Approaches for creating comparable measures of alcohol use symptoms: Harmonization with eight studies of criminal justice populations
•Moderated nonlinear factor analysis is a tool for pooled analysis.•MNLFA scores had more desirable properties than pooled cut-scores and sum scores.•MNLFA scores showed strongly predictive validity than other scores.•MNLFA is a promising tool for harmonization in pooled data analysis.. With increas...
Gespeichert in:
Veröffentlicht in: | Drug and alcohol dependence 2019-01, Vol.194, p.59-68 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 68 |
---|---|
container_issue | |
container_start_page | 59 |
container_title | Drug and alcohol dependence |
container_volume | 194 |
creator | Hussong, Andrea M. Gottfredson, Nisha C. Bauer, Dan J. Curran, Patrick J. Haroon, Maleeha Chandler, Redonna Kahana, Shoshana Y. Delaney, Joseph A.C. Altice, Frederick L. Beckwith, Curt G. Feaster, Daniel J. Flynn, Patrick M. Gordon, Michael S. Knight, Kevin Kuo, Irene Ouellet, Lawrence J. Quan, Vu M. Seal, David W. Springer, Sandra A. |
description | •Moderated nonlinear factor analysis is a tool for pooled analysis.•MNLFA scores had more desirable properties than pooled cut-scores and sum scores.•MNLFA scores showed strongly predictive validity than other scores.•MNLFA is a promising tool for harmonization in pooled data analysis..
With increasing data archives comprised of studies with similar measurement, optimal methods for data harmonization and measurement scoring are a pressing need. We compare three methods for harmonizing and scoring the AUDIT as administered with minimal variation across 11 samples from eight study sites within the STTR (Seek-Test-Treat-Retain) Research Harmonization Initiative. Descriptive statistics and predictive validity results for cut-scores, sum scores, and Moderated Nonlinear Factor Analysis scores (MNLFA; a psychometric harmonization method) are presented.
Across the eight study sites, sample sizes ranged from 50 to 2405 and target populations varied based on sampling frame, location, and inclusion/exclusion criteria. The pooled sample included 4667 participants (82% male, 52% Black, 24% White, 13% Hispanic, and 8% Asian/ Pacific Islander; mean age of 38.9 years). Participants completed the AUDIT at baseline in all studies.
After logical harmonization of items, we scored the AUDIT using three methods: published cut-scores, sum scores, and MNLFA. We found greater variation, fewer floor effects, and the ability to directly address missing data in MNLFA scores as compared to cut-scores and sum scores. MNLFA scores showed stronger associations with binge drinking and clearer study differences than did other scores.
MNLFA scores are a promising tool for data harmonization and scoring in pooled data analysis. Model complexity with large multi-study applications, however, may require new statistical advances to fully realize the benefits of this approach. |
doi_str_mv | 10.1016/j.drugalcdep.2018.10.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6312501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0376871618305076</els_id><sourcerecordid>2132235824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-2c4f09d0ccb3560286cdb8af42dd464b801c300ab0a0f55e949e3188aafa5c5d3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EokvhKyBLXLhkGTuJ43BAKhVQpEpc4Gw59mTjVRIH22lV7v3e9bKl_LngiyXP770ZzyOEMtgyYOLNfmvDutOjsbhsOTCZn7cA5SOyYbJpC4BKPCYbKBtRyIaJE_Isxj3kI1p4Sk5KqBiXrdyQ27NlCV6bASPtfaAmoE5u3lHjp0UH3Y1IJ9RxDRnwPc09_eBHukak8WZakp_iW3qhw-Rn9yNL_UyvXRoout2QaEyrdUelCW5ysx7pfo3JGaSLX9bxpyI-J096PUZ8cX-fkm8fP3w9vyguv3z6fH52WZgamlRwU_XQWjCmK2sBXApjO6n7iltbiaqTwEwJoDvQ0Nc1tlWLJZNS617XprblKXl39F3WbkJrcE5Bj2rJo-lwo7x26u_K7Aa181dKlIzXwLLB63uD4L-vGJOaXDQ4jnpGv0bFWcl5WUteZfTVP-jeryEv4EA1ogGQkmdKHikTfIwB-4dhGKhD1mqvfmetDlkfKjnrLH3552cehL_CzcD7I4B5pVcOg4rG4WzQuoAmKevd_7vcAbiAxI4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2176700882</pqid></control><display><type>article</type><title>Approaches for creating comparable measures of alcohol use symptoms: Harmonization with eight studies of criminal justice populations</title><source>MEDLINE</source><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>Access via ScienceDirect (Elsevier)</source><creator>Hussong, Andrea M. ; Gottfredson, Nisha C. ; Bauer, Dan J. ; Curran, Patrick J. ; Haroon, Maleeha ; Chandler, Redonna ; Kahana, Shoshana Y. ; Delaney, Joseph A.C. ; Altice, Frederick L. ; Beckwith, Curt G. ; Feaster, Daniel J. ; Flynn, Patrick M. ; Gordon, Michael S. ; Knight, Kevin ; Kuo, Irene ; Ouellet, Lawrence J. ; Quan, Vu M. ; Seal, David W. ; Springer, Sandra A.</creator><creatorcontrib>Hussong, Andrea M. ; Gottfredson, Nisha C. ; Bauer, Dan J. ; Curran, Patrick J. ; Haroon, Maleeha ; Chandler, Redonna ; Kahana, Shoshana Y. ; Delaney, Joseph A.C. ; Altice, Frederick L. ; Beckwith, Curt G. ; Feaster, Daniel J. ; Flynn, Patrick M. ; Gordon, Michael S. ; Knight, Kevin ; Kuo, Irene ; Ouellet, Lawrence J. ; Quan, Vu M. ; Seal, David W. ; Springer, Sandra A.</creatorcontrib><description>•Moderated nonlinear factor analysis is a tool for pooled analysis.•MNLFA scores had more desirable properties than pooled cut-scores and sum scores.•MNLFA scores showed strongly predictive validity than other scores.•MNLFA is a promising tool for harmonization in pooled data analysis..
With increasing data archives comprised of studies with similar measurement, optimal methods for data harmonization and measurement scoring are a pressing need. We compare three methods for harmonizing and scoring the AUDIT as administered with minimal variation across 11 samples from eight study sites within the STTR (Seek-Test-Treat-Retain) Research Harmonization Initiative. Descriptive statistics and predictive validity results for cut-scores, sum scores, and Moderated Nonlinear Factor Analysis scores (MNLFA; a psychometric harmonization method) are presented.
Across the eight study sites, sample sizes ranged from 50 to 2405 and target populations varied based on sampling frame, location, and inclusion/exclusion criteria. The pooled sample included 4667 participants (82% male, 52% Black, 24% White, 13% Hispanic, and 8% Asian/ Pacific Islander; mean age of 38.9 years). Participants completed the AUDIT at baseline in all studies.
After logical harmonization of items, we scored the AUDIT using three methods: published cut-scores, sum scores, and MNLFA. We found greater variation, fewer floor effects, and the ability to directly address missing data in MNLFA scores as compared to cut-scores and sum scores. MNLFA scores showed stronger associations with binge drinking and clearer study differences than did other scores.
MNLFA scores are a promising tool for data harmonization and scoring in pooled data analysis. Model complexity with large multi-study applications, however, may require new statistical advances to fully realize the benefits of this approach.</description><identifier>ISSN: 0376-8716</identifier><identifier>EISSN: 1879-0046</identifier><identifier>DOI: 10.1016/j.drugalcdep.2018.10.003</identifier><identifier>PMID: 30412898</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Addictive behaviors ; Adult ; Alcohol Drinking - epidemiology ; Alcohol Drinking - psychology ; Alcohol Drinking - trends ; Alcohol use ; Alcohols ; Binge drinking ; Crime ; Criminal justice ; Criminal Law - trends ; Data analysis ; Data harmonization ; Data pooling ; Data processing ; Drinking behavior ; Drinking severity ; Factor analysis ; Factor Analysis, Statistical ; Female ; Harmonization ; Humans ; Integrative data analysis ; Judicial system ; Male ; Measurement ; Measurement methods ; Middle Aged ; Missing data ; Nonlinear analysis ; Nonlinear Dynamics ; Population Surveillance - methods ; Populations ; Predictive validity ; Sampling ; Signs and symptoms ; Statistical analysis ; Statistical methods</subject><ispartof>Drug and alcohol dependence, 2019-01, Vol.194, p.59-68</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright © 2018 Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier Science Ltd. Jan 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-2c4f09d0ccb3560286cdb8af42dd464b801c300ab0a0f55e949e3188aafa5c5d3</citedby><cites>FETCH-LOGICAL-c507t-2c4f09d0ccb3560286cdb8af42dd464b801c300ab0a0f55e949e3188aafa5c5d3</cites><orcidid>0000-0002-3437-0216 ; 0000-0002-6692-9096 ; 0000-0001-9117-1718</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.drugalcdep.2018.10.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,30999,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30412898$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hussong, Andrea M.</creatorcontrib><creatorcontrib>Gottfredson, Nisha C.</creatorcontrib><creatorcontrib>Bauer, Dan J.</creatorcontrib><creatorcontrib>Curran, Patrick J.</creatorcontrib><creatorcontrib>Haroon, Maleeha</creatorcontrib><creatorcontrib>Chandler, Redonna</creatorcontrib><creatorcontrib>Kahana, Shoshana Y.</creatorcontrib><creatorcontrib>Delaney, Joseph A.C.</creatorcontrib><creatorcontrib>Altice, Frederick L.</creatorcontrib><creatorcontrib>Beckwith, Curt G.</creatorcontrib><creatorcontrib>Feaster, Daniel J.</creatorcontrib><creatorcontrib>Flynn, Patrick M.</creatorcontrib><creatorcontrib>Gordon, Michael S.</creatorcontrib><creatorcontrib>Knight, Kevin</creatorcontrib><creatorcontrib>Kuo, Irene</creatorcontrib><creatorcontrib>Ouellet, Lawrence J.</creatorcontrib><creatorcontrib>Quan, Vu M.</creatorcontrib><creatorcontrib>Seal, David W.</creatorcontrib><creatorcontrib>Springer, Sandra A.</creatorcontrib><title>Approaches for creating comparable measures of alcohol use symptoms: Harmonization with eight studies of criminal justice populations</title><title>Drug and alcohol dependence</title><addtitle>Drug Alcohol Depend</addtitle><description>•Moderated nonlinear factor analysis is a tool for pooled analysis.•MNLFA scores had more desirable properties than pooled cut-scores and sum scores.•MNLFA scores showed strongly predictive validity than other scores.•MNLFA is a promising tool for harmonization in pooled data analysis..
With increasing data archives comprised of studies with similar measurement, optimal methods for data harmonization and measurement scoring are a pressing need. We compare three methods for harmonizing and scoring the AUDIT as administered with minimal variation across 11 samples from eight study sites within the STTR (Seek-Test-Treat-Retain) Research Harmonization Initiative. Descriptive statistics and predictive validity results for cut-scores, sum scores, and Moderated Nonlinear Factor Analysis scores (MNLFA; a psychometric harmonization method) are presented.
Across the eight study sites, sample sizes ranged from 50 to 2405 and target populations varied based on sampling frame, location, and inclusion/exclusion criteria. The pooled sample included 4667 participants (82% male, 52% Black, 24% White, 13% Hispanic, and 8% Asian/ Pacific Islander; mean age of 38.9 years). Participants completed the AUDIT at baseline in all studies.
After logical harmonization of items, we scored the AUDIT using three methods: published cut-scores, sum scores, and MNLFA. We found greater variation, fewer floor effects, and the ability to directly address missing data in MNLFA scores as compared to cut-scores and sum scores. MNLFA scores showed stronger associations with binge drinking and clearer study differences than did other scores.
MNLFA scores are a promising tool for data harmonization and scoring in pooled data analysis. Model complexity with large multi-study applications, however, may require new statistical advances to fully realize the benefits of this approach.</description><subject>Addictive behaviors</subject><subject>Adult</subject><subject>Alcohol Drinking - epidemiology</subject><subject>Alcohol Drinking - psychology</subject><subject>Alcohol Drinking - trends</subject><subject>Alcohol use</subject><subject>Alcohols</subject><subject>Binge drinking</subject><subject>Crime</subject><subject>Criminal justice</subject><subject>Criminal Law - trends</subject><subject>Data analysis</subject><subject>Data harmonization</subject><subject>Data pooling</subject><subject>Data processing</subject><subject>Drinking behavior</subject><subject>Drinking severity</subject><subject>Factor analysis</subject><subject>Factor Analysis, Statistical</subject><subject>Female</subject><subject>Harmonization</subject><subject>Humans</subject><subject>Integrative data analysis</subject><subject>Judicial system</subject><subject>Male</subject><subject>Measurement</subject><subject>Measurement methods</subject><subject>Middle Aged</subject><subject>Missing data</subject><subject>Nonlinear analysis</subject><subject>Nonlinear Dynamics</subject><subject>Population Surveillance - methods</subject><subject>Populations</subject><subject>Predictive validity</subject><subject>Sampling</subject><subject>Signs and symptoms</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><issn>0376-8716</issn><issn>1879-0046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>7QJ</sourceid><recordid>eNqFkU9v1DAQxS0EokvhKyBLXLhkGTuJ43BAKhVQpEpc4Gw59mTjVRIH22lV7v3e9bKl_LngiyXP770ZzyOEMtgyYOLNfmvDutOjsbhsOTCZn7cA5SOyYbJpC4BKPCYbKBtRyIaJE_Isxj3kI1p4Sk5KqBiXrdyQ27NlCV6bASPtfaAmoE5u3lHjp0UH3Y1IJ9RxDRnwPc09_eBHukak8WZakp_iW3qhw-Rn9yNL_UyvXRoout2QaEyrdUelCW5ysx7pfo3JGaSLX9bxpyI-J096PUZ8cX-fkm8fP3w9vyguv3z6fH52WZgamlRwU_XQWjCmK2sBXApjO6n7iltbiaqTwEwJoDvQ0Nc1tlWLJZNS617XprblKXl39F3WbkJrcE5Bj2rJo-lwo7x26u_K7Aa181dKlIzXwLLB63uD4L-vGJOaXDQ4jnpGv0bFWcl5WUteZfTVP-jeryEv4EA1ogGQkmdKHikTfIwB-4dhGKhD1mqvfmetDlkfKjnrLH3552cehL_CzcD7I4B5pVcOg4rG4WzQuoAmKevd_7vcAbiAxI4</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Hussong, Andrea M.</creator><creator>Gottfredson, Nisha C.</creator><creator>Bauer, Dan J.</creator><creator>Curran, Patrick J.</creator><creator>Haroon, Maleeha</creator><creator>Chandler, Redonna</creator><creator>Kahana, Shoshana Y.</creator><creator>Delaney, Joseph A.C.</creator><creator>Altice, Frederick L.</creator><creator>Beckwith, Curt G.</creator><creator>Feaster, Daniel J.</creator><creator>Flynn, Patrick M.</creator><creator>Gordon, Michael S.</creator><creator>Knight, Kevin</creator><creator>Kuo, Irene</creator><creator>Ouellet, Lawrence J.</creator><creator>Quan, Vu M.</creator><creator>Seal, David W.</creator><creator>Springer, Sandra A.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3437-0216</orcidid><orcidid>https://orcid.org/0000-0002-6692-9096</orcidid><orcidid>https://orcid.org/0000-0001-9117-1718</orcidid></search><sort><creationdate>20190101</creationdate><title>Approaches for creating comparable measures of alcohol use symptoms: Harmonization with eight studies of criminal justice populations</title><author>Hussong, Andrea M. ; Gottfredson, Nisha C. ; Bauer, Dan J. ; Curran, Patrick J. ; Haroon, Maleeha ; Chandler, Redonna ; Kahana, Shoshana Y. ; Delaney, Joseph A.C. ; Altice, Frederick L. ; Beckwith, Curt G. ; Feaster, Daniel J. ; Flynn, Patrick M. ; Gordon, Michael S. ; Knight, Kevin ; Kuo, Irene ; Ouellet, Lawrence J. ; Quan, Vu M. ; Seal, David W. ; Springer, Sandra A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-2c4f09d0ccb3560286cdb8af42dd464b801c300ab0a0f55e949e3188aafa5c5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Addictive behaviors</topic><topic>Adult</topic><topic>Alcohol Drinking - epidemiology</topic><topic>Alcohol Drinking - psychology</topic><topic>Alcohol Drinking - trends</topic><topic>Alcohol use</topic><topic>Alcohols</topic><topic>Binge drinking</topic><topic>Crime</topic><topic>Criminal justice</topic><topic>Criminal Law - trends</topic><topic>Data analysis</topic><topic>Data harmonization</topic><topic>Data pooling</topic><topic>Data processing</topic><topic>Drinking behavior</topic><topic>Drinking severity</topic><topic>Factor analysis</topic><topic>Factor Analysis, Statistical</topic><topic>Female</topic><topic>Harmonization</topic><topic>Humans</topic><topic>Integrative data analysis</topic><topic>Judicial system</topic><topic>Male</topic><topic>Measurement</topic><topic>Measurement methods</topic><topic>Middle Aged</topic><topic>Missing data</topic><topic>Nonlinear analysis</topic><topic>Nonlinear Dynamics</topic><topic>Population Surveillance - methods</topic><topic>Populations</topic><topic>Predictive validity</topic><topic>Sampling</topic><topic>Signs and symptoms</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hussong, Andrea M.</creatorcontrib><creatorcontrib>Gottfredson, Nisha C.</creatorcontrib><creatorcontrib>Bauer, Dan J.</creatorcontrib><creatorcontrib>Curran, Patrick J.</creatorcontrib><creatorcontrib>Haroon, Maleeha</creatorcontrib><creatorcontrib>Chandler, Redonna</creatorcontrib><creatorcontrib>Kahana, Shoshana Y.</creatorcontrib><creatorcontrib>Delaney, Joseph A.C.</creatorcontrib><creatorcontrib>Altice, Frederick L.</creatorcontrib><creatorcontrib>Beckwith, Curt G.</creatorcontrib><creatorcontrib>Feaster, Daniel J.</creatorcontrib><creatorcontrib>Flynn, Patrick M.</creatorcontrib><creatorcontrib>Gordon, Michael S.</creatorcontrib><creatorcontrib>Knight, Kevin</creatorcontrib><creatorcontrib>Kuo, Irene</creatorcontrib><creatorcontrib>Ouellet, Lawrence J.</creatorcontrib><creatorcontrib>Quan, Vu M.</creatorcontrib><creatorcontrib>Seal, David W.</creatorcontrib><creatorcontrib>Springer, Sandra A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Drug and alcohol dependence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hussong, Andrea M.</au><au>Gottfredson, Nisha C.</au><au>Bauer, Dan J.</au><au>Curran, Patrick J.</au><au>Haroon, Maleeha</au><au>Chandler, Redonna</au><au>Kahana, Shoshana Y.</au><au>Delaney, Joseph A.C.</au><au>Altice, Frederick L.</au><au>Beckwith, Curt G.</au><au>Feaster, Daniel J.</au><au>Flynn, Patrick M.</au><au>Gordon, Michael S.</au><au>Knight, Kevin</au><au>Kuo, Irene</au><au>Ouellet, Lawrence J.</au><au>Quan, Vu M.</au><au>Seal, David W.</au><au>Springer, Sandra A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approaches for creating comparable measures of alcohol use symptoms: Harmonization with eight studies of criminal justice populations</atitle><jtitle>Drug and alcohol dependence</jtitle><addtitle>Drug Alcohol Depend</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>194</volume><spage>59</spage><epage>68</epage><pages>59-68</pages><issn>0376-8716</issn><eissn>1879-0046</eissn><abstract>•Moderated nonlinear factor analysis is a tool for pooled analysis.•MNLFA scores had more desirable properties than pooled cut-scores and sum scores.•MNLFA scores showed strongly predictive validity than other scores.•MNLFA is a promising tool for harmonization in pooled data analysis..
With increasing data archives comprised of studies with similar measurement, optimal methods for data harmonization and measurement scoring are a pressing need. We compare three methods for harmonizing and scoring the AUDIT as administered with minimal variation across 11 samples from eight study sites within the STTR (Seek-Test-Treat-Retain) Research Harmonization Initiative. Descriptive statistics and predictive validity results for cut-scores, sum scores, and Moderated Nonlinear Factor Analysis scores (MNLFA; a psychometric harmonization method) are presented.
Across the eight study sites, sample sizes ranged from 50 to 2405 and target populations varied based on sampling frame, location, and inclusion/exclusion criteria. The pooled sample included 4667 participants (82% male, 52% Black, 24% White, 13% Hispanic, and 8% Asian/ Pacific Islander; mean age of 38.9 years). Participants completed the AUDIT at baseline in all studies.
After logical harmonization of items, we scored the AUDIT using three methods: published cut-scores, sum scores, and MNLFA. We found greater variation, fewer floor effects, and the ability to directly address missing data in MNLFA scores as compared to cut-scores and sum scores. MNLFA scores showed stronger associations with binge drinking and clearer study differences than did other scores.
MNLFA scores are a promising tool for data harmonization and scoring in pooled data analysis. Model complexity with large multi-study applications, however, may require new statistical advances to fully realize the benefits of this approach.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>30412898</pmid><doi>10.1016/j.drugalcdep.2018.10.003</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3437-0216</orcidid><orcidid>https://orcid.org/0000-0002-6692-9096</orcidid><orcidid>https://orcid.org/0000-0001-9117-1718</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0376-8716 |
ispartof | Drug and alcohol dependence, 2019-01, Vol.194, p.59-68 |
issn | 0376-8716 1879-0046 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6312501 |
source | MEDLINE; Applied Social Sciences Index & Abstracts (ASSIA); Access via ScienceDirect (Elsevier) |
subjects | Addictive behaviors Adult Alcohol Drinking - epidemiology Alcohol Drinking - psychology Alcohol Drinking - trends Alcohol use Alcohols Binge drinking Crime Criminal justice Criminal Law - trends Data analysis Data harmonization Data pooling Data processing Drinking behavior Drinking severity Factor analysis Factor Analysis, Statistical Female Harmonization Humans Integrative data analysis Judicial system Male Measurement Measurement methods Middle Aged Missing data Nonlinear analysis Nonlinear Dynamics Population Surveillance - methods Populations Predictive validity Sampling Signs and symptoms Statistical analysis Statistical methods |
title | Approaches for creating comparable measures of alcohol use symptoms: Harmonization with eight studies of criminal justice populations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A47%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approaches%20for%20creating%20comparable%20measures%20of%20alcohol%20use%20symptoms:%20Harmonization%20with%20eight%20studies%20of%20criminal%20justice%20populations&rft.jtitle=Drug%20and%20alcohol%20dependence&rft.au=Hussong,%20Andrea%20M.&rft.date=2019-01-01&rft.volume=194&rft.spage=59&rft.epage=68&rft.pages=59-68&rft.issn=0376-8716&rft.eissn=1879-0046&rft_id=info:doi/10.1016/j.drugalcdep.2018.10.003&rft_dat=%3Cproquest_pubme%3E2132235824%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2176700882&rft_id=info:pmid/30412898&rft_els_id=S0376871618305076&rfr_iscdi=true |