Steroidogenic differentiation and PKA signaling are programmed by histone methyltransferase EZH2 in the adrenal cortex

Adrenal cortex steroids are essential for body homeostasis, and adrenal insufficiency is a life-threatening condition. Adrenal endocrine activity is maintained through recruitment of subcapsular progenitor cells that follow a unidirectional differentiation path from zona glomerulosa to zona fascicul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2018-12, Vol.115 (52), p.E12265-E12274
Hauptverfasser: Mathieu, Mickael, Drelon, Coralie, Rodriguez, Stéphanie, Tabbal, Houda, Septier, Amandine, Damon-Soubeyrand, Christelle, Dumontet, Typhanie, Berthon, Annabel, Sahut-Barnola, Isabelle, Djari, Cyril, Batisse-Lignier, Marie, Pointud, Jean-Christophe, Richard, Damien, Kerdivel, Gwenneg, Calméjane, Marie-Ange, Boeva, Valentina, Tauveron, Igor, Lefrançois-Martinez, Anne-Marie, Martinez, Antoine, Val, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E12274
container_issue 52
container_start_page E12265
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Mathieu, Mickael
Drelon, Coralie
Rodriguez, Stéphanie
Tabbal, Houda
Septier, Amandine
Damon-Soubeyrand, Christelle
Dumontet, Typhanie
Berthon, Annabel
Sahut-Barnola, Isabelle
Djari, Cyril
Batisse-Lignier, Marie
Pointud, Jean-Christophe
Richard, Damien
Kerdivel, Gwenneg
Calméjane, Marie-Ange
Boeva, Valentina
Tauveron, Igor
Lefrançois-Martinez, Anne-Marie
Martinez, Antoine
Val, Pierre
description Adrenal cortex steroids are essential for body homeostasis, and adrenal insufficiency is a life-threatening condition. Adrenal endocrine activity is maintained through recruitment of subcapsular progenitor cells that follow a unidirectional differentiation path from zona glomerulosa to zona fasciculata (zF). Here, we show that this unidirectionality is ensured by the histone methyltransferase EZH2. Indeed, we demonstrate that EZH2 maintains adrenal steroidogenic cell differentiation by preventing expression of GATA4 and WT1 that cause abnormal dedifferentiation to a progenitor-like state in Ezh2 KO adrenals. EZH2 further ensures normal cortical differentiation by programming cells for optimal response to adrenocorticotrophic hormone (ACTH)/PKA signaling. This is achieved by repression of phosphodiesterases PDE1B, 3A, and 7A and of PRKAR1B. Consequently, EZH2 ablation results in blunted zF differentiation and primary glucocorticoid insufficiency. These data demonstrate an all-encompassing role for EZH2 in programming steroidogenic cells for optimal response to differentiation signals and in maintaining their differentiated state.
doi_str_mv 10.1073/pnas.1809185115
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6310834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26573964</jstor_id><sourcerecordid>26573964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-61292d96542e6f2da0ba1661d417797f0ada90307758a33f47653012fd9d58533</originalsourceid><addsrcrecordid>eNpdkUtvEzEUhS0EoqGwZgWyxAYW0_r92CBFVSGISCABGzaWM_bMOJrYqT2JyL_HUUqArnzl-91zHweAlxhdYSTp9TbacoUV0lhxjPkjMMM1bgTT6DGYIURkoxhhF-BZKWuEkOYKPQUXFHGGlVIzsP82-ZyCS72PoYUudJ3PPk7BTiFFaKODXz_PYQl9tGOIPbTZw21OfbabjXdwdYBDKFOKHm78NBzGKdtYqoYtHt7-XBAYIpwGD62rsnaEbcqT__UcPOnsWPyL-_cS_Phw-_1m0Sy_fPx0M182LZNyagQmmjgtOCNedMRZtLJYCOwYllLLDllnNaJISq4spR2TglOESee044pTegnen3S3u1Udt62bZTuabQ4bmw8m2WD-z8QwmD7tjaAYKcqqwLuTwPCgbDFfmuMfIpQwpukeV_btfbOc7na-TGYTSuvH0UafdsUQzLlGQmNe0TcP0HXa5XqfIyUI40IRUanrE9XmVEr23XkCjMzRf3P03_z1v1a8_nffM__H8Aq8OgHralo-54ngkmrB6G8Jz7Wc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2162456826</pqid></control><display><type>article</type><title>Steroidogenic differentiation and PKA signaling are programmed by histone methyltransferase EZH2 in the adrenal cortex</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Mathieu, Mickael ; Drelon, Coralie ; Rodriguez, Stéphanie ; Tabbal, Houda ; Septier, Amandine ; Damon-Soubeyrand, Christelle ; Dumontet, Typhanie ; Berthon, Annabel ; Sahut-Barnola, Isabelle ; Djari, Cyril ; Batisse-Lignier, Marie ; Pointud, Jean-Christophe ; Richard, Damien ; Kerdivel, Gwenneg ; Calméjane, Marie-Ange ; Boeva, Valentina ; Tauveron, Igor ; Lefrançois-Martinez, Anne-Marie ; Martinez, Antoine ; Val, Pierre</creator><creatorcontrib>Mathieu, Mickael ; Drelon, Coralie ; Rodriguez, Stéphanie ; Tabbal, Houda ; Septier, Amandine ; Damon-Soubeyrand, Christelle ; Dumontet, Typhanie ; Berthon, Annabel ; Sahut-Barnola, Isabelle ; Djari, Cyril ; Batisse-Lignier, Marie ; Pointud, Jean-Christophe ; Richard, Damien ; Kerdivel, Gwenneg ; Calméjane, Marie-Ange ; Boeva, Valentina ; Tauveron, Igor ; Lefrançois-Martinez, Anne-Marie ; Martinez, Antoine ; Val, Pierre</creatorcontrib><description>Adrenal cortex steroids are essential for body homeostasis, and adrenal insufficiency is a life-threatening condition. Adrenal endocrine activity is maintained through recruitment of subcapsular progenitor cells that follow a unidirectional differentiation path from zona glomerulosa to zona fasciculata (zF). Here, we show that this unidirectionality is ensured by the histone methyltransferase EZH2. Indeed, we demonstrate that EZH2 maintains adrenal steroidogenic cell differentiation by preventing expression of GATA4 and WT1 that cause abnormal dedifferentiation to a progenitor-like state in Ezh2 KO adrenals. EZH2 further ensures normal cortical differentiation by programming cells for optimal response to adrenocorticotrophic hormone (ACTH)/PKA signaling. This is achieved by repression of phosphodiesterases PDE1B, 3A, and 7A and of PRKAR1B. Consequently, EZH2 ablation results in blunted zF differentiation and primary glucocorticoid insufficiency. These data demonstrate an all-encompassing role for EZH2 in programming steroidogenic cells for optimal response to differentiation signals and in maintaining their differentiated state.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1809185115</identifier><identifier>PMID: 30541888</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Ablation ; Adrenal cortex ; Adrenal Cortex - enzymology ; Adrenal Cortex - metabolism ; Adrenal glands ; Adrenocorticotropic hormone ; Animal genetics ; Animals ; Biochemistry, Molecular Biology ; Biological Sciences ; Ca2+/calmodulin-dependent phosphodiesterase ; Cancer ; Cell Differentiation ; Cells (biology) ; Cyclic AMP-Dependent Protein Kinase RIbeta Subunit - genetics ; Cyclic AMP-Dependent Protein Kinase RIbeta Subunit - metabolism ; Cyclic Nucleotide Phosphodiesterases, Type 1 - genetics ; Cyclic Nucleotide Phosphodiesterases, Type 1 - metabolism ; Cyclic Nucleotide Phosphodiesterases, Type 3 - genetics ; Cyclic Nucleotide Phosphodiesterases, Type 3 - metabolism ; Cyclic Nucleotide Phosphodiesterases, Type 7 - genetics ; Cyclic Nucleotide Phosphodiesterases, Type 7 - metabolism ; Development Biology ; Differential equations ; Differentiation (biology) ; Embryology and Organogenesis ; Endocrinology and metabolism ; Enhancer of Zeste Homolog 2 Protein - genetics ; Enhancer of Zeste Homolog 2 Protein - metabolism ; Female ; Genetics ; Genomics ; Glucocorticoids ; Histone methyltransferase ; Homeostasis ; Human health and pathology ; Life Sciences ; Male ; Mice, Inbred C57BL ; Mice, Knockout ; PNAS Plus ; Progenitor cells ; Protein kinase A ; Signal Transduction ; Signaling ; Stem cells ; Steroid hormones ; Steroids ; Steroids - metabolism ; Zona Fasciculata - cytology ; Zona Fasciculata - enzymology ; Zona Fasciculata - metabolism ; Zona Glomerulosa - cytology ; Zona Glomerulosa - enzymology ; Zona Glomerulosa - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-12, Vol.115 (52), p.E12265-E12274</ispartof><rights>Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Dec 26, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-61292d96542e6f2da0ba1661d417797f0ada90307758a33f47653012fd9d58533</citedby><cites>FETCH-LOGICAL-c477t-61292d96542e6f2da0ba1661d417797f0ada90307758a33f47653012fd9d58533</cites><orcidid>0000-0001-8353-542X ; 0000-0002-5576-9525 ; 0000-0002-1328-9515 ; 0000-0002-4382-7185 ; 0000-0001-7648-5567 ; 0000-0001-7666-9024 ; 0000-0001-9304-5061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26573964$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26573964$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30541888$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02324493$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mathieu, Mickael</creatorcontrib><creatorcontrib>Drelon, Coralie</creatorcontrib><creatorcontrib>Rodriguez, Stéphanie</creatorcontrib><creatorcontrib>Tabbal, Houda</creatorcontrib><creatorcontrib>Septier, Amandine</creatorcontrib><creatorcontrib>Damon-Soubeyrand, Christelle</creatorcontrib><creatorcontrib>Dumontet, Typhanie</creatorcontrib><creatorcontrib>Berthon, Annabel</creatorcontrib><creatorcontrib>Sahut-Barnola, Isabelle</creatorcontrib><creatorcontrib>Djari, Cyril</creatorcontrib><creatorcontrib>Batisse-Lignier, Marie</creatorcontrib><creatorcontrib>Pointud, Jean-Christophe</creatorcontrib><creatorcontrib>Richard, Damien</creatorcontrib><creatorcontrib>Kerdivel, Gwenneg</creatorcontrib><creatorcontrib>Calméjane, Marie-Ange</creatorcontrib><creatorcontrib>Boeva, Valentina</creatorcontrib><creatorcontrib>Tauveron, Igor</creatorcontrib><creatorcontrib>Lefrançois-Martinez, Anne-Marie</creatorcontrib><creatorcontrib>Martinez, Antoine</creatorcontrib><creatorcontrib>Val, Pierre</creatorcontrib><title>Steroidogenic differentiation and PKA signaling are programmed by histone methyltransferase EZH2 in the adrenal cortex</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Adrenal cortex steroids are essential for body homeostasis, and adrenal insufficiency is a life-threatening condition. Adrenal endocrine activity is maintained through recruitment of subcapsular progenitor cells that follow a unidirectional differentiation path from zona glomerulosa to zona fasciculata (zF). Here, we show that this unidirectionality is ensured by the histone methyltransferase EZH2. Indeed, we demonstrate that EZH2 maintains adrenal steroidogenic cell differentiation by preventing expression of GATA4 and WT1 that cause abnormal dedifferentiation to a progenitor-like state in Ezh2 KO adrenals. EZH2 further ensures normal cortical differentiation by programming cells for optimal response to adrenocorticotrophic hormone (ACTH)/PKA signaling. This is achieved by repression of phosphodiesterases PDE1B, 3A, and 7A and of PRKAR1B. Consequently, EZH2 ablation results in blunted zF differentiation and primary glucocorticoid insufficiency. These data demonstrate an all-encompassing role for EZH2 in programming steroidogenic cells for optimal response to differentiation signals and in maintaining their differentiated state.</description><subject>Ablation</subject><subject>Adrenal cortex</subject><subject>Adrenal Cortex - enzymology</subject><subject>Adrenal Cortex - metabolism</subject><subject>Adrenal glands</subject><subject>Adrenocorticotropic hormone</subject><subject>Animal genetics</subject><subject>Animals</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological Sciences</subject><subject>Ca2+/calmodulin-dependent phosphodiesterase</subject><subject>Cancer</subject><subject>Cell Differentiation</subject><subject>Cells (biology)</subject><subject>Cyclic AMP-Dependent Protein Kinase RIbeta Subunit - genetics</subject><subject>Cyclic AMP-Dependent Protein Kinase RIbeta Subunit - metabolism</subject><subject>Cyclic Nucleotide Phosphodiesterases, Type 1 - genetics</subject><subject>Cyclic Nucleotide Phosphodiesterases, Type 1 - metabolism</subject><subject>Cyclic Nucleotide Phosphodiesterases, Type 3 - genetics</subject><subject>Cyclic Nucleotide Phosphodiesterases, Type 3 - metabolism</subject><subject>Cyclic Nucleotide Phosphodiesterases, Type 7 - genetics</subject><subject>Cyclic Nucleotide Phosphodiesterases, Type 7 - metabolism</subject><subject>Development Biology</subject><subject>Differential equations</subject><subject>Differentiation (biology)</subject><subject>Embryology and Organogenesis</subject><subject>Endocrinology and metabolism</subject><subject>Enhancer of Zeste Homolog 2 Protein - genetics</subject><subject>Enhancer of Zeste Homolog 2 Protein - metabolism</subject><subject>Female</subject><subject>Genetics</subject><subject>Genomics</subject><subject>Glucocorticoids</subject><subject>Histone methyltransferase</subject><subject>Homeostasis</subject><subject>Human health and pathology</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>PNAS Plus</subject><subject>Progenitor cells</subject><subject>Protein kinase A</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Stem cells</subject><subject>Steroid hormones</subject><subject>Steroids</subject><subject>Steroids - metabolism</subject><subject>Zona Fasciculata - cytology</subject><subject>Zona Fasciculata - enzymology</subject><subject>Zona Fasciculata - metabolism</subject><subject>Zona Glomerulosa - cytology</subject><subject>Zona Glomerulosa - enzymology</subject><subject>Zona Glomerulosa - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtvEzEUhS0EoqGwZgWyxAYW0_r92CBFVSGISCABGzaWM_bMOJrYqT2JyL_HUUqArnzl-91zHweAlxhdYSTp9TbacoUV0lhxjPkjMMM1bgTT6DGYIURkoxhhF-BZKWuEkOYKPQUXFHGGlVIzsP82-ZyCS72PoYUudJ3PPk7BTiFFaKODXz_PYQl9tGOIPbTZw21OfbabjXdwdYBDKFOKHm78NBzGKdtYqoYtHt7-XBAYIpwGD62rsnaEbcqT__UcPOnsWPyL-_cS_Phw-_1m0Sy_fPx0M182LZNyagQmmjgtOCNedMRZtLJYCOwYllLLDllnNaJISq4spR2TglOESee044pTegnen3S3u1Udt62bZTuabQ4bmw8m2WD-z8QwmD7tjaAYKcqqwLuTwPCgbDFfmuMfIpQwpukeV_btfbOc7na-TGYTSuvH0UafdsUQzLlGQmNe0TcP0HXa5XqfIyUI40IRUanrE9XmVEr23XkCjMzRf3P03_z1v1a8_nffM__H8Aq8OgHralo-54ngkmrB6G8Jz7Wc</recordid><startdate>20181226</startdate><enddate>20181226</enddate><creator>Mathieu, Mickael</creator><creator>Drelon, Coralie</creator><creator>Rodriguez, Stéphanie</creator><creator>Tabbal, Houda</creator><creator>Septier, Amandine</creator><creator>Damon-Soubeyrand, Christelle</creator><creator>Dumontet, Typhanie</creator><creator>Berthon, Annabel</creator><creator>Sahut-Barnola, Isabelle</creator><creator>Djari, Cyril</creator><creator>Batisse-Lignier, Marie</creator><creator>Pointud, Jean-Christophe</creator><creator>Richard, Damien</creator><creator>Kerdivel, Gwenneg</creator><creator>Calméjane, Marie-Ange</creator><creator>Boeva, Valentina</creator><creator>Tauveron, Igor</creator><creator>Lefrançois-Martinez, Anne-Marie</creator><creator>Martinez, Antoine</creator><creator>Val, Pierre</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8353-542X</orcidid><orcidid>https://orcid.org/0000-0002-5576-9525</orcidid><orcidid>https://orcid.org/0000-0002-1328-9515</orcidid><orcidid>https://orcid.org/0000-0002-4382-7185</orcidid><orcidid>https://orcid.org/0000-0001-7648-5567</orcidid><orcidid>https://orcid.org/0000-0001-7666-9024</orcidid><orcidid>https://orcid.org/0000-0001-9304-5061</orcidid></search><sort><creationdate>20181226</creationdate><title>Steroidogenic differentiation and PKA signaling are programmed by histone methyltransferase EZH2 in the adrenal cortex</title><author>Mathieu, Mickael ; Drelon, Coralie ; Rodriguez, Stéphanie ; Tabbal, Houda ; Septier, Amandine ; Damon-Soubeyrand, Christelle ; Dumontet, Typhanie ; Berthon, Annabel ; Sahut-Barnola, Isabelle ; Djari, Cyril ; Batisse-Lignier, Marie ; Pointud, Jean-Christophe ; Richard, Damien ; Kerdivel, Gwenneg ; Calméjane, Marie-Ange ; Boeva, Valentina ; Tauveron, Igor ; Lefrançois-Martinez, Anne-Marie ; Martinez, Antoine ; Val, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-61292d96542e6f2da0ba1661d417797f0ada90307758a33f47653012fd9d58533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ablation</topic><topic>Adrenal cortex</topic><topic>Adrenal Cortex - enzymology</topic><topic>Adrenal Cortex - metabolism</topic><topic>Adrenal glands</topic><topic>Adrenocorticotropic hormone</topic><topic>Animal genetics</topic><topic>Animals</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological Sciences</topic><topic>Ca2+/calmodulin-dependent phosphodiesterase</topic><topic>Cancer</topic><topic>Cell Differentiation</topic><topic>Cells (biology)</topic><topic>Cyclic AMP-Dependent Protein Kinase RIbeta Subunit - genetics</topic><topic>Cyclic AMP-Dependent Protein Kinase RIbeta Subunit - metabolism</topic><topic>Cyclic Nucleotide Phosphodiesterases, Type 1 - genetics</topic><topic>Cyclic Nucleotide Phosphodiesterases, Type 1 - metabolism</topic><topic>Cyclic Nucleotide Phosphodiesterases, Type 3 - genetics</topic><topic>Cyclic Nucleotide Phosphodiesterases, Type 3 - metabolism</topic><topic>Cyclic Nucleotide Phosphodiesterases, Type 7 - genetics</topic><topic>Cyclic Nucleotide Phosphodiesterases, Type 7 - metabolism</topic><topic>Development Biology</topic><topic>Differential equations</topic><topic>Differentiation (biology)</topic><topic>Embryology and Organogenesis</topic><topic>Endocrinology and metabolism</topic><topic>Enhancer of Zeste Homolog 2 Protein - genetics</topic><topic>Enhancer of Zeste Homolog 2 Protein - metabolism</topic><topic>Female</topic><topic>Genetics</topic><topic>Genomics</topic><topic>Glucocorticoids</topic><topic>Histone methyltransferase</topic><topic>Homeostasis</topic><topic>Human health and pathology</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>PNAS Plus</topic><topic>Progenitor cells</topic><topic>Protein kinase A</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Stem cells</topic><topic>Steroid hormones</topic><topic>Steroids</topic><topic>Steroids - metabolism</topic><topic>Zona Fasciculata - cytology</topic><topic>Zona Fasciculata - enzymology</topic><topic>Zona Fasciculata - metabolism</topic><topic>Zona Glomerulosa - cytology</topic><topic>Zona Glomerulosa - enzymology</topic><topic>Zona Glomerulosa - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mathieu, Mickael</creatorcontrib><creatorcontrib>Drelon, Coralie</creatorcontrib><creatorcontrib>Rodriguez, Stéphanie</creatorcontrib><creatorcontrib>Tabbal, Houda</creatorcontrib><creatorcontrib>Septier, Amandine</creatorcontrib><creatorcontrib>Damon-Soubeyrand, Christelle</creatorcontrib><creatorcontrib>Dumontet, Typhanie</creatorcontrib><creatorcontrib>Berthon, Annabel</creatorcontrib><creatorcontrib>Sahut-Barnola, Isabelle</creatorcontrib><creatorcontrib>Djari, Cyril</creatorcontrib><creatorcontrib>Batisse-Lignier, Marie</creatorcontrib><creatorcontrib>Pointud, Jean-Christophe</creatorcontrib><creatorcontrib>Richard, Damien</creatorcontrib><creatorcontrib>Kerdivel, Gwenneg</creatorcontrib><creatorcontrib>Calméjane, Marie-Ange</creatorcontrib><creatorcontrib>Boeva, Valentina</creatorcontrib><creatorcontrib>Tauveron, Igor</creatorcontrib><creatorcontrib>Lefrançois-Martinez, Anne-Marie</creatorcontrib><creatorcontrib>Martinez, Antoine</creatorcontrib><creatorcontrib>Val, Pierre</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mathieu, Mickael</au><au>Drelon, Coralie</au><au>Rodriguez, Stéphanie</au><au>Tabbal, Houda</au><au>Septier, Amandine</au><au>Damon-Soubeyrand, Christelle</au><au>Dumontet, Typhanie</au><au>Berthon, Annabel</au><au>Sahut-Barnola, Isabelle</au><au>Djari, Cyril</au><au>Batisse-Lignier, Marie</au><au>Pointud, Jean-Christophe</au><au>Richard, Damien</au><au>Kerdivel, Gwenneg</au><au>Calméjane, Marie-Ange</au><au>Boeva, Valentina</au><au>Tauveron, Igor</au><au>Lefrançois-Martinez, Anne-Marie</au><au>Martinez, Antoine</au><au>Val, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Steroidogenic differentiation and PKA signaling are programmed by histone methyltransferase EZH2 in the adrenal cortex</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-12-26</date><risdate>2018</risdate><volume>115</volume><issue>52</issue><spage>E12265</spage><epage>E12274</epage><pages>E12265-E12274</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Adrenal cortex steroids are essential for body homeostasis, and adrenal insufficiency is a life-threatening condition. Adrenal endocrine activity is maintained through recruitment of subcapsular progenitor cells that follow a unidirectional differentiation path from zona glomerulosa to zona fasciculata (zF). Here, we show that this unidirectionality is ensured by the histone methyltransferase EZH2. Indeed, we demonstrate that EZH2 maintains adrenal steroidogenic cell differentiation by preventing expression of GATA4 and WT1 that cause abnormal dedifferentiation to a progenitor-like state in Ezh2 KO adrenals. EZH2 further ensures normal cortical differentiation by programming cells for optimal response to adrenocorticotrophic hormone (ACTH)/PKA signaling. This is achieved by repression of phosphodiesterases PDE1B, 3A, and 7A and of PRKAR1B. Consequently, EZH2 ablation results in blunted zF differentiation and primary glucocorticoid insufficiency. These data demonstrate an all-encompassing role for EZH2 in programming steroidogenic cells for optimal response to differentiation signals and in maintaining their differentiated state.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30541888</pmid><doi>10.1073/pnas.1809185115</doi><orcidid>https://orcid.org/0000-0001-8353-542X</orcidid><orcidid>https://orcid.org/0000-0002-5576-9525</orcidid><orcidid>https://orcid.org/0000-0002-1328-9515</orcidid><orcidid>https://orcid.org/0000-0002-4382-7185</orcidid><orcidid>https://orcid.org/0000-0001-7648-5567</orcidid><orcidid>https://orcid.org/0000-0001-7666-9024</orcidid><orcidid>https://orcid.org/0000-0001-9304-5061</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-12, Vol.115 (52), p.E12265-E12274
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6310834
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Ablation
Adrenal cortex
Adrenal Cortex - enzymology
Adrenal Cortex - metabolism
Adrenal glands
Adrenocorticotropic hormone
Animal genetics
Animals
Biochemistry, Molecular Biology
Biological Sciences
Ca2+/calmodulin-dependent phosphodiesterase
Cancer
Cell Differentiation
Cells (biology)
Cyclic AMP-Dependent Protein Kinase RIbeta Subunit - genetics
Cyclic AMP-Dependent Protein Kinase RIbeta Subunit - metabolism
Cyclic Nucleotide Phosphodiesterases, Type 1 - genetics
Cyclic Nucleotide Phosphodiesterases, Type 1 - metabolism
Cyclic Nucleotide Phosphodiesterases, Type 3 - genetics
Cyclic Nucleotide Phosphodiesterases, Type 3 - metabolism
Cyclic Nucleotide Phosphodiesterases, Type 7 - genetics
Cyclic Nucleotide Phosphodiesterases, Type 7 - metabolism
Development Biology
Differential equations
Differentiation (biology)
Embryology and Organogenesis
Endocrinology and metabolism
Enhancer of Zeste Homolog 2 Protein - genetics
Enhancer of Zeste Homolog 2 Protein - metabolism
Female
Genetics
Genomics
Glucocorticoids
Histone methyltransferase
Homeostasis
Human health and pathology
Life Sciences
Male
Mice, Inbred C57BL
Mice, Knockout
PNAS Plus
Progenitor cells
Protein kinase A
Signal Transduction
Signaling
Stem cells
Steroid hormones
Steroids
Steroids - metabolism
Zona Fasciculata - cytology
Zona Fasciculata - enzymology
Zona Fasciculata - metabolism
Zona Glomerulosa - cytology
Zona Glomerulosa - enzymology
Zona Glomerulosa - metabolism
title Steroidogenic differentiation and PKA signaling are programmed by histone methyltransferase EZH2 in the adrenal cortex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A44%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Steroidogenic%20differentiation%20and%20PKA%20signaling%20are%20programmed%20by%20histone%20methyltransferase%20EZH2%20in%20the%20adrenal%20cortex&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Mathieu,%20Mickael&rft.date=2018-12-26&rft.volume=115&rft.issue=52&rft.spage=E12265&rft.epage=E12274&rft.pages=E12265-E12274&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1809185115&rft_dat=%3Cjstor_pubme%3E26573964%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2162456826&rft_id=info:pmid/30541888&rft_jstor_id=26573964&rfr_iscdi=true