorcontrib>Quan, Vu M.</creatorcontrib><creatorcontrib>Seal, David W.</creatorcontrib><creatorcontrib>Springer, Sandra A.</creatorcontrib><title>Approaches for creating comparable measures of alcohol use symptoms: Harmonization with eight studies of criminal justice populations</title><title>Drug and alcohol dependence</title><addtitle>Drug Alcohol Depend</addtitle><description>•Moderated nonlinear factor analysis is a tool for pooled analysis.•MNLFA scores had more desirable properties than pooled cut-scores and sum scores.•MNLFA scores showed strongly predictive validity than other scores.•MNLFA is a promising tool for harmonization in pooled data analysis.. With increasing data archives comprised of studies with similar measurement, optimal methods for data harmonization and measurement scoring are a pressing need. We compare three methods for harmonizing and scoring the AUDIT as administered with minimal variation across 11 samples from eight study sites within the STTR (Seek-Test-Treat-Retain) Research Harmonization Initiative. Descriptive statistics and predictive validity results for cut-scores, sum scores, and Moderated Nonlinear Factor Analysis scores (MNLFA; a psychometric harmonization method) are presented. Across the eight study sites, sample sizes ranged from 50 to 2405 and target populations varied based on sampling frame, location, and inclusion/exclusion criteria. The pooled sample included 4667 participants (82% male, 52% Black, 24% White, 13% Hispanic, and 8% Asian/ Pacific Islander; mean age of 38.9 years). Participants completed the AUDIT at baseline in all studies. After logical harmonization of items, we scored the AUDIT using three methods: published cut-scores, sum scores, and MNLFA. We found greater variation, fewer floor effects, and the ability to directly address missing data in MNLFA scores as compared to cut-scores and sum scores. MNLFA scores showed stronger associations with binge drinking and clearer study differences than did other scores. MNLFA scores are a promising tool for data harmonization and scoring in pooled data analysis. Model complexity with large multi-study applications, however, may require new statistical advances to fully realize the benefits of this approach.</description><subject>Addictive behaviors</subject><subject>Adult</subject><subject>Alcohol Drinking - epidemiology</subject><subject>Alcohol Drinking - psychology</subject><subject>Alcohol Drinking - trends</subject><subject>Alcohol use</subject><subject>Alcohols</subject><subject>Binge drinking</subject><subject>Crime</subject><subject>Criminal justice</subject><subject>Criminal Law - trends</subject><subject>Data analysis</subject><subject>Data harmonization</subject><subject>Data pooling</subject><subject>Data processing</subject><subject>Drinking behavior</subject><subject>Drinking severity</subject><subject>Factor analysis</subject><subject>Factor Analysis, Statistical</subject><subject>Female</subject><subject>Harmonization</subject><subject>Humans</subject><subject>Integrative data analysis</subject><subject>Judicial system</subject><subject>Male</subject><subject>Measurement</subject><subject>Measurement methods</subject><subject>Middle Aged</subject><subject>Missing data</subject><subject>Nonlinear analysis</subject><subject>Nonlinear Dynamics</subject><subject>Population Surveillance - methods</subject><subject>Populations</subject><subject>Predictive validity</subject><subject>Sampling</subject><subject>Signs and symptoms</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><issn>0376-8716</issn><issn>1879-0046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>7QJ</sourceid><recordid>eNqFkU9v1DAQxS0EokvhKyBLXLhkGTuJ43BAKhVQpEpc4Gw59mTjVRIH22lV7v3e9bKl_LngiyXP770ZzyOEMtgyYOLNfmvDutOjsbhsOTCZn7cA5SOyYbJpC4BKPCYbKBtRyIaJE_Isxj3kI1p4Sk5KqBiXrdyQ27NlCV6bASPtfaAmoE5u3lHjp0UH3Y1IJ9RxDRnwPc09_eBHukak8WZakp_iW3qhw-Rn9yNL_UyvXRoout2QaEyrdUelCW5ysx7pfo3JGaSLX9bxpyI-J096PUZ8cX-fkm8fP3w9vyguv3z6fH52WZgamlRwU_XQWjCmK2sBXApjO6n7iltbiaqTwEwJoDvQ0Nc1tlWLJZNS617XprblKXl39F3WbkJrcE5Bj2rJo-lwo7x26u_K7Aa181dKlIzXwLLB63uD4L-vGJOaXDQ4jnpGv0bFWcl5WUteZfTVP-jeryEv4EA1ogGQkmdKHikTfIwB-4dhGKhD1mqvfmetDlkfKjnrLH3552cehL_CzcD7I4B5pVcOg4rG4WzQuoAmKevd_7vcAbiAxI4</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Hussong, Andrea M.</creator><creator>Gottfredson, Nisha C.</creator><creator>Bauer, Dan J.</creator><creator>Curran, Patrick J.</creator><creator>Haroon, Maleeha</creator><creator>Chandler, Redonna</creator><creator>Kahana, Shoshana Y.</creator><creator>Delaney, Joseph A.C.</creator><creator>Altice, Frederick L.</creator><creator>Beckwith, Curt G.</creator><creator>Feaster, Daniel J.</creator><creator>Flynn, Patrick M.</creator><creator>Gordon, Michael S.</creator><creator>Knight, Kevin</creator><creator>Kuo, Irene</creator><creator>Ouellet, Lawrence J.</creator><creator>Quan, Vu M.</creator><creator>Seal, David W.</creator><creator>Springer, Sandra A.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3437-0216</orcidid><orcidid>https://orcid.org/0000-0002-6692-9096</orcidid><orcidid>https://orcid.org/0000-0001-9117-1718</orcidid></search><sort><creationdate>20190101</creationdate><title>Approaches for creating comparable measures of alcohol use symptoms: Harmonization with eight studies of criminal justice populations</title><author>Hussong, Andrea M. ; Gottfredson, Nisha C. ; Bauer, Dan J. ; Curran, Patrick J. ; Haroon, Maleeha ; Chandler, Redonna ; Kahana, Shoshana Y. ; Delaney, Joseph A.C. ; Altice, Frederick L. ; Beckwith, Curt G. ; Feaster, Daniel J. ; Flynn, Patrick M. ; Gordon, Michael S. ; Knight, Kevin ; Kuo, Irene ; Ouellet, Lawrence J. ; Quan, Vu M. ; Seal, David W. ; Springer, Sandra A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-2c4f09d0ccb3560286cdb8af42dd464b801c300ab0a0f55e949e3188aafa5c5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Addictive behaviors</topic><topic>Adult</topic><topic>Alcohol Drinking - epidemiology</topic><topic>Alcohol Drinking - psychology</topic><topic>Alcohol Drinking - trends</topic><topic>Alcohol use</topic><topic>Alcohols</topic><topic>Binge drinking</topic><topic>Crime</topic><topic>Criminal justice</topic><topic>Criminal Law - trends</topic><topic>Data analysis</topic><topic>Data harmonization</topic><topic>Data pooling</topic><topic>Data processing</topic><topic>Drinking behavior</topic><topic>Drinking severity</topic><topic>Factor analysis</topic><topic>Factor Analysis, Statistical</topic><topic>Female</topic><topic>Harmonization</topic><topic>Humans</topic><topic>Integrative data analysis</topic><topic>Judicial system</topic><topic>Male</topic><topic>Measurement</topic><topic>Measurement methods</topic><topic>Middle Aged</topic><topic>Missing data</topic><topic>Nonlinear analysis</topic><topic>Nonlinear Dynamics</topic><topic>Population Surveillance - methods</topic><topic>Populations</topic><topic>Predictive validity</topic><topic>Sampling</topic><topic>Signs and symptoms</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hussong, Andrea M.</creatorcontrib><creatorcontrib>Gottfredson, Nisha C.</creatorcontrib><creatorcontrib>Bauer, Dan J.</creatorcontrib><creatorcontrib>Curran, Patrick J.</creatorcontrib><creatorcontrib>Haroon, Maleeha</creatorcontrib><creatorcontrib>Chandler, Redonna</creatorcontrib><creatorcontrib>Kahana, Shoshana Y.</creatorcontrib><creatorcontrib>Delaney, Joseph A.C.</creatorcontrib><creatorcontrib>Altice, Frederick L.</creatorcontrib><creatorcontrib>Beckwith, Curt G.</creatorcontrib><creatorcontrib>Feaster, Daniel J.</creatorcontrib><creatorcontrib>Flynn, Patrick M.</creatorcontrib><creatorcontrib>Gordon, Michael S.</creatorcontrib><creatorcontrib>Knight, Kevin</creatorcontrib><creatorcontrib>Kuo, Irene</creatorcontrib><creatorcontrib>Ouellet, Lawrence J.</creatorcontrib><creatorcontrib>Quan, Vu M.</creatorcontrib><creatorcontrib>Seal, David W.</creatorcontrib><creatorcontrib>Springer, Sandra A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Drug and alcohol dependence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hussong, Andrea M.</au><au>Gottfredson, Nisha C.</au><au>Bauer, Dan J.</au><au>Curran, Patrick J.</au><au>Haroon, Maleeha</au><au>Chandler, Redonna</au><au>Kahana, Shoshana Y.</au><au>Delaney, Joseph A.C.</au><au>Altice, Frederick L.</au><au>Beckwith, Curt G.</au><au>Feaster, Daniel J.</au><au>Flynn, Patrick M.</au><au>Gordon, Michael S.</au><au>Knight, Kevin</au><au>Kuo, Irene</au><au>Ouellet, Lawrence J.</au><au>Quan, Vu M.</au><au>Seal, David W.</au><au>Springer, Sandra A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approaches for creating comparable measures of alcohol use symptoms: Harmonization with eight studies of criminal justice populations</atitle><jtitle>Drug and alcohol dependence</jtitle><addtitle>Drug Alcohol Depend</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>194</volume><spage>59</spage><epage>68</epage><pages>59-68</pages><issn>0376-8716</issn><eissn>1879-0046</eissn><abstract>•Moderated nonlinear factor analysis is a tool for pooled analysis.•MNLFA scores had more desirable properties than pooled cut-scores and sum scores.•MNLFA scores showed strongly predictive validity than other scores.•MNLFA is a promising tool for harmonization in pooled data analysis.. With increasing data archives comprised of studies with similar measurement, optimal methods for data harmonization and measurement scoring are a pressing need. We compare three methods for harmonizing and scoring the AUDIT as administered with minimal variation across 11 samples from eight study sites within the STTR (Seek-Test-Treat-Retain) Research Harmonization Initiative. Descriptive statistics and predictive validity results for cut-scores, sum scores, and Moderated Nonlinear Factor Analysis scores (MNLFA; a psychometric harmonization method) are presented. Across the eight study sites, sample sizes ranged from 50 to 2405 and target populations varied based on sampling frame, location, and inclusion/exclusion criteria. The pooled sample included 4667 participants (82% male, 52% Black, 24% White, 13% Hispanic, and 8% Asian/ Pacific Islander; mean age of 38.9 years). Participants completed the AUDIT at baseline in all studies. After logical harmonization of items, we scored the AUDIT using three methods: published cut-scores, sum scores, and MNLFA. We found greater variation, fewer floor effects, and the ability to directly address missing data in MNLFA scores as compared to cut-scores and sum scores. MNLFA scores showed stronger associations with binge drinking and clearer study differences than did other scores. MNLFA scores are a promising tool for data harmonization and scoring in pooled data analysis. Model complexity with large multi-study applications, however, may require new statistical advances to fully realize the benefits of this approach.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>30412898</pmid><doi>10.1016/j.drugalcdep.2018.10.003</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3437-0216</orcidid><orcidid>https://orcid.org/0000-0002-6692-9096</orcidid><orcidid>https://orcid.org/0000-0001-9117-1718</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0376-8716
ispartof Drug and alcohol dependence, 2019-01, Vol.194, p.59-68
issn 0376-8716
1879-0046
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6312501
source MEDLINE; Applied Social Sciences Index & Abstracts (ASSIA); Access via ScienceDirect (Elsevier)
subjects Addictive behaviors
Adult
Alcohol Drinking - epidemiology
Alcohol Drinking - psychology
Alcohol Drinking - trends
Alcohol use
Alcohols
Binge drinking
Crime
Criminal justice
Criminal Law - trends
Data analysis
Data harmonization
Data pooling
Data processing
Drinking behavior
Drinking severity
Factor analysis
Factor Analysis, Statistical
Female
Harmonization
Humans
Integrative data analysis
Judicial system
Male
Measurement
Measurement methods
Middle Aged
Missing data
Nonlinear analysis
Nonlinear Dynamics
Population Surveillance - methods
Populations
Predictive validity
Sampling
Signs and symptoms
Statistical analysis
Statistical methods
title Approaches for creating comparable measures of alcohol use symptoms: Harmonization with eight studies of criminal justice populations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A47%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approaches%20for%20creating%20comparable%20measures%20of%20alcohol%20use%20symptoms:%20Harmonization%20with%20eight%20studies%20of%20criminal%20justice%20populations&rft.jtitle=Drug%20and%20alcohol%20dependence&rft.au=Hussong,%20Andrea%20M.&rft.date=2019-01-01&rft.volume=194&rft.spage=59&rft.epage=68&rft.pages=59-68&rft.issn=0376-8716&rft.eissn=1879-0046&rft_id=info:doi/10.1016/j.drugalcdep.2018.10.003&rft_dat=%3Cproquest_pubme%3E2132235824%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2176700882&rft_id=info:pmid/30412898&rft_els_id=S0376871618305076&rfr_iscdi=true