Technologies to address antimicrobial resistance

Bacterial infections have been traditionally controlled by antibiotics and vaccines, and these approaches have greatly improved health and longevity. However, multiple stakeholders are declaring that the lack of new interventions is putting our ability to prevent and treat bacterial infections at ri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2018-12, Vol.115 (51), p.12887-12895
Hauptverfasser: Baker, Stephen J., Payne, David J., Rappuoli, Rino, De Gregorio, Ennio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12895
container_issue 51
container_start_page 12887
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Baker, Stephen J.
Payne, David J.
Rappuoli, Rino
De Gregorio, Ennio
description Bacterial infections have been traditionally controlled by antibiotics and vaccines, and these approaches have greatly improved health and longevity. However, multiple stakeholders are declaring that the lack of new interventions is putting our ability to prevent and treat bacterial infections at risk. Vaccine and antibiotic approaches still have the potential to address this threat. Innovative vaccine technologies, such as reverse vaccinology, novel adjuvants, and rationally designed bacterial outer membrane vesicles, together with progress in polysaccharide conjugation and antigen design, have the potential to boost the development of vaccines targeting several classes of multidrug-resistant bacteria. Furthermore, new approaches to deliver small-molecule antibacterials into bacteria, such as hijacking active uptake pathways and potentiator approaches, along with a focus on alternative modalities, such as targeting host factors, blocking bacterial virulence factors, monoclonal antibodies, and microbiome interventions, all have potential. Both vaccines and antibacterial approaches are needed to tackle the global challenge of antimicrobial resistance (AMR), and both areas have the underpinning science to address this need. However, a concerted research agenda and rethinking of the value society puts on interventions that save lives, by preventing or treating life-threatening bacterial infections, are needed to bring these ideas to fruition.
doi_str_mv 10.1073/pnas.1717160115
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6304975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26574193</jstor_id><sourcerecordid>26574193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-ce2e3a4fb62b79cdca086946c0a2ca1cf23f8a64f0ffa03ddeb6ad82534a18ef3</originalsourceid><addsrcrecordid>eNpdkc1rGzEQxUVpqB2n554aDL3kss7oc1eXQjD5gkAuyVnMaqVEZr1ypHUg_31lnLpN0GFA85vHzHuE_KCwoFDz882AeUHr8hRQKr-QKQVNKyU0fCVTAFZXjWBiQo5zXgGAlg18IxMOUmra0CmBB2efh9jHp-DyfIxz7Lrkcp7jMIZ1sCm2Aft5-Qp5xMG6E3Lksc_u-3udkcery4flTXV3f327vLirrAQ9VtYxx1H4VrG21razCI3SQllAZpFaz7hvUAkP3iPwrnOtwq5hkgukjfN8Rn7vdTfbdu0664YxYW82KawxvZmIwXzsDOHZPMVXozgIXcsicPYukOLL1uXRrEO2ru9xcHGbDaOyYaLmlBX01yd0FbdpKOcVSsHOXg6FOt9TxZSck_OHZSiYXRpml4b5l0aZOP3_hgP_1_4C_NwDqzzGdOgzJWtBNed_AMEGkOM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2160717130</pqid></control><display><type>article</type><title>Technologies to address antimicrobial resistance</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Baker, Stephen J. ; Payne, David J. ; Rappuoli, Rino ; De Gregorio, Ennio</creator><creatorcontrib>Baker, Stephen J. ; Payne, David J. ; Rappuoli, Rino ; De Gregorio, Ennio</creatorcontrib><description>Bacterial infections have been traditionally controlled by antibiotics and vaccines, and these approaches have greatly improved health and longevity. However, multiple stakeholders are declaring that the lack of new interventions is putting our ability to prevent and treat bacterial infections at risk. Vaccine and antibiotic approaches still have the potential to address this threat. Innovative vaccine technologies, such as reverse vaccinology, novel adjuvants, and rationally designed bacterial outer membrane vesicles, together with progress in polysaccharide conjugation and antigen design, have the potential to boost the development of vaccines targeting several classes of multidrug-resistant bacteria. Furthermore, new approaches to deliver small-molecule antibacterials into bacteria, such as hijacking active uptake pathways and potentiator approaches, along with a focus on alternative modalities, such as targeting host factors, blocking bacterial virulence factors, monoclonal antibodies, and microbiome interventions, all have potential. Both vaccines and antibacterial approaches are needed to tackle the global challenge of antimicrobial resistance (AMR), and both areas have the underpinning science to address this need. However, a concerted research agenda and rethinking of the value society puts on interventions that save lives, by preventing or treating life-threatening bacterial infections, are needed to bring these ideas to fruition.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1717160115</identifier><identifier>PMID: 30559181</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adjuvants ; Anti-Bacterial Agents - therapeutic use ; Antibiotics ; Antiinfectives and antibacterials ; Antimicrobial resistance ; Bacteria ; Bacteria - drug effects ; Bacteria - immunology ; Bacterial diseases ; Bacterial infections ; Bacterial Infections - drug therapy ; Bacterial Vaccines - therapeutic use ; Bacterial vesicles ; Biological Sciences ; Conjugation ; Drug Delivery Systems - trends ; Drug resistance ; Drug Resistance, Bacterial ; Humans ; Immunoglobulins ; Medical Overuse - trends ; Medical technology ; Membrane vesicles ; Microbiomes ; Monoclonal antibodies ; Multidrug resistance ; Polysaccharides ; SPECIAL FEATURE: PERSPECTIVE ; Vaccines ; Virulence ; Virulence factors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-12, Vol.115 (51), p.12887-12895</ispartof><rights>Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Dec 18, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-ce2e3a4fb62b79cdca086946c0a2ca1cf23f8a64f0ffa03ddeb6ad82534a18ef3</citedby><cites>FETCH-LOGICAL-c509t-ce2e3a4fb62b79cdca086946c0a2ca1cf23f8a64f0ffa03ddeb6ad82534a18ef3</cites><orcidid>0000-0002-8827-254X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26574193$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26574193$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30559181$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baker, Stephen J.</creatorcontrib><creatorcontrib>Payne, David J.</creatorcontrib><creatorcontrib>Rappuoli, Rino</creatorcontrib><creatorcontrib>De Gregorio, Ennio</creatorcontrib><title>Technologies to address antimicrobial resistance</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Bacterial infections have been traditionally controlled by antibiotics and vaccines, and these approaches have greatly improved health and longevity. However, multiple stakeholders are declaring that the lack of new interventions is putting our ability to prevent and treat bacterial infections at risk. Vaccine and antibiotic approaches still have the potential to address this threat. Innovative vaccine technologies, such as reverse vaccinology, novel adjuvants, and rationally designed bacterial outer membrane vesicles, together with progress in polysaccharide conjugation and antigen design, have the potential to boost the development of vaccines targeting several classes of multidrug-resistant bacteria. Furthermore, new approaches to deliver small-molecule antibacterials into bacteria, such as hijacking active uptake pathways and potentiator approaches, along with a focus on alternative modalities, such as targeting host factors, blocking bacterial virulence factors, monoclonal antibodies, and microbiome interventions, all have potential. Both vaccines and antibacterial approaches are needed to tackle the global challenge of antimicrobial resistance (AMR), and both areas have the underpinning science to address this need. However, a concerted research agenda and rethinking of the value society puts on interventions that save lives, by preventing or treating life-threatening bacterial infections, are needed to bring these ideas to fruition.</description><subject>Adjuvants</subject><subject>Anti-Bacterial Agents - therapeutic use</subject><subject>Antibiotics</subject><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial resistance</subject><subject>Bacteria</subject><subject>Bacteria - drug effects</subject><subject>Bacteria - immunology</subject><subject>Bacterial diseases</subject><subject>Bacterial infections</subject><subject>Bacterial Infections - drug therapy</subject><subject>Bacterial Vaccines - therapeutic use</subject><subject>Bacterial vesicles</subject><subject>Biological Sciences</subject><subject>Conjugation</subject><subject>Drug Delivery Systems - trends</subject><subject>Drug resistance</subject><subject>Drug Resistance, Bacterial</subject><subject>Humans</subject><subject>Immunoglobulins</subject><subject>Medical Overuse - trends</subject><subject>Medical technology</subject><subject>Membrane vesicles</subject><subject>Microbiomes</subject><subject>Monoclonal antibodies</subject><subject>Multidrug resistance</subject><subject>Polysaccharides</subject><subject>SPECIAL FEATURE: PERSPECTIVE</subject><subject>Vaccines</subject><subject>Virulence</subject><subject>Virulence factors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1rGzEQxUVpqB2n554aDL3kss7oc1eXQjD5gkAuyVnMaqVEZr1ypHUg_31lnLpN0GFA85vHzHuE_KCwoFDz882AeUHr8hRQKr-QKQVNKyU0fCVTAFZXjWBiQo5zXgGAlg18IxMOUmra0CmBB2efh9jHp-DyfIxz7Lrkcp7jMIZ1sCm2Aft5-Qp5xMG6E3Lksc_u-3udkcery4flTXV3f327vLirrAQ9VtYxx1H4VrG21razCI3SQllAZpFaz7hvUAkP3iPwrnOtwq5hkgukjfN8Rn7vdTfbdu0664YxYW82KawxvZmIwXzsDOHZPMVXozgIXcsicPYukOLL1uXRrEO2ru9xcHGbDaOyYaLmlBX01yd0FbdpKOcVSsHOXg6FOt9TxZSck_OHZSiYXRpml4b5l0aZOP3_hgP_1_4C_NwDqzzGdOgzJWtBNed_AMEGkOM</recordid><startdate>20181218</startdate><enddate>20181218</enddate><creator>Baker, Stephen J.</creator><creator>Payne, David J.</creator><creator>Rappuoli, Rino</creator><creator>De Gregorio, Ennio</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8827-254X</orcidid></search><sort><creationdate>20181218</creationdate><title>Technologies to address antimicrobial resistance</title><author>Baker, Stephen J. ; Payne, David J. ; Rappuoli, Rino ; De Gregorio, Ennio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-ce2e3a4fb62b79cdca086946c0a2ca1cf23f8a64f0ffa03ddeb6ad82534a18ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adjuvants</topic><topic>Anti-Bacterial Agents - therapeutic use</topic><topic>Antibiotics</topic><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial resistance</topic><topic>Bacteria</topic><topic>Bacteria - drug effects</topic><topic>Bacteria - immunology</topic><topic>Bacterial diseases</topic><topic>Bacterial infections</topic><topic>Bacterial Infections - drug therapy</topic><topic>Bacterial Vaccines - therapeutic use</topic><topic>Bacterial vesicles</topic><topic>Biological Sciences</topic><topic>Conjugation</topic><topic>Drug Delivery Systems - trends</topic><topic>Drug resistance</topic><topic>Drug Resistance, Bacterial</topic><topic>Humans</topic><topic>Immunoglobulins</topic><topic>Medical Overuse - trends</topic><topic>Medical technology</topic><topic>Membrane vesicles</topic><topic>Microbiomes</topic><topic>Monoclonal antibodies</topic><topic>Multidrug resistance</topic><topic>Polysaccharides</topic><topic>SPECIAL FEATURE: PERSPECTIVE</topic><topic>Vaccines</topic><topic>Virulence</topic><topic>Virulence factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baker, Stephen J.</creatorcontrib><creatorcontrib>Payne, David J.</creatorcontrib><creatorcontrib>Rappuoli, Rino</creatorcontrib><creatorcontrib>De Gregorio, Ennio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baker, Stephen J.</au><au>Payne, David J.</au><au>Rappuoli, Rino</au><au>De Gregorio, Ennio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Technologies to address antimicrobial resistance</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-12-18</date><risdate>2018</risdate><volume>115</volume><issue>51</issue><spage>12887</spage><epage>12895</epage><pages>12887-12895</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Bacterial infections have been traditionally controlled by antibiotics and vaccines, and these approaches have greatly improved health and longevity. However, multiple stakeholders are declaring that the lack of new interventions is putting our ability to prevent and treat bacterial infections at risk. Vaccine and antibiotic approaches still have the potential to address this threat. Innovative vaccine technologies, such as reverse vaccinology, novel adjuvants, and rationally designed bacterial outer membrane vesicles, together with progress in polysaccharide conjugation and antigen design, have the potential to boost the development of vaccines targeting several classes of multidrug-resistant bacteria. Furthermore, new approaches to deliver small-molecule antibacterials into bacteria, such as hijacking active uptake pathways and potentiator approaches, along with a focus on alternative modalities, such as targeting host factors, blocking bacterial virulence factors, monoclonal antibodies, and microbiome interventions, all have potential. Both vaccines and antibacterial approaches are needed to tackle the global challenge of antimicrobial resistance (AMR), and both areas have the underpinning science to address this need. However, a concerted research agenda and rethinking of the value society puts on interventions that save lives, by preventing or treating life-threatening bacterial infections, are needed to bring these ideas to fruition.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30559181</pmid><doi>10.1073/pnas.1717160115</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8827-254X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-12, Vol.115 (51), p.12887-12895
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6304975
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adjuvants
Anti-Bacterial Agents - therapeutic use
Antibiotics
Antiinfectives and antibacterials
Antimicrobial resistance
Bacteria
Bacteria - drug effects
Bacteria - immunology
Bacterial diseases
Bacterial infections
Bacterial Infections - drug therapy
Bacterial Vaccines - therapeutic use
Bacterial vesicles
Biological Sciences
Conjugation
Drug Delivery Systems - trends
Drug resistance
Drug Resistance, Bacterial
Humans
Immunoglobulins
Medical Overuse - trends
Medical technology
Membrane vesicles
Microbiomes
Monoclonal antibodies
Multidrug resistance
Polysaccharides
SPECIAL FEATURE: PERSPECTIVE
Vaccines
Virulence
Virulence factors
title Technologies to address antimicrobial resistance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T11%3A24%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Technologies%20to%20address%20antimicrobial%20resistance&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Baker,%20Stephen%20J.&rft.date=2018-12-18&rft.volume=115&rft.issue=51&rft.spage=12887&rft.epage=12895&rft.pages=12887-12895&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1717160115&rft_dat=%3Cjstor_pubme%3E26574193%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2160717130&rft_id=info:pmid/30559181&rft_jstor_id=26574193&rfr_iscdi=true