Mitochondrial Deformation During the Cardiac Mechanical Cycle

ABSTRACT Cardiomyocytes both cause and experience continual cyclic deformation. The exact effects of this deformation on the properties of intracellular organelles are not well characterized, although they are likely to be relevant for cardiomyocyte responses to active and passive changes in their m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Anatomical record (Hoboken, N.J. : 2007) N.J. : 2007), 2019-01, Vol.302 (1), p.146-152
Hauptverfasser: Rog‐Zielinska, E. A., O'Toole, E. T., Hoenger, A., Kohl, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 152
container_issue 1
container_start_page 146
container_title Anatomical record (Hoboken, N.J. : 2007)
container_volume 302
creator Rog‐Zielinska, E. A.
O'Toole, E. T.
Hoenger, A.
Kohl, P.
description ABSTRACT Cardiomyocytes both cause and experience continual cyclic deformation. The exact effects of this deformation on the properties of intracellular organelles are not well characterized, although they are likely to be relevant for cardiomyocyte responses to active and passive changes in their mechanical environment. In the present study we provide three‐dimensional ultrastructural evidence for mechanically induced mitochondrial deformation in rabbit ventricular cardiomyocytes over a range of sarcomere lengths representing myocardial tissue stretch, an unloaded “slack” state, and contracture. We also show structural indications for interaction of mitochondria with one another, as well as with other intracellular elements such as microtubules, sarcoplasmic reticulum and T‐tubules. The data presented here help to contextualize recent reports on the mechanosensitivity and cell‐wide connectivity of the mitochondrial network and provide a structural framework that may aide interpretation of mechanically‐regulated molecular signaling in cardiac cells. Anat Rec, 302:146–152, 2019. © 2018 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
doi_str_mv 10.1002/ar.23917
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6312496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117820563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5047-3c173885d63170f54f15b1ccdec9019bfd661c48dceb3b775042b3762ccaf89e3</originalsourceid><addsrcrecordid>eNp1kVtLwzAYhoMobh7AXyAFb7zpzKFNmguF0XmCDUH0OqRpuma0zUxbZf_e6OY8gFdf4Hvy5A0vACcIjhCE-EK6ESYcsR0wRJzgMIl4tLs9J3QADtp2AWEcQU72wYBAAjFHaAguZ6azqrRN7oysgokurKtlZ2wTTHpnmnnQlTpIpcuNVMFMq1I2RnkyXalKH4G9QlatPt7MQ_B8c_2U3oXTh9v7dDwNVQwjFhKFGEmSOKcEMVjEUYHiDCmVa8Uh4lmRU4pUlORKZyRjzF_CGWEUKyWLhGtyCK7W3mWf1dpjTedkJZbO1NKthJVG_N40phRz-yr8gzji1AvONwJnX3rddqI2rdJVJRtt-1ZghFiCYUyJR8_-oAvbu8Z_z1MUMcogx99C5WzbOl1swyAoPjoR0onPTjx6-jP8FvwqwQPhGngzlV79KxLjx7XwHfqglBQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2161767092</pqid></control><display><type>article</type><title>Mitochondrial Deformation During the Cardiac Mechanical Cycle</title><source>MEDLINE</source><source>Wiley Journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Rog‐Zielinska, E. A. ; O'Toole, E. T. ; Hoenger, A. ; Kohl, P.</creator><creatorcontrib>Rog‐Zielinska, E. A. ; O'Toole, E. T. ; Hoenger, A. ; Kohl, P.</creatorcontrib><description>ABSTRACT Cardiomyocytes both cause and experience continual cyclic deformation. The exact effects of this deformation on the properties of intracellular organelles are not well characterized, although they are likely to be relevant for cardiomyocyte responses to active and passive changes in their mechanical environment. In the present study we provide three‐dimensional ultrastructural evidence for mechanically induced mitochondrial deformation in rabbit ventricular cardiomyocytes over a range of sarcomere lengths representing myocardial tissue stretch, an unloaded “slack” state, and contracture. We also show structural indications for interaction of mitochondria with one another, as well as with other intracellular elements such as microtubules, sarcoplasmic reticulum and T‐tubules. The data presented here help to contextualize recent reports on the mechanosensitivity and cell‐wide connectivity of the mitochondrial network and provide a structural framework that may aide interpretation of mechanically‐regulated molecular signaling in cardiac cells. Anat Rec, 302:146–152, 2019. © 2018 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.</description><identifier>ISSN: 1932-8486</identifier><identifier>EISSN: 1932-8494</identifier><identifier>DOI: 10.1002/ar.23917</identifier><identifier>PMID: 30302911</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Actin Cytoskeleton ; Animals ; Cardiac muscle ; Cardiomyocytes ; electron tomography ; Full Length Special Issue ; Heart ; Heart Ventricles - pathology ; Intracellular ; mechanosensitivity ; Microtubules ; Microtubules - pathology ; Mitochondria ; Mitochondria - pathology ; Myocytes, Cardiac - pathology ; Organelles ; Rabbits ; Sarcomeres - pathology ; Sarcoplasmic reticulum ; Sarcoplasmic Reticulum - pathology ; Special Issue ; Stress, Mechanical ; Tubules ; Ventricle</subject><ispartof>Anatomical record (Hoboken, N.J. : 2007), 2019-01, Vol.302 (1), p.146-152</ispartof><rights>2018 The Authors. published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.</rights><rights>2018 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5047-3c173885d63170f54f15b1ccdec9019bfd661c48dceb3b775042b3762ccaf89e3</citedby><cites>FETCH-LOGICAL-c5047-3c173885d63170f54f15b1ccdec9019bfd661c48dceb3b775042b3762ccaf89e3</cites><orcidid>0000-0002-3295-4728</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Far.23917$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Far.23917$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30302911$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rog‐Zielinska, E. A.</creatorcontrib><creatorcontrib>O'Toole, E. T.</creatorcontrib><creatorcontrib>Hoenger, A.</creatorcontrib><creatorcontrib>Kohl, P.</creatorcontrib><title>Mitochondrial Deformation During the Cardiac Mechanical Cycle</title><title>Anatomical record (Hoboken, N.J. : 2007)</title><addtitle>Anat Rec (Hoboken)</addtitle><description>ABSTRACT Cardiomyocytes both cause and experience continual cyclic deformation. The exact effects of this deformation on the properties of intracellular organelles are not well characterized, although they are likely to be relevant for cardiomyocyte responses to active and passive changes in their mechanical environment. In the present study we provide three‐dimensional ultrastructural evidence for mechanically induced mitochondrial deformation in rabbit ventricular cardiomyocytes over a range of sarcomere lengths representing myocardial tissue stretch, an unloaded “slack” state, and contracture. We also show structural indications for interaction of mitochondria with one another, as well as with other intracellular elements such as microtubules, sarcoplasmic reticulum and T‐tubules. The data presented here help to contextualize recent reports on the mechanosensitivity and cell‐wide connectivity of the mitochondrial network and provide a structural framework that may aide interpretation of mechanically‐regulated molecular signaling in cardiac cells. Anat Rec, 302:146–152, 2019. © 2018 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.</description><subject>Actin Cytoskeleton</subject><subject>Animals</subject><subject>Cardiac muscle</subject><subject>Cardiomyocytes</subject><subject>electron tomography</subject><subject>Full Length Special Issue</subject><subject>Heart</subject><subject>Heart Ventricles - pathology</subject><subject>Intracellular</subject><subject>mechanosensitivity</subject><subject>Microtubules</subject><subject>Microtubules - pathology</subject><subject>Mitochondria</subject><subject>Mitochondria - pathology</subject><subject>Myocytes, Cardiac - pathology</subject><subject>Organelles</subject><subject>Rabbits</subject><subject>Sarcomeres - pathology</subject><subject>Sarcoplasmic reticulum</subject><subject>Sarcoplasmic Reticulum - pathology</subject><subject>Special Issue</subject><subject>Stress, Mechanical</subject><subject>Tubules</subject><subject>Ventricle</subject><issn>1932-8486</issn><issn>1932-8494</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kVtLwzAYhoMobh7AXyAFb7zpzKFNmguF0XmCDUH0OqRpuma0zUxbZf_e6OY8gFdf4Hvy5A0vACcIjhCE-EK6ESYcsR0wRJzgMIl4tLs9J3QADtp2AWEcQU72wYBAAjFHaAguZ6azqrRN7oysgokurKtlZ2wTTHpnmnnQlTpIpcuNVMFMq1I2RnkyXalKH4G9QlatPt7MQ_B8c_2U3oXTh9v7dDwNVQwjFhKFGEmSOKcEMVjEUYHiDCmVa8Uh4lmRU4pUlORKZyRjzF_CGWEUKyWLhGtyCK7W3mWf1dpjTedkJZbO1NKthJVG_N40phRz-yr8gzji1AvONwJnX3rddqI2rdJVJRtt-1ZghFiCYUyJR8_-oAvbu8Z_z1MUMcogx99C5WzbOl1swyAoPjoR0onPTjx6-jP8FvwqwQPhGngzlV79KxLjx7XwHfqglBQ</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Rog‐Zielinska, E. A.</creator><creator>O'Toole, E. T.</creator><creator>Hoenger, A.</creator><creator>Kohl, P.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3295-4728</orcidid></search><sort><creationdate>201901</creationdate><title>Mitochondrial Deformation During the Cardiac Mechanical Cycle</title><author>Rog‐Zielinska, E. A. ; O'Toole, E. T. ; Hoenger, A. ; Kohl, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5047-3c173885d63170f54f15b1ccdec9019bfd661c48dceb3b775042b3762ccaf89e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actin Cytoskeleton</topic><topic>Animals</topic><topic>Cardiac muscle</topic><topic>Cardiomyocytes</topic><topic>electron tomography</topic><topic>Full Length Special Issue</topic><topic>Heart</topic><topic>Heart Ventricles - pathology</topic><topic>Intracellular</topic><topic>mechanosensitivity</topic><topic>Microtubules</topic><topic>Microtubules - pathology</topic><topic>Mitochondria</topic><topic>Mitochondria - pathology</topic><topic>Myocytes, Cardiac - pathology</topic><topic>Organelles</topic><topic>Rabbits</topic><topic>Sarcomeres - pathology</topic><topic>Sarcoplasmic reticulum</topic><topic>Sarcoplasmic Reticulum - pathology</topic><topic>Special Issue</topic><topic>Stress, Mechanical</topic><topic>Tubules</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rog‐Zielinska, E. A.</creatorcontrib><creatorcontrib>O'Toole, E. T.</creatorcontrib><creatorcontrib>Hoenger, A.</creatorcontrib><creatorcontrib>Kohl, P.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Anatomical record (Hoboken, N.J. : 2007)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rog‐Zielinska, E. A.</au><au>O'Toole, E. T.</au><au>Hoenger, A.</au><au>Kohl, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial Deformation During the Cardiac Mechanical Cycle</atitle><jtitle>Anatomical record (Hoboken, N.J. : 2007)</jtitle><addtitle>Anat Rec (Hoboken)</addtitle><date>2019-01</date><risdate>2019</risdate><volume>302</volume><issue>1</issue><spage>146</spage><epage>152</epage><pages>146-152</pages><issn>1932-8486</issn><eissn>1932-8494</eissn><abstract>ABSTRACT Cardiomyocytes both cause and experience continual cyclic deformation. The exact effects of this deformation on the properties of intracellular organelles are not well characterized, although they are likely to be relevant for cardiomyocyte responses to active and passive changes in their mechanical environment. In the present study we provide three‐dimensional ultrastructural evidence for mechanically induced mitochondrial deformation in rabbit ventricular cardiomyocytes over a range of sarcomere lengths representing myocardial tissue stretch, an unloaded “slack” state, and contracture. We also show structural indications for interaction of mitochondria with one another, as well as with other intracellular elements such as microtubules, sarcoplasmic reticulum and T‐tubules. The data presented here help to contextualize recent reports on the mechanosensitivity and cell‐wide connectivity of the mitochondrial network and provide a structural framework that may aide interpretation of mechanically‐regulated molecular signaling in cardiac cells. Anat Rec, 302:146–152, 2019. © 2018 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>30302911</pmid><doi>10.1002/ar.23917</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3295-4728</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-8486
ispartof Anatomical record (Hoboken, N.J. : 2007), 2019-01, Vol.302 (1), p.146-152
issn 1932-8486
1932-8494
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6312496
source MEDLINE; Wiley Journals; Wiley Online Library (Open Access Collection)
subjects Actin Cytoskeleton
Animals
Cardiac muscle
Cardiomyocytes
electron tomography
Full Length Special Issue
Heart
Heart Ventricles - pathology
Intracellular
mechanosensitivity
Microtubules
Microtubules - pathology
Mitochondria
Mitochondria - pathology
Myocytes, Cardiac - pathology
Organelles
Rabbits
Sarcomeres - pathology
Sarcoplasmic reticulum
Sarcoplasmic Reticulum - pathology
Special Issue
Stress, Mechanical
Tubules
Ventricle
title Mitochondrial Deformation During the Cardiac Mechanical Cycle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A58%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20Deformation%20During%20the%20Cardiac%20Mechanical%20Cycle&rft.jtitle=Anatomical%20record%20(Hoboken,%20N.J.%20:%202007)&rft.au=Rog%E2%80%90Zielinska,%20E.%20A.&rft.date=2019-01&rft.volume=302&rft.issue=1&rft.spage=146&rft.epage=152&rft.pages=146-152&rft.issn=1932-8486&rft.eissn=1932-8494&rft_id=info:doi/10.1002/ar.23917&rft_dat=%3Cproquest_pubme%3E2117820563%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2161767092&rft_id=info:pmid/30302911&rfr_iscdi=true