Translational switching of Cry1 protein expression confers reversible control of circadian behavior in arrhythmic Cry-deficient mice
The suprachiasmatic nucleus (SCN) is the principal circadian clock of mammals, coordinating daily rhythms of physiology and behavior. Circadian timing pivots around self-sustaining transcriptional–translational negative feedback loops (TTFLs), whereby CLOCK and BMAL1 drive the expression of the nega...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2018-12, Vol.115 (52), p.E12388-E12397 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E12397 |
---|---|
container_issue | 52 |
container_start_page | E12388 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 115 |
creator | Maywood, Elizabeth S. Elliott, Thomas S. Patton, Andrew P. Krogager, Toke P. Chesham, Johanna E. Ernst, Russell J. Beránek, Václav Brancaccio, Marco Chin, Jason W. Hastings, Michael H. |
description | The suprachiasmatic nucleus (SCN) is the principal circadian clock of mammals, coordinating daily rhythms of physiology and behavior. Circadian timing pivots around self-sustaining transcriptional–translational negative feedback loops (TTFLs), whereby CLOCK and BMAL1 drive the expression of the negative regulators Period and Cryptochrome (Cry). Global deletion of Cry1 and Cry2 disables the TTFL, resulting in arrhythmicity in downstream behaviors. We used this highly tractable biology to further develop genetic code expansion (GCE) as a translational switch to achieve reversible control of a biologically relevant protein, Cry1, in the SCN. This employed an orthogonal aminoacyl-tRNA synthetase/tRNACUA pair delivered to the SCN by adeno-associated virus (AAV) vectors, allowing incorporation of a noncanonical amino acid (ncAA) into AAV-encoded Cry1 protein carrying an ectopic amber stop codon. Thus, translational readthrough and Cry1 expression were conditional on the supply of ncAA via culture medium or drinking water and were restricted to neurons by synapsin-dependent expression of aminoacyl tRNA-synthetase. Activation of Cry1 translation by ncAA in neurons of arrhythmic Cry-null SCN slices immediately and dose-dependently initiated TTFL circadian rhythms, which dissipated rapidly after ncAA withdrawal. Moreover, genetic activation of the TTFL in SCN neurons rapidly and reversibly initiated circadian behavior in otherwise arrhythmic Cry-null mice, with rhythm amplitude being determined by the number of transduced SCN neurons. Thus, Cry1 does not specify the development of circadian circuitry and competence but is essential for its labile and rapidly reversible activation. This demonstrates reversible control of mammalian behavior using GCE-based translational switching, a method of potentially broad neurobiological interest. |
doi_str_mv | 10.1073/pnas.1811438115 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6310849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26573977</jstor_id><sourcerecordid>26573977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-6c8493dff60dbfd071e00860e1971b73153873e7941d496c44dfc1759080b4153</originalsourceid><addsrcrecordid>eNpdkctv1DAQxi0EosvCmRPIEhcuacex48cFCa3KQ6rEpZwtx3Ear7J2sLNb9s4fXkdblsfFI838vnn4Q-g1gUsCgl5NweRLIglhtDzNE7QioEjFmYKnaAVQi0qyml2gFzlvAUA1Ep6jCwpMiprwFfp1m0zIo5l9DGbE-d7PdvDhDsceb9KR4CnF2fmA3c8puZwLhm0MvUsZJ3cowbejW1JziuOisj5Z03kTcOsGc_Ax4SI3KQ3Hedh5u7StOtd7612Yccm4l-hZb8bsXj3GNfr-6fp286W6-fb56-bjTWUZo3PFrWSKdn3PoWv7DgRxAJKDI0qQVlDSUCmoE4qRjileRF1viWgUSGhZqa7Rh1Pfad_uXGfL_GRGPSW_M-moo_H630rwg76LB80pgWX2Gr1_bJDij73Ls975bN04muDiPuuaUNXwhpV11-jdf-g27lP544XiNWsYV7JQVyfKpphzcv15GQJ6cVgvDus_DhfF279vOPO_LS3AmxOwzXNM53rNG0GVEPQBW3GuTA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2162454698</pqid></control><display><type>article</type><title>Translational switching of Cry1 protein expression confers reversible control of circadian behavior in arrhythmic Cry-deficient mice</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Maywood, Elizabeth S. ; Elliott, Thomas S. ; Patton, Andrew P. ; Krogager, Toke P. ; Chesham, Johanna E. ; Ernst, Russell J. ; Beránek, Václav ; Brancaccio, Marco ; Chin, Jason W. ; Hastings, Michael H.</creator><creatorcontrib>Maywood, Elizabeth S. ; Elliott, Thomas S. ; Patton, Andrew P. ; Krogager, Toke P. ; Chesham, Johanna E. ; Ernst, Russell J. ; Beránek, Václav ; Brancaccio, Marco ; Chin, Jason W. ; Hastings, Michael H.</creatorcontrib><description>The suprachiasmatic nucleus (SCN) is the principal circadian clock of mammals, coordinating daily rhythms of physiology and behavior. Circadian timing pivots around self-sustaining transcriptional–translational negative feedback loops (TTFLs), whereby CLOCK and BMAL1 drive the expression of the negative regulators Period and Cryptochrome (Cry). Global deletion of Cry1 and Cry2 disables the TTFL, resulting in arrhythmicity in downstream behaviors. We used this highly tractable biology to further develop genetic code expansion (GCE) as a translational switch to achieve reversible control of a biologically relevant protein, Cry1, in the SCN. This employed an orthogonal aminoacyl-tRNA synthetase/tRNACUA pair delivered to the SCN by adeno-associated virus (AAV) vectors, allowing incorporation of a noncanonical amino acid (ncAA) into AAV-encoded Cry1 protein carrying an ectopic amber stop codon. Thus, translational readthrough and Cry1 expression were conditional on the supply of ncAA via culture medium or drinking water and were restricted to neurons by synapsin-dependent expression of aminoacyl tRNA-synthetase. Activation of Cry1 translation by ncAA in neurons of arrhythmic Cry-null SCN slices immediately and dose-dependently initiated TTFL circadian rhythms, which dissipated rapidly after ncAA withdrawal. Moreover, genetic activation of the TTFL in SCN neurons rapidly and reversibly initiated circadian behavior in otherwise arrhythmic Cry-null mice, with rhythm amplitude being determined by the number of transduced SCN neurons. Thus, Cry1 does not specify the development of circadian circuitry and competence but is essential for its labile and rapidly reversible activation. This demonstrates reversible control of mammalian behavior using GCE-based translational switching, a method of potentially broad neurobiological interest.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1811438115</identifier><identifier>PMID: 30487216</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Activation ; Amino acids ; Aminoacyl-tRNA ligase ; Animals ; Biological Sciences ; BMAL1 protein ; Brain slice preparation ; Chronobiology Disorders - genetics ; Chronobiology Disorders - physiopathology ; Circadian Clocks - genetics ; Circadian Clocks - physiology ; Circadian rhythm ; Circadian Rhythm - physiology ; Circadian rhythms ; Circuits ; Control theory ; CRY1 protein ; Cryptochromes ; Cryptochromes - genetics ; Cryptochromes - metabolism ; Downstream effects ; Drinking water ; Feedback loops ; Gene Expression Regulation - genetics ; Genetic code ; Genetics ; Male ; Mammals ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Negative feedback ; Neurons ; Period Circadian Proteins - metabolism ; PNAS Plus ; Protein Biosynthesis - physiology ; Protein expression ; Protein Processing, Post-Translational ; Proteins ; Regulators ; Rodents ; Stop codon ; Suprachiasmatic nucleus ; Suprachiasmatic Nucleus - metabolism ; Switching ; Synapsin ; Transcription ; Transcription factors ; Transcription Factors - metabolism ; Translation ; tRNA ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-12, Vol.115 (52), p.E12388-E12397</ispartof><rights>Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright © 2018 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Dec 26, 2018</rights><rights>Copyright © 2018 the Author(s). Published by PNAS. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-6c8493dff60dbfd071e00860e1971b73153873e7941d496c44dfc1759080b4153</citedby><cites>FETCH-LOGICAL-c443t-6c8493dff60dbfd071e00860e1971b73153873e7941d496c44dfc1759080b4153</cites><orcidid>0000-0002-4557-9955 ; 0000-0003-2666-4254 ; 0000-0001-8576-6651</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26573977$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26573977$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30487216$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maywood, Elizabeth S.</creatorcontrib><creatorcontrib>Elliott, Thomas S.</creatorcontrib><creatorcontrib>Patton, Andrew P.</creatorcontrib><creatorcontrib>Krogager, Toke P.</creatorcontrib><creatorcontrib>Chesham, Johanna E.</creatorcontrib><creatorcontrib>Ernst, Russell J.</creatorcontrib><creatorcontrib>Beránek, Václav</creatorcontrib><creatorcontrib>Brancaccio, Marco</creatorcontrib><creatorcontrib>Chin, Jason W.</creatorcontrib><creatorcontrib>Hastings, Michael H.</creatorcontrib><title>Translational switching of Cry1 protein expression confers reversible control of circadian behavior in arrhythmic Cry-deficient mice</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The suprachiasmatic nucleus (SCN) is the principal circadian clock of mammals, coordinating daily rhythms of physiology and behavior. Circadian timing pivots around self-sustaining transcriptional–translational negative feedback loops (TTFLs), whereby CLOCK and BMAL1 drive the expression of the negative regulators Period and Cryptochrome (Cry). Global deletion of Cry1 and Cry2 disables the TTFL, resulting in arrhythmicity in downstream behaviors. We used this highly tractable biology to further develop genetic code expansion (GCE) as a translational switch to achieve reversible control of a biologically relevant protein, Cry1, in the SCN. This employed an orthogonal aminoacyl-tRNA synthetase/tRNACUA pair delivered to the SCN by adeno-associated virus (AAV) vectors, allowing incorporation of a noncanonical amino acid (ncAA) into AAV-encoded Cry1 protein carrying an ectopic amber stop codon. Thus, translational readthrough and Cry1 expression were conditional on the supply of ncAA via culture medium or drinking water and were restricted to neurons by synapsin-dependent expression of aminoacyl tRNA-synthetase. Activation of Cry1 translation by ncAA in neurons of arrhythmic Cry-null SCN slices immediately and dose-dependently initiated TTFL circadian rhythms, which dissipated rapidly after ncAA withdrawal. Moreover, genetic activation of the TTFL in SCN neurons rapidly and reversibly initiated circadian behavior in otherwise arrhythmic Cry-null mice, with rhythm amplitude being determined by the number of transduced SCN neurons. Thus, Cry1 does not specify the development of circadian circuitry and competence but is essential for its labile and rapidly reversible activation. This demonstrates reversible control of mammalian behavior using GCE-based translational switching, a method of potentially broad neurobiological interest.</description><subject>Activation</subject><subject>Amino acids</subject><subject>Aminoacyl-tRNA ligase</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>BMAL1 protein</subject><subject>Brain slice preparation</subject><subject>Chronobiology Disorders - genetics</subject><subject>Chronobiology Disorders - physiopathology</subject><subject>Circadian Clocks - genetics</subject><subject>Circadian Clocks - physiology</subject><subject>Circadian rhythm</subject><subject>Circadian Rhythm - physiology</subject><subject>Circadian rhythms</subject><subject>Circuits</subject><subject>Control theory</subject><subject>CRY1 protein</subject><subject>Cryptochromes</subject><subject>Cryptochromes - genetics</subject><subject>Cryptochromes - metabolism</subject><subject>Downstream effects</subject><subject>Drinking water</subject><subject>Feedback loops</subject><subject>Gene Expression Regulation - genetics</subject><subject>Genetic code</subject><subject>Genetics</subject><subject>Male</subject><subject>Mammals</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Negative feedback</subject><subject>Neurons</subject><subject>Period Circadian Proteins - metabolism</subject><subject>PNAS Plus</subject><subject>Protein Biosynthesis - physiology</subject><subject>Protein expression</subject><subject>Protein Processing, Post-Translational</subject><subject>Proteins</subject><subject>Regulators</subject><subject>Rodents</subject><subject>Stop codon</subject><subject>Suprachiasmatic nucleus</subject><subject>Suprachiasmatic Nucleus - metabolism</subject><subject>Switching</subject><subject>Synapsin</subject><subject>Transcription</subject><subject>Transcription factors</subject><subject>Transcription Factors - metabolism</subject><subject>Translation</subject><subject>tRNA</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctv1DAQxi0EosvCmRPIEhcuacex48cFCa3KQ6rEpZwtx3Ear7J2sLNb9s4fXkdblsfFI838vnn4Q-g1gUsCgl5NweRLIglhtDzNE7QioEjFmYKnaAVQi0qyml2gFzlvAUA1Ep6jCwpMiprwFfp1m0zIo5l9DGbE-d7PdvDhDsceb9KR4CnF2fmA3c8puZwLhm0MvUsZJ3cowbejW1JziuOisj5Z03kTcOsGc_Ax4SI3KQ3Hedh5u7StOtd7612Yccm4l-hZb8bsXj3GNfr-6fp286W6-fb56-bjTWUZo3PFrWSKdn3PoWv7DgRxAJKDI0qQVlDSUCmoE4qRjileRF1viWgUSGhZqa7Rh1Pfad_uXGfL_GRGPSW_M-moo_H630rwg76LB80pgWX2Gr1_bJDij73Ls975bN04muDiPuuaUNXwhpV11-jdf-g27lP544XiNWsYV7JQVyfKpphzcv15GQJ6cVgvDus_DhfF279vOPO_LS3AmxOwzXNM53rNG0GVEPQBW3GuTA</recordid><startdate>20181226</startdate><enddate>20181226</enddate><creator>Maywood, Elizabeth S.</creator><creator>Elliott, Thomas S.</creator><creator>Patton, Andrew P.</creator><creator>Krogager, Toke P.</creator><creator>Chesham, Johanna E.</creator><creator>Ernst, Russell J.</creator><creator>Beránek, Václav</creator><creator>Brancaccio, Marco</creator><creator>Chin, Jason W.</creator><creator>Hastings, Michael H.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4557-9955</orcidid><orcidid>https://orcid.org/0000-0003-2666-4254</orcidid><orcidid>https://orcid.org/0000-0001-8576-6651</orcidid></search><sort><creationdate>20181226</creationdate><title>Translational switching of Cry1 protein expression confers reversible control of circadian behavior in arrhythmic Cry-deficient mice</title><author>Maywood, Elizabeth S. ; Elliott, Thomas S. ; Patton, Andrew P. ; Krogager, Toke P. ; Chesham, Johanna E. ; Ernst, Russell J. ; Beránek, Václav ; Brancaccio, Marco ; Chin, Jason W. ; Hastings, Michael H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-6c8493dff60dbfd071e00860e1971b73153873e7941d496c44dfc1759080b4153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Activation</topic><topic>Amino acids</topic><topic>Aminoacyl-tRNA ligase</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>BMAL1 protein</topic><topic>Brain slice preparation</topic><topic>Chronobiology Disorders - genetics</topic><topic>Chronobiology Disorders - physiopathology</topic><topic>Circadian Clocks - genetics</topic><topic>Circadian Clocks - physiology</topic><topic>Circadian rhythm</topic><topic>Circadian Rhythm - physiology</topic><topic>Circadian rhythms</topic><topic>Circuits</topic><topic>Control theory</topic><topic>CRY1 protein</topic><topic>Cryptochromes</topic><topic>Cryptochromes - genetics</topic><topic>Cryptochromes - metabolism</topic><topic>Downstream effects</topic><topic>Drinking water</topic><topic>Feedback loops</topic><topic>Gene Expression Regulation - genetics</topic><topic>Genetic code</topic><topic>Genetics</topic><topic>Male</topic><topic>Mammals</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Negative feedback</topic><topic>Neurons</topic><topic>Period Circadian Proteins - metabolism</topic><topic>PNAS Plus</topic><topic>Protein Biosynthesis - physiology</topic><topic>Protein expression</topic><topic>Protein Processing, Post-Translational</topic><topic>Proteins</topic><topic>Regulators</topic><topic>Rodents</topic><topic>Stop codon</topic><topic>Suprachiasmatic nucleus</topic><topic>Suprachiasmatic Nucleus - metabolism</topic><topic>Switching</topic><topic>Synapsin</topic><topic>Transcription</topic><topic>Transcription factors</topic><topic>Transcription Factors - metabolism</topic><topic>Translation</topic><topic>tRNA</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maywood, Elizabeth S.</creatorcontrib><creatorcontrib>Elliott, Thomas S.</creatorcontrib><creatorcontrib>Patton, Andrew P.</creatorcontrib><creatorcontrib>Krogager, Toke P.</creatorcontrib><creatorcontrib>Chesham, Johanna E.</creatorcontrib><creatorcontrib>Ernst, Russell J.</creatorcontrib><creatorcontrib>Beránek, Václav</creatorcontrib><creatorcontrib>Brancaccio, Marco</creatorcontrib><creatorcontrib>Chin, Jason W.</creatorcontrib><creatorcontrib>Hastings, Michael H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maywood, Elizabeth S.</au><au>Elliott, Thomas S.</au><au>Patton, Andrew P.</au><au>Krogager, Toke P.</au><au>Chesham, Johanna E.</au><au>Ernst, Russell J.</au><au>Beránek, Václav</au><au>Brancaccio, Marco</au><au>Chin, Jason W.</au><au>Hastings, Michael H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Translational switching of Cry1 protein expression confers reversible control of circadian behavior in arrhythmic Cry-deficient mice</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-12-26</date><risdate>2018</risdate><volume>115</volume><issue>52</issue><spage>E12388</spage><epage>E12397</epage><pages>E12388-E12397</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The suprachiasmatic nucleus (SCN) is the principal circadian clock of mammals, coordinating daily rhythms of physiology and behavior. Circadian timing pivots around self-sustaining transcriptional–translational negative feedback loops (TTFLs), whereby CLOCK and BMAL1 drive the expression of the negative regulators Period and Cryptochrome (Cry). Global deletion of Cry1 and Cry2 disables the TTFL, resulting in arrhythmicity in downstream behaviors. We used this highly tractable biology to further develop genetic code expansion (GCE) as a translational switch to achieve reversible control of a biologically relevant protein, Cry1, in the SCN. This employed an orthogonal aminoacyl-tRNA synthetase/tRNACUA pair delivered to the SCN by adeno-associated virus (AAV) vectors, allowing incorporation of a noncanonical amino acid (ncAA) into AAV-encoded Cry1 protein carrying an ectopic amber stop codon. Thus, translational readthrough and Cry1 expression were conditional on the supply of ncAA via culture medium or drinking water and were restricted to neurons by synapsin-dependent expression of aminoacyl tRNA-synthetase. Activation of Cry1 translation by ncAA in neurons of arrhythmic Cry-null SCN slices immediately and dose-dependently initiated TTFL circadian rhythms, which dissipated rapidly after ncAA withdrawal. Moreover, genetic activation of the TTFL in SCN neurons rapidly and reversibly initiated circadian behavior in otherwise arrhythmic Cry-null mice, with rhythm amplitude being determined by the number of transduced SCN neurons. Thus, Cry1 does not specify the development of circadian circuitry and competence but is essential for its labile and rapidly reversible activation. This demonstrates reversible control of mammalian behavior using GCE-based translational switching, a method of potentially broad neurobiological interest.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30487216</pmid><doi>10.1073/pnas.1811438115</doi><orcidid>https://orcid.org/0000-0002-4557-9955</orcidid><orcidid>https://orcid.org/0000-0003-2666-4254</orcidid><orcidid>https://orcid.org/0000-0001-8576-6651</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2018-12, Vol.115 (52), p.E12388-E12397 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6310849 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Activation Amino acids Aminoacyl-tRNA ligase Animals Biological Sciences BMAL1 protein Brain slice preparation Chronobiology Disorders - genetics Chronobiology Disorders - physiopathology Circadian Clocks - genetics Circadian Clocks - physiology Circadian rhythm Circadian Rhythm - physiology Circadian rhythms Circuits Control theory CRY1 protein Cryptochromes Cryptochromes - genetics Cryptochromes - metabolism Downstream effects Drinking water Feedback loops Gene Expression Regulation - genetics Genetic code Genetics Male Mammals Mice Mice, Inbred C57BL Mice, Knockout Negative feedback Neurons Period Circadian Proteins - metabolism PNAS Plus Protein Biosynthesis - physiology Protein expression Protein Processing, Post-Translational Proteins Regulators Rodents Stop codon Suprachiasmatic nucleus Suprachiasmatic Nucleus - metabolism Switching Synapsin Transcription Transcription factors Transcription Factors - metabolism Translation tRNA Viruses |
title | Translational switching of Cry1 protein expression confers reversible control of circadian behavior in arrhythmic Cry-deficient mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A51%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Translational%20switching%20of%20Cry1%20protein%20expression%20confers%20reversible%20control%20of%20circadian%20behavior%20in%20arrhythmic%20Cry-deficient%20mice&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Maywood,%20Elizabeth%20S.&rft.date=2018-12-26&rft.volume=115&rft.issue=52&rft.spage=E12388&rft.epage=E12397&rft.pages=E12388-E12397&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1811438115&rft_dat=%3Cjstor_pubme%3E26573977%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2162454698&rft_id=info:pmid/30487216&rft_jstor_id=26573977&rfr_iscdi=true |