Translational switching of Cry1 protein expression confers reversible control of circadian behavior in arrhythmic Cry-deficient mice

The suprachiasmatic nucleus (SCN) is the principal circadian clock of mammals, coordinating daily rhythms of physiology and behavior. Circadian timing pivots around self-sustaining transcriptional–translational negative feedback loops (TTFLs), whereby CLOCK and BMAL1 drive the expression of the nega...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2018-12, Vol.115 (52), p.E12388-E12397
Hauptverfasser: Maywood, Elizabeth S., Elliott, Thomas S., Patton, Andrew P., Krogager, Toke P., Chesham, Johanna E., Ernst, Russell J., Beránek, Václav, Brancaccio, Marco, Chin, Jason W., Hastings, Michael H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E12397
container_issue 52
container_start_page E12388
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Maywood, Elizabeth S.
Elliott, Thomas S.
Patton, Andrew P.
Krogager, Toke P.
Chesham, Johanna E.
Ernst, Russell J.
Beránek, Václav
Brancaccio, Marco
Chin, Jason W.
Hastings, Michael H.
description The suprachiasmatic nucleus (SCN) is the principal circadian clock of mammals, coordinating daily rhythms of physiology and behavior. Circadian timing pivots around self-sustaining transcriptional–translational negative feedback loops (TTFLs), whereby CLOCK and BMAL1 drive the expression of the negative regulators Period and Cryptochrome (Cry). Global deletion of Cry1 and Cry2 disables the TTFL, resulting in arrhythmicity in downstream behaviors. We used this highly tractable biology to further develop genetic code expansion (GCE) as a translational switch to achieve reversible control of a biologically relevant protein, Cry1, in the SCN. This employed an orthogonal aminoacyl-tRNA synthetase/tRNACUA pair delivered to the SCN by adeno-associated virus (AAV) vectors, allowing incorporation of a noncanonical amino acid (ncAA) into AAV-encoded Cry1 protein carrying an ectopic amber stop codon. Thus, translational readthrough and Cry1 expression were conditional on the supply of ncAA via culture medium or drinking water and were restricted to neurons by synapsin-dependent expression of aminoacyl tRNA-synthetase. Activation of Cry1 translation by ncAA in neurons of arrhythmic Cry-null SCN slices immediately and dose-dependently initiated TTFL circadian rhythms, which dissipated rapidly after ncAA withdrawal. Moreover, genetic activation of the TTFL in SCN neurons rapidly and reversibly initiated circadian behavior in otherwise arrhythmic Cry-null mice, with rhythm amplitude being determined by the number of transduced SCN neurons. Thus, Cry1 does not specify the development of circadian circuitry and competence but is essential for its labile and rapidly reversible activation. This demonstrates reversible control of mammalian behavior using GCE-based translational switching, a method of potentially broad neurobiological interest.
doi_str_mv 10.1073/pnas.1811438115
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6310849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26573977</jstor_id><sourcerecordid>26573977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-6c8493dff60dbfd071e00860e1971b73153873e7941d496c44dfc1759080b4153</originalsourceid><addsrcrecordid>eNpdkctv1DAQxi0EosvCmRPIEhcuacex48cFCa3KQ6rEpZwtx3Ear7J2sLNb9s4fXkdblsfFI838vnn4Q-g1gUsCgl5NweRLIglhtDzNE7QioEjFmYKnaAVQi0qyml2gFzlvAUA1Ep6jCwpMiprwFfp1m0zIo5l9DGbE-d7PdvDhDsceb9KR4CnF2fmA3c8puZwLhm0MvUsZJ3cowbejW1JziuOisj5Z03kTcOsGc_Ax4SI3KQ3Hedh5u7StOtd7612Yccm4l-hZb8bsXj3GNfr-6fp286W6-fb56-bjTWUZo3PFrWSKdn3PoWv7DgRxAJKDI0qQVlDSUCmoE4qRjileRF1viWgUSGhZqa7Rh1Pfad_uXGfL_GRGPSW_M-moo_H630rwg76LB80pgWX2Gr1_bJDij73Ls975bN04muDiPuuaUNXwhpV11-jdf-g27lP544XiNWsYV7JQVyfKpphzcv15GQJ6cVgvDus_DhfF279vOPO_LS3AmxOwzXNM53rNG0GVEPQBW3GuTA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2162454698</pqid></control><display><type>article</type><title>Translational switching of Cry1 protein expression confers reversible control of circadian behavior in arrhythmic Cry-deficient mice</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Maywood, Elizabeth S. ; Elliott, Thomas S. ; Patton, Andrew P. ; Krogager, Toke P. ; Chesham, Johanna E. ; Ernst, Russell J. ; Beránek, Václav ; Brancaccio, Marco ; Chin, Jason W. ; Hastings, Michael H.</creator><creatorcontrib>Maywood, Elizabeth S. ; Elliott, Thomas S. ; Patton, Andrew P. ; Krogager, Toke P. ; Chesham, Johanna E. ; Ernst, Russell J. ; Beránek, Václav ; Brancaccio, Marco ; Chin, Jason W. ; Hastings, Michael H.</creatorcontrib><description>The suprachiasmatic nucleus (SCN) is the principal circadian clock of mammals, coordinating daily rhythms of physiology and behavior. Circadian timing pivots around self-sustaining transcriptional–translational negative feedback loops (TTFLs), whereby CLOCK and BMAL1 drive the expression of the negative regulators Period and Cryptochrome (Cry). Global deletion of Cry1 and Cry2 disables the TTFL, resulting in arrhythmicity in downstream behaviors. We used this highly tractable biology to further develop genetic code expansion (GCE) as a translational switch to achieve reversible control of a biologically relevant protein, Cry1, in the SCN. This employed an orthogonal aminoacyl-tRNA synthetase/tRNACUA pair delivered to the SCN by adeno-associated virus (AAV) vectors, allowing incorporation of a noncanonical amino acid (ncAA) into AAV-encoded Cry1 protein carrying an ectopic amber stop codon. Thus, translational readthrough and Cry1 expression were conditional on the supply of ncAA via culture medium or drinking water and were restricted to neurons by synapsin-dependent expression of aminoacyl tRNA-synthetase. Activation of Cry1 translation by ncAA in neurons of arrhythmic Cry-null SCN slices immediately and dose-dependently initiated TTFL circadian rhythms, which dissipated rapidly after ncAA withdrawal. Moreover, genetic activation of the TTFL in SCN neurons rapidly and reversibly initiated circadian behavior in otherwise arrhythmic Cry-null mice, with rhythm amplitude being determined by the number of transduced SCN neurons. Thus, Cry1 does not specify the development of circadian circuitry and competence but is essential for its labile and rapidly reversible activation. This demonstrates reversible control of mammalian behavior using GCE-based translational switching, a method of potentially broad neurobiological interest.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1811438115</identifier><identifier>PMID: 30487216</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Activation ; Amino acids ; Aminoacyl-tRNA ligase ; Animals ; Biological Sciences ; BMAL1 protein ; Brain slice preparation ; Chronobiology Disorders - genetics ; Chronobiology Disorders - physiopathology ; Circadian Clocks - genetics ; Circadian Clocks - physiology ; Circadian rhythm ; Circadian Rhythm - physiology ; Circadian rhythms ; Circuits ; Control theory ; CRY1 protein ; Cryptochromes ; Cryptochromes - genetics ; Cryptochromes - metabolism ; Downstream effects ; Drinking water ; Feedback loops ; Gene Expression Regulation - genetics ; Genetic code ; Genetics ; Male ; Mammals ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Negative feedback ; Neurons ; Period Circadian Proteins - metabolism ; PNAS Plus ; Protein Biosynthesis - physiology ; Protein expression ; Protein Processing, Post-Translational ; Proteins ; Regulators ; Rodents ; Stop codon ; Suprachiasmatic nucleus ; Suprachiasmatic Nucleus - metabolism ; Switching ; Synapsin ; Transcription ; Transcription factors ; Transcription Factors - metabolism ; Translation ; tRNA ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-12, Vol.115 (52), p.E12388-E12397</ispartof><rights>Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright © 2018 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Dec 26, 2018</rights><rights>Copyright © 2018 the Author(s). Published by PNAS. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-6c8493dff60dbfd071e00860e1971b73153873e7941d496c44dfc1759080b4153</citedby><cites>FETCH-LOGICAL-c443t-6c8493dff60dbfd071e00860e1971b73153873e7941d496c44dfc1759080b4153</cites><orcidid>0000-0002-4557-9955 ; 0000-0003-2666-4254 ; 0000-0001-8576-6651</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26573977$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26573977$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30487216$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maywood, Elizabeth S.</creatorcontrib><creatorcontrib>Elliott, Thomas S.</creatorcontrib><creatorcontrib>Patton, Andrew P.</creatorcontrib><creatorcontrib>Krogager, Toke P.</creatorcontrib><creatorcontrib>Chesham, Johanna E.</creatorcontrib><creatorcontrib>Ernst, Russell J.</creatorcontrib><creatorcontrib>Beránek, Václav</creatorcontrib><creatorcontrib>Brancaccio, Marco</creatorcontrib><creatorcontrib>Chin, Jason W.</creatorcontrib><creatorcontrib>Hastings, Michael H.</creatorcontrib><title>Translational switching of Cry1 protein expression confers reversible control of circadian behavior in arrhythmic Cry-deficient mice</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The suprachiasmatic nucleus (SCN) is the principal circadian clock of mammals, coordinating daily rhythms of physiology and behavior. Circadian timing pivots around self-sustaining transcriptional–translational negative feedback loops (TTFLs), whereby CLOCK and BMAL1 drive the expression of the negative regulators Period and Cryptochrome (Cry). Global deletion of Cry1 and Cry2 disables the TTFL, resulting in arrhythmicity in downstream behaviors. We used this highly tractable biology to further develop genetic code expansion (GCE) as a translational switch to achieve reversible control of a biologically relevant protein, Cry1, in the SCN. This employed an orthogonal aminoacyl-tRNA synthetase/tRNACUA pair delivered to the SCN by adeno-associated virus (AAV) vectors, allowing incorporation of a noncanonical amino acid (ncAA) into AAV-encoded Cry1 protein carrying an ectopic amber stop codon. Thus, translational readthrough and Cry1 expression were conditional on the supply of ncAA via culture medium or drinking water and were restricted to neurons by synapsin-dependent expression of aminoacyl tRNA-synthetase. Activation of Cry1 translation by ncAA in neurons of arrhythmic Cry-null SCN slices immediately and dose-dependently initiated TTFL circadian rhythms, which dissipated rapidly after ncAA withdrawal. Moreover, genetic activation of the TTFL in SCN neurons rapidly and reversibly initiated circadian behavior in otherwise arrhythmic Cry-null mice, with rhythm amplitude being determined by the number of transduced SCN neurons. Thus, Cry1 does not specify the development of circadian circuitry and competence but is essential for its labile and rapidly reversible activation. This demonstrates reversible control of mammalian behavior using GCE-based translational switching, a method of potentially broad neurobiological interest.</description><subject>Activation</subject><subject>Amino acids</subject><subject>Aminoacyl-tRNA ligase</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>BMAL1 protein</subject><subject>Brain slice preparation</subject><subject>Chronobiology Disorders - genetics</subject><subject>Chronobiology Disorders - physiopathology</subject><subject>Circadian Clocks - genetics</subject><subject>Circadian Clocks - physiology</subject><subject>Circadian rhythm</subject><subject>Circadian Rhythm - physiology</subject><subject>Circadian rhythms</subject><subject>Circuits</subject><subject>Control theory</subject><subject>CRY1 protein</subject><subject>Cryptochromes</subject><subject>Cryptochromes - genetics</subject><subject>Cryptochromes - metabolism</subject><subject>Downstream effects</subject><subject>Drinking water</subject><subject>Feedback loops</subject><subject>Gene Expression Regulation - genetics</subject><subject>Genetic code</subject><subject>Genetics</subject><subject>Male</subject><subject>Mammals</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Negative feedback</subject><subject>Neurons</subject><subject>Period Circadian Proteins - metabolism</subject><subject>PNAS Plus</subject><subject>Protein Biosynthesis - physiology</subject><subject>Protein expression</subject><subject>Protein Processing, Post-Translational</subject><subject>Proteins</subject><subject>Regulators</subject><subject>Rodents</subject><subject>Stop codon</subject><subject>Suprachiasmatic nucleus</subject><subject>Suprachiasmatic Nucleus - metabolism</subject><subject>Switching</subject><subject>Synapsin</subject><subject>Transcription</subject><subject>Transcription factors</subject><subject>Transcription Factors - metabolism</subject><subject>Translation</subject><subject>tRNA</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctv1DAQxi0EosvCmRPIEhcuacex48cFCa3KQ6rEpZwtx3Ear7J2sLNb9s4fXkdblsfFI838vnn4Q-g1gUsCgl5NweRLIglhtDzNE7QioEjFmYKnaAVQi0qyml2gFzlvAUA1Ep6jCwpMiprwFfp1m0zIo5l9DGbE-d7PdvDhDsceb9KR4CnF2fmA3c8puZwLhm0MvUsZJ3cowbejW1JziuOisj5Z03kTcOsGc_Ax4SI3KQ3Hedh5u7StOtd7612Yccm4l-hZb8bsXj3GNfr-6fp286W6-fb56-bjTWUZo3PFrWSKdn3PoWv7DgRxAJKDI0qQVlDSUCmoE4qRjileRF1viWgUSGhZqa7Rh1Pfad_uXGfL_GRGPSW_M-moo_H630rwg76LB80pgWX2Gr1_bJDij73Ls975bN04muDiPuuaUNXwhpV11-jdf-g27lP544XiNWsYV7JQVyfKpphzcv15GQJ6cVgvDus_DhfF279vOPO_LS3AmxOwzXNM53rNG0GVEPQBW3GuTA</recordid><startdate>20181226</startdate><enddate>20181226</enddate><creator>Maywood, Elizabeth S.</creator><creator>Elliott, Thomas S.</creator><creator>Patton, Andrew P.</creator><creator>Krogager, Toke P.</creator><creator>Chesham, Johanna E.</creator><creator>Ernst, Russell J.</creator><creator>Beránek, Václav</creator><creator>Brancaccio, Marco</creator><creator>Chin, Jason W.</creator><creator>Hastings, Michael H.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4557-9955</orcidid><orcidid>https://orcid.org/0000-0003-2666-4254</orcidid><orcidid>https://orcid.org/0000-0001-8576-6651</orcidid></search><sort><creationdate>20181226</creationdate><title>Translational switching of Cry1 protein expression confers reversible control of circadian behavior in arrhythmic Cry-deficient mice</title><author>Maywood, Elizabeth S. ; Elliott, Thomas S. ; Patton, Andrew P. ; Krogager, Toke P. ; Chesham, Johanna E. ; Ernst, Russell J. ; Beránek, Václav ; Brancaccio, Marco ; Chin, Jason W. ; Hastings, Michael H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-6c8493dff60dbfd071e00860e1971b73153873e7941d496c44dfc1759080b4153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Activation</topic><topic>Amino acids</topic><topic>Aminoacyl-tRNA ligase</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>BMAL1 protein</topic><topic>Brain slice preparation</topic><topic>Chronobiology Disorders - genetics</topic><topic>Chronobiology Disorders - physiopathology</topic><topic>Circadian Clocks - genetics</topic><topic>Circadian Clocks - physiology</topic><topic>Circadian rhythm</topic><topic>Circadian Rhythm - physiology</topic><topic>Circadian rhythms</topic><topic>Circuits</topic><topic>Control theory</topic><topic>CRY1 protein</topic><topic>Cryptochromes</topic><topic>Cryptochromes - genetics</topic><topic>Cryptochromes - metabolism</topic><topic>Downstream effects</topic><topic>Drinking water</topic><topic>Feedback loops</topic><topic>Gene Expression Regulation - genetics</topic><topic>Genetic code</topic><topic>Genetics</topic><topic>Male</topic><topic>Mammals</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Negative feedback</topic><topic>Neurons</topic><topic>Period Circadian Proteins - metabolism</topic><topic>PNAS Plus</topic><topic>Protein Biosynthesis - physiology</topic><topic>Protein expression</topic><topic>Protein Processing, Post-Translational</topic><topic>Proteins</topic><topic>Regulators</topic><topic>Rodents</topic><topic>Stop codon</topic><topic>Suprachiasmatic nucleus</topic><topic>Suprachiasmatic Nucleus - metabolism</topic><topic>Switching</topic><topic>Synapsin</topic><topic>Transcription</topic><topic>Transcription factors</topic><topic>Transcription Factors - metabolism</topic><topic>Translation</topic><topic>tRNA</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maywood, Elizabeth S.</creatorcontrib><creatorcontrib>Elliott, Thomas S.</creatorcontrib><creatorcontrib>Patton, Andrew P.</creatorcontrib><creatorcontrib>Krogager, Toke P.</creatorcontrib><creatorcontrib>Chesham, Johanna E.</creatorcontrib><creatorcontrib>Ernst, Russell J.</creatorcontrib><creatorcontrib>Beránek, Václav</creatorcontrib><creatorcontrib>Brancaccio, Marco</creatorcontrib><creatorcontrib>Chin, Jason W.</creatorcontrib><creatorcontrib>Hastings, Michael H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maywood, Elizabeth S.</au><au>Elliott, Thomas S.</au><au>Patton, Andrew P.</au><au>Krogager, Toke P.</au><au>Chesham, Johanna E.</au><au>Ernst, Russell J.</au><au>Beránek, Václav</au><au>Brancaccio, Marco</au><au>Chin, Jason W.</au><au>Hastings, Michael H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Translational switching of Cry1 protein expression confers reversible control of circadian behavior in arrhythmic Cry-deficient mice</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-12-26</date><risdate>2018</risdate><volume>115</volume><issue>52</issue><spage>E12388</spage><epage>E12397</epage><pages>E12388-E12397</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The suprachiasmatic nucleus (SCN) is the principal circadian clock of mammals, coordinating daily rhythms of physiology and behavior. Circadian timing pivots around self-sustaining transcriptional–translational negative feedback loops (TTFLs), whereby CLOCK and BMAL1 drive the expression of the negative regulators Period and Cryptochrome (Cry). Global deletion of Cry1 and Cry2 disables the TTFL, resulting in arrhythmicity in downstream behaviors. We used this highly tractable biology to further develop genetic code expansion (GCE) as a translational switch to achieve reversible control of a biologically relevant protein, Cry1, in the SCN. This employed an orthogonal aminoacyl-tRNA synthetase/tRNACUA pair delivered to the SCN by adeno-associated virus (AAV) vectors, allowing incorporation of a noncanonical amino acid (ncAA) into AAV-encoded Cry1 protein carrying an ectopic amber stop codon. Thus, translational readthrough and Cry1 expression were conditional on the supply of ncAA via culture medium or drinking water and were restricted to neurons by synapsin-dependent expression of aminoacyl tRNA-synthetase. Activation of Cry1 translation by ncAA in neurons of arrhythmic Cry-null SCN slices immediately and dose-dependently initiated TTFL circadian rhythms, which dissipated rapidly after ncAA withdrawal. Moreover, genetic activation of the TTFL in SCN neurons rapidly and reversibly initiated circadian behavior in otherwise arrhythmic Cry-null mice, with rhythm amplitude being determined by the number of transduced SCN neurons. Thus, Cry1 does not specify the development of circadian circuitry and competence but is essential for its labile and rapidly reversible activation. This demonstrates reversible control of mammalian behavior using GCE-based translational switching, a method of potentially broad neurobiological interest.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30487216</pmid><doi>10.1073/pnas.1811438115</doi><orcidid>https://orcid.org/0000-0002-4557-9955</orcidid><orcidid>https://orcid.org/0000-0003-2666-4254</orcidid><orcidid>https://orcid.org/0000-0001-8576-6651</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-12, Vol.115 (52), p.E12388-E12397
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6310849
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Activation
Amino acids
Aminoacyl-tRNA ligase
Animals
Biological Sciences
BMAL1 protein
Brain slice preparation
Chronobiology Disorders - genetics
Chronobiology Disorders - physiopathology
Circadian Clocks - genetics
Circadian Clocks - physiology
Circadian rhythm
Circadian Rhythm - physiology
Circadian rhythms
Circuits
Control theory
CRY1 protein
Cryptochromes
Cryptochromes - genetics
Cryptochromes - metabolism
Downstream effects
Drinking water
Feedback loops
Gene Expression Regulation - genetics
Genetic code
Genetics
Male
Mammals
Mice
Mice, Inbred C57BL
Mice, Knockout
Negative feedback
Neurons
Period Circadian Proteins - metabolism
PNAS Plus
Protein Biosynthesis - physiology
Protein expression
Protein Processing, Post-Translational
Proteins
Regulators
Rodents
Stop codon
Suprachiasmatic nucleus
Suprachiasmatic Nucleus - metabolism
Switching
Synapsin
Transcription
Transcription factors
Transcription Factors - metabolism
Translation
tRNA
Viruses
title Translational switching of Cry1 protein expression confers reversible control of circadian behavior in arrhythmic Cry-deficient mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A51%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Translational%20switching%20of%20Cry1%20protein%20expression%20confers%20reversible%20control%20of%20circadian%20behavior%20in%20arrhythmic%20Cry-deficient%20mice&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Maywood,%20Elizabeth%20S.&rft.date=2018-12-26&rft.volume=115&rft.issue=52&rft.spage=E12388&rft.epage=E12397&rft.pages=E12388-E12397&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1811438115&rft_dat=%3Cjstor_pubme%3E26573977%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2162454698&rft_id=info:pmid/30487216&rft_jstor_id=26573977&rfr_iscdi=true