Dysferlin, Annexin A1, and Mitsugumin 53 Are Upregulated in Muscular Dystrophy and Localize to Longitudinal Tubules of the T-System With Stretch
Mutations in dysferlin cause an inherited muscular dystrophy because of defective membrane repair. Three interacting partners of dysferlin are also implicated in membrane resealingcaveolin-3 (in limb girdle muscular dystrophy type 1C), annexin A1, and the newly identified protein mitsugumin 53 (MG53...
Gespeichert in:
Veröffentlicht in: | Journal of neuropathology and experimental neurology 2011-04, Vol.70 (4), p.302-313 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 313 |
---|---|
container_issue | 4 |
container_start_page | 302 |
container_title | Journal of neuropathology and experimental neurology |
container_volume | 70 |
creator | Waddell, Leigh B Lemckert, Frances A Zheng, Xi F Tran, Jenny Evesson, Frances J Hawkes, Joanne M Lek, Angela Street, Neil E Lin, Peihui Clarke, Nigel F Landstrom, Andrew P Ackerman, Michael J Weisleder, Noah Ma, Jianjie North, Kathryn N Cooper, Sandra T |
description | Mutations in dysferlin cause an inherited muscular dystrophy because of defective membrane repair. Three interacting partners of dysferlin are also implicated in membrane resealingcaveolin-3 (in limb girdle muscular dystrophy type 1C), annexin A1, and the newly identified protein mitsugumin 53 (MG53). Mitsugumin 53 accumulates at sites of membrane damage, and MG53-knockout mice display a progressive muscular dystrophy. This study explored the expression and localization of MG53 in human skeletal muscle, how membrane repair proteins are modulated in various forms of muscular dystrophy, and whether MG53 is a primary cause of human muscle disease. Mitsugumin 53 showed variable sarcolemmal and/or cytoplasmic immunolabeling in control human muscle and elevated levels in dystrophic patients. No pathogenic MG53 mutations were identified in 50 muscular dystrophy patients, suggesting that MG53 is unlikely to be a common cause of muscular dystrophy in Australia. Western blot analysis confirmed upregulation of MG53, as well as of dysferlin, annexin A1, and caveolin-3 to different degrees, in different muscular dystrophies. Importantly, MG53, annexin A1, and dysferlin localize to the t-tubule network and show enriched labeling at longitudinal tubules of the t-system in overstretch. Our results suggest that longitudinal tubules of the t-system may represent sites of physiological membrane damage targeted by this membrane repair complex. |
doi_str_mv | 10.1097/NEN.0b013e31821350b0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6309232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>865190508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5130-e30f5584fd2e751590a7c478b950eb4a835831ecbaa615771b5f2a39d1fe17033</originalsourceid><addsrcrecordid>eNp9kctuEzEUhkcIREPhDRCykBCbTvF1LhukqJSLlJZFU7G0PDNnMi6OHXyhhKfgkXFJKNAFK_scf_-vc_wXxVOCjwlu61fnp-fHuMOEASMNJUzk4l4xI0LwshJ1c7-YYUxpyXDVHhSPQrjCGLe45Q-LA0o4oaTGs-LHm20YwRttj9DcWvimLZqTI6TsgM50DGmV1rklGJp7QJcbD6tkVIQB5e5ZCn2uPMom0bvNtP2lW7heGf0dUHT5blc6pkFbZdAydclAQG5EcQK0LC-yDtbok44TuogeYj89Lh6MygR4sj8Pi8u3p8uT9-Xi47sPJ_NF2QvCcAkMj0I0fBwo1IKIFqu653XTtQJDx1XDRMMI9J1SFRF1TToxUsXagYyQF2fssHi9892kbg1DDzZ6ZeTG67XyW-mUlv--WD3JlfsqK4Zbymg2eLk38O5LghDlWocejFEWXAqyqQRpscBNJp_fIa9c8vlDbiBOCN_Nw3dQ710IHsbbUQiWN4HLHLi8G3iWPft7jVvR74Qz8GIPqJBjGb2yvQ5_OI455bTNXLPjrp2J4MNnk67BywmUidP_Z_gJ2DfGqA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864114703</pqid></control><display><type>article</type><title>Dysferlin, Annexin A1, and Mitsugumin 53 Are Upregulated in Muscular Dystrophy and Localize to Longitudinal Tubules of the T-System With Stretch</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Journals@Ovid Complete</source><creator>Waddell, Leigh B ; Lemckert, Frances A ; Zheng, Xi F ; Tran, Jenny ; Evesson, Frances J ; Hawkes, Joanne M ; Lek, Angela ; Street, Neil E ; Lin, Peihui ; Clarke, Nigel F ; Landstrom, Andrew P ; Ackerman, Michael J ; Weisleder, Noah ; Ma, Jianjie ; North, Kathryn N ; Cooper, Sandra T</creator><creatorcontrib>Waddell, Leigh B ; Lemckert, Frances A ; Zheng, Xi F ; Tran, Jenny ; Evesson, Frances J ; Hawkes, Joanne M ; Lek, Angela ; Street, Neil E ; Lin, Peihui ; Clarke, Nigel F ; Landstrom, Andrew P ; Ackerman, Michael J ; Weisleder, Noah ; Ma, Jianjie ; North, Kathryn N ; Cooper, Sandra T</creatorcontrib><description>Mutations in dysferlin cause an inherited muscular dystrophy because of defective membrane repair. Three interacting partners of dysferlin are also implicated in membrane resealingcaveolin-3 (in limb girdle muscular dystrophy type 1C), annexin A1, and the newly identified protein mitsugumin 53 (MG53). Mitsugumin 53 accumulates at sites of membrane damage, and MG53-knockout mice display a progressive muscular dystrophy. This study explored the expression and localization of MG53 in human skeletal muscle, how membrane repair proteins are modulated in various forms of muscular dystrophy, and whether MG53 is a primary cause of human muscle disease. Mitsugumin 53 showed variable sarcolemmal and/or cytoplasmic immunolabeling in control human muscle and elevated levels in dystrophic patients. No pathogenic MG53 mutations were identified in 50 muscular dystrophy patients, suggesting that MG53 is unlikely to be a common cause of muscular dystrophy in Australia. Western blot analysis confirmed upregulation of MG53, as well as of dysferlin, annexin A1, and caveolin-3 to different degrees, in different muscular dystrophies. Importantly, MG53, annexin A1, and dysferlin localize to the t-tubule network and show enriched labeling at longitudinal tubules of the t-system in overstretch. Our results suggest that longitudinal tubules of the t-system may represent sites of physiological membrane damage targeted by this membrane repair complex.</description><identifier>ISSN: 0022-3069</identifier><identifier>EISSN: 1554-6578</identifier><identifier>DOI: 10.1097/NEN.0b013e31821350b0</identifier><identifier>PMID: 21412170</identifier><identifier>CODEN: JNENAD</identifier><language>eng</language><publisher>Hagerstown, MD: American Association of Neuropathologists, Inc</publisher><subject>Adolescent ; Adult ; Aged ; Annexin A1 - metabolism ; Biological and medical sciences ; Biopsy ; Blotting, Western ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Child ; Child, Preschool ; Cytoplasm - metabolism ; Diseases of striated muscles. Neuromuscular diseases ; DNA - genetics ; Dysferlin ; Humans ; Immunohistochemistry ; Infant ; Medical sciences ; Membrane Proteins - metabolism ; Microscopy, Confocal ; Microtubules - metabolism ; Middle Aged ; Muscle Proteins - metabolism ; Muscle, Skeletal - metabolism ; Muscular Dystrophies, Limb-Girdle - metabolism ; Neurology ; Physical Stimulation ; Sarcolemma - metabolism ; Up-Regulation ; Young Adult</subject><ispartof>Journal of neuropathology and experimental neurology, 2011-04, Vol.70 (4), p.302-313</ispartof><rights>2011 American Association of Neuropathologists, Inc</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Lippincott Williams & Wilkins Apr 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5130-e30f5584fd2e751590a7c478b950eb4a835831ecbaa615771b5f2a39d1fe17033</citedby><cites>FETCH-LOGICAL-c5130-e30f5584fd2e751590a7c478b950eb4a835831ecbaa615771b5f2a39d1fe17033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24042429$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21412170$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Waddell, Leigh B</creatorcontrib><creatorcontrib>Lemckert, Frances A</creatorcontrib><creatorcontrib>Zheng, Xi F</creatorcontrib><creatorcontrib>Tran, Jenny</creatorcontrib><creatorcontrib>Evesson, Frances J</creatorcontrib><creatorcontrib>Hawkes, Joanne M</creatorcontrib><creatorcontrib>Lek, Angela</creatorcontrib><creatorcontrib>Street, Neil E</creatorcontrib><creatorcontrib>Lin, Peihui</creatorcontrib><creatorcontrib>Clarke, Nigel F</creatorcontrib><creatorcontrib>Landstrom, Andrew P</creatorcontrib><creatorcontrib>Ackerman, Michael J</creatorcontrib><creatorcontrib>Weisleder, Noah</creatorcontrib><creatorcontrib>Ma, Jianjie</creatorcontrib><creatorcontrib>North, Kathryn N</creatorcontrib><creatorcontrib>Cooper, Sandra T</creatorcontrib><title>Dysferlin, Annexin A1, and Mitsugumin 53 Are Upregulated in Muscular Dystrophy and Localize to Longitudinal Tubules of the T-System With Stretch</title><title>Journal of neuropathology and experimental neurology</title><addtitle>J Neuropathol Exp Neurol</addtitle><description>Mutations in dysferlin cause an inherited muscular dystrophy because of defective membrane repair. Three interacting partners of dysferlin are also implicated in membrane resealingcaveolin-3 (in limb girdle muscular dystrophy type 1C), annexin A1, and the newly identified protein mitsugumin 53 (MG53). Mitsugumin 53 accumulates at sites of membrane damage, and MG53-knockout mice display a progressive muscular dystrophy. This study explored the expression and localization of MG53 in human skeletal muscle, how membrane repair proteins are modulated in various forms of muscular dystrophy, and whether MG53 is a primary cause of human muscle disease. Mitsugumin 53 showed variable sarcolemmal and/or cytoplasmic immunolabeling in control human muscle and elevated levels in dystrophic patients. No pathogenic MG53 mutations were identified in 50 muscular dystrophy patients, suggesting that MG53 is unlikely to be a common cause of muscular dystrophy in Australia. Western blot analysis confirmed upregulation of MG53, as well as of dysferlin, annexin A1, and caveolin-3 to different degrees, in different muscular dystrophies. Importantly, MG53, annexin A1, and dysferlin localize to the t-tubule network and show enriched labeling at longitudinal tubules of the t-system in overstretch. Our results suggest that longitudinal tubules of the t-system may represent sites of physiological membrane damage targeted by this membrane repair complex.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Annexin A1 - metabolism</subject><subject>Biological and medical sciences</subject><subject>Biopsy</subject><subject>Blotting, Western</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Cytoplasm - metabolism</subject><subject>Diseases of striated muscles. Neuromuscular diseases</subject><subject>DNA - genetics</subject><subject>Dysferlin</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Infant</subject><subject>Medical sciences</subject><subject>Membrane Proteins - metabolism</subject><subject>Microscopy, Confocal</subject><subject>Microtubules - metabolism</subject><subject>Middle Aged</subject><subject>Muscle Proteins - metabolism</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscular Dystrophies, Limb-Girdle - metabolism</subject><subject>Neurology</subject><subject>Physical Stimulation</subject><subject>Sarcolemma - metabolism</subject><subject>Up-Regulation</subject><subject>Young Adult</subject><issn>0022-3069</issn><issn>1554-6578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kctuEzEUhkcIREPhDRCykBCbTvF1LhukqJSLlJZFU7G0PDNnMi6OHXyhhKfgkXFJKNAFK_scf_-vc_wXxVOCjwlu61fnp-fHuMOEASMNJUzk4l4xI0LwshJ1c7-YYUxpyXDVHhSPQrjCGLe45Q-LA0o4oaTGs-LHm20YwRttj9DcWvimLZqTI6TsgM50DGmV1rklGJp7QJcbD6tkVIQB5e5ZCn2uPMom0bvNtP2lW7heGf0dUHT5blc6pkFbZdAydclAQG5EcQK0LC-yDtbok44TuogeYj89Lh6MygR4sj8Pi8u3p8uT9-Xi47sPJ_NF2QvCcAkMj0I0fBwo1IKIFqu653XTtQJDx1XDRMMI9J1SFRF1TToxUsXagYyQF2fssHi9892kbg1DDzZ6ZeTG67XyW-mUlv--WD3JlfsqK4Zbymg2eLk38O5LghDlWocejFEWXAqyqQRpscBNJp_fIa9c8vlDbiBOCN_Nw3dQ710IHsbbUQiWN4HLHLi8G3iWPft7jVvR74Qz8GIPqJBjGb2yvQ5_OI455bTNXLPjrp2J4MNnk67BywmUidP_Z_gJ2DfGqA</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Waddell, Leigh B</creator><creator>Lemckert, Frances A</creator><creator>Zheng, Xi F</creator><creator>Tran, Jenny</creator><creator>Evesson, Frances J</creator><creator>Hawkes, Joanne M</creator><creator>Lek, Angela</creator><creator>Street, Neil E</creator><creator>Lin, Peihui</creator><creator>Clarke, Nigel F</creator><creator>Landstrom, Andrew P</creator><creator>Ackerman, Michael J</creator><creator>Weisleder, Noah</creator><creator>Ma, Jianjie</creator><creator>North, Kathryn N</creator><creator>Cooper, Sandra T</creator><general>American Association of Neuropathologists, Inc</general><general>Lippincott Williams & Wilkins</general><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201104</creationdate><title>Dysferlin, Annexin A1, and Mitsugumin 53 Are Upregulated in Muscular Dystrophy and Localize to Longitudinal Tubules of the T-System With Stretch</title><author>Waddell, Leigh B ; Lemckert, Frances A ; Zheng, Xi F ; Tran, Jenny ; Evesson, Frances J ; Hawkes, Joanne M ; Lek, Angela ; Street, Neil E ; Lin, Peihui ; Clarke, Nigel F ; Landstrom, Andrew P ; Ackerman, Michael J ; Weisleder, Noah ; Ma, Jianjie ; North, Kathryn N ; Cooper, Sandra T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5130-e30f5584fd2e751590a7c478b950eb4a835831ecbaa615771b5f2a39d1fe17033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Annexin A1 - metabolism</topic><topic>Biological and medical sciences</topic><topic>Biopsy</topic><topic>Blotting, Western</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Cytoplasm - metabolism</topic><topic>Diseases of striated muscles. Neuromuscular diseases</topic><topic>DNA - genetics</topic><topic>Dysferlin</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Infant</topic><topic>Medical sciences</topic><topic>Membrane Proteins - metabolism</topic><topic>Microscopy, Confocal</topic><topic>Microtubules - metabolism</topic><topic>Middle Aged</topic><topic>Muscle Proteins - metabolism</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscular Dystrophies, Limb-Girdle - metabolism</topic><topic>Neurology</topic><topic>Physical Stimulation</topic><topic>Sarcolemma - metabolism</topic><topic>Up-Regulation</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waddell, Leigh B</creatorcontrib><creatorcontrib>Lemckert, Frances A</creatorcontrib><creatorcontrib>Zheng, Xi F</creatorcontrib><creatorcontrib>Tran, Jenny</creatorcontrib><creatorcontrib>Evesson, Frances J</creatorcontrib><creatorcontrib>Hawkes, Joanne M</creatorcontrib><creatorcontrib>Lek, Angela</creatorcontrib><creatorcontrib>Street, Neil E</creatorcontrib><creatorcontrib>Lin, Peihui</creatorcontrib><creatorcontrib>Clarke, Nigel F</creatorcontrib><creatorcontrib>Landstrom, Andrew P</creatorcontrib><creatorcontrib>Ackerman, Michael J</creatorcontrib><creatorcontrib>Weisleder, Noah</creatorcontrib><creatorcontrib>Ma, Jianjie</creatorcontrib><creatorcontrib>North, Kathryn N</creatorcontrib><creatorcontrib>Cooper, Sandra T</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neuropathology and experimental neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waddell, Leigh B</au><au>Lemckert, Frances A</au><au>Zheng, Xi F</au><au>Tran, Jenny</au><au>Evesson, Frances J</au><au>Hawkes, Joanne M</au><au>Lek, Angela</au><au>Street, Neil E</au><au>Lin, Peihui</au><au>Clarke, Nigel F</au><au>Landstrom, Andrew P</au><au>Ackerman, Michael J</au><au>Weisleder, Noah</au><au>Ma, Jianjie</au><au>North, Kathryn N</au><au>Cooper, Sandra T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dysferlin, Annexin A1, and Mitsugumin 53 Are Upregulated in Muscular Dystrophy and Localize to Longitudinal Tubules of the T-System With Stretch</atitle><jtitle>Journal of neuropathology and experimental neurology</jtitle><addtitle>J Neuropathol Exp Neurol</addtitle><date>2011-04</date><risdate>2011</risdate><volume>70</volume><issue>4</issue><spage>302</spage><epage>313</epage><pages>302-313</pages><issn>0022-3069</issn><eissn>1554-6578</eissn><coden>JNENAD</coden><abstract>Mutations in dysferlin cause an inherited muscular dystrophy because of defective membrane repair. Three interacting partners of dysferlin are also implicated in membrane resealingcaveolin-3 (in limb girdle muscular dystrophy type 1C), annexin A1, and the newly identified protein mitsugumin 53 (MG53). Mitsugumin 53 accumulates at sites of membrane damage, and MG53-knockout mice display a progressive muscular dystrophy. This study explored the expression and localization of MG53 in human skeletal muscle, how membrane repair proteins are modulated in various forms of muscular dystrophy, and whether MG53 is a primary cause of human muscle disease. Mitsugumin 53 showed variable sarcolemmal and/or cytoplasmic immunolabeling in control human muscle and elevated levels in dystrophic patients. No pathogenic MG53 mutations were identified in 50 muscular dystrophy patients, suggesting that MG53 is unlikely to be a common cause of muscular dystrophy in Australia. Western blot analysis confirmed upregulation of MG53, as well as of dysferlin, annexin A1, and caveolin-3 to different degrees, in different muscular dystrophies. Importantly, MG53, annexin A1, and dysferlin localize to the t-tubule network and show enriched labeling at longitudinal tubules of the t-system in overstretch. Our results suggest that longitudinal tubules of the t-system may represent sites of physiological membrane damage targeted by this membrane repair complex.</abstract><cop>Hagerstown, MD</cop><pub>American Association of Neuropathologists, Inc</pub><pmid>21412170</pmid><doi>10.1097/NEN.0b013e31821350b0</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3069 |
ispartof | Journal of neuropathology and experimental neurology, 2011-04, Vol.70 (4), p.302-313 |
issn | 0022-3069 1554-6578 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6309232 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Journals@Ovid Complete |
subjects | Adolescent Adult Aged Annexin A1 - metabolism Biological and medical sciences Biopsy Blotting, Western Carrier Proteins - genetics Carrier Proteins - metabolism Child Child, Preschool Cytoplasm - metabolism Diseases of striated muscles. Neuromuscular diseases DNA - genetics Dysferlin Humans Immunohistochemistry Infant Medical sciences Membrane Proteins - metabolism Microscopy, Confocal Microtubules - metabolism Middle Aged Muscle Proteins - metabolism Muscle, Skeletal - metabolism Muscular Dystrophies, Limb-Girdle - metabolism Neurology Physical Stimulation Sarcolemma - metabolism Up-Regulation Young Adult |
title | Dysferlin, Annexin A1, and Mitsugumin 53 Are Upregulated in Muscular Dystrophy and Localize to Longitudinal Tubules of the T-System With Stretch |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A44%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dysferlin,%20Annexin%20A1,%20and%20Mitsugumin%2053%20Are%20Upregulated%20in%20Muscular%20Dystrophy%20and%20Localize%20to%20Longitudinal%20Tubules%20of%20the%20T-System%20With%20Stretch&rft.jtitle=Journal%20of%20neuropathology%20and%20experimental%20neurology&rft.au=Waddell,%20Leigh%20B&rft.date=2011-04&rft.volume=70&rft.issue=4&rft.spage=302&rft.epage=313&rft.pages=302-313&rft.issn=0022-3069&rft.eissn=1554-6578&rft.coden=JNENAD&rft_id=info:doi/10.1097/NEN.0b013e31821350b0&rft_dat=%3Cproquest_pubme%3E865190508%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864114703&rft_id=info:pmid/21412170&rfr_iscdi=true |