Coral epigenetic responses to nutrient stress: Histone H2A.X phosphorylation dynamics and DNA methylation in the staghorn coral Acropora cervicornis
Nutrient pollution and thermal stress constitute two of the main drivers of global change in the coastal oceans. While different studies have addressed the physiological effects and ecological consequences of these stressors in corals, the role of acquired modifications in the coral epigenome during...
Gespeichert in:
Veröffentlicht in: | Ecology and evolution 2018-12, Vol.8 (23), p.12193-12207 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12207 |
---|---|
container_issue | 23 |
container_start_page | 12193 |
container_title | Ecology and evolution |
container_volume | 8 |
creator | Rodriguez‐Casariego, Javier A. Ladd, Mark C. Shantz, Andrew A. Lopes, Christian Cheema, Manjinder S. Kim, Bohyun Roberts, Steven B. Fourqurean, James W. Ausio, Juan Burkepile, Deron E. Eirin‐Lopez, Jose M. |
description | Nutrient pollution and thermal stress constitute two of the main drivers of global change in the coastal oceans. While different studies have addressed the physiological effects and ecological consequences of these stressors in corals, the role of acquired modifications in the coral epigenome during acclimatory and adaptive responses remains unknown. The present work aims to address that gap by monitoring two types of epigenetic mechanisms, namely histone modifications and DNA methylation, during a 7‐week‐long experiment in which staghorn coral fragments (Acropora cervicornis) were exposed to nutrient stress (nitrogen, nitrogen + phosphorus) in the presence of thermal stress. The major conclusion of this experiment can be summarized by two main results: First, coral holobiont responses to the combined effects of nutrient enrichment and thermal stress involve the post‐translational phosphorylation of the histone variant H2A.X (involved in responses to DNA damage), as well as nonsignificant modifications in DNA methylation trends. Second, the reduction in H2A.X phosphorylation (and the subsequent potential impairment of DNA repair mechanisms) observed after prolonged coral exposure to nitrogen enrichment and thermal stress is consistent with the symbiont‐driven phosphorus limitation previously observed in corals subject to nitrogen enrichment. The alteration of this epigenetic mechanism could help to explain the synergistic effects of nutrient imbalance and thermal stress on coral fitness (i.e., increased bleaching and mortality) while supporting the positive effect of phosphorus addition to improving coral resilience to thermal stress. Overall, this work provides new insights into the role of epigenetic mechanisms during coral responses to global change, discussing future research directions and the potential benefits for improving restoration, management and conservation of coral reef ecosystems worldwide.
Nutrient pollution constitutes one of the main drivers of global change in the coastal oceans. The present work constitutes the first study monitoring two types of epigenetic mechanisms during a 7‐week‐long experiment in which staghorn coral fragments were exposed to nutrient stress. This work sheds light into the role and the interactions among different mechanisms mediating epigenetic effects in corals. |
doi_str_mv | 10.1002/ece3.4678 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6303763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2159636265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5098-f4a19fdec5af835121577cc4d101cf02a4520c9ba03adb19e93faa69fbc874623</originalsourceid><addsrcrecordid>eNp1UV1LYzEQDYuyivqwf2AJ-ORDaz5ucu_dB6HUagXRF4V9C2nu3DbSJtckrfR_7A_e9EPRBwfCDDMnZ85wEPpFSZ8Swi7BAO8Xsqx-oGNGCtErS1EdfKqP0FmMLySHJKwg5U90xImoq4rSY_Rv6IOeY-jsFBwka3CA2HkXIeLksVumYMElHFPuxz94bGPyDvCYDfp_cTfzMb-wnutkvcPN2umFNRFr1-DrhwFeQJq9D63DaQaZSU_zF4fNdvPABN_lChsIK5t7zsZTdNjqeYSzfT5Bzzejp-G4d_94ezcc3PeMIHXVawtN67YBI3RbcUEZFWVpTNFQQk1LmC4EI6aeaMJ1M6E11LzVWtbtxFRlIRk_QVc73m45WUBj8qFZkuqCXeiwVl5b9XXi7ExN_UpJTngpeSY43xME_7qEmNSLXwaXNassppZcMiky6mKHyqfGGKD92ECJ2nioNh6qjYcZ-_uzpA_ku2MZcLkDvNk5rL9nUqPhiG8p_wOt26nc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159636265</pqid></control><display><type>article</type><title>Coral epigenetic responses to nutrient stress: Histone H2A.X phosphorylation dynamics and DNA methylation in the staghorn coral Acropora cervicornis</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Rodriguez‐Casariego, Javier A. ; Ladd, Mark C. ; Shantz, Andrew A. ; Lopes, Christian ; Cheema, Manjinder S. ; Kim, Bohyun ; Roberts, Steven B. ; Fourqurean, James W. ; Ausio, Juan ; Burkepile, Deron E. ; Eirin‐Lopez, Jose M.</creator><creatorcontrib>Rodriguez‐Casariego, Javier A. ; Ladd, Mark C. ; Shantz, Andrew A. ; Lopes, Christian ; Cheema, Manjinder S. ; Kim, Bohyun ; Roberts, Steven B. ; Fourqurean, James W. ; Ausio, Juan ; Burkepile, Deron E. ; Eirin‐Lopez, Jose M.</creatorcontrib><description>Nutrient pollution and thermal stress constitute two of the main drivers of global change in the coastal oceans. While different studies have addressed the physiological effects and ecological consequences of these stressors in corals, the role of acquired modifications in the coral epigenome during acclimatory and adaptive responses remains unknown. The present work aims to address that gap by monitoring two types of epigenetic mechanisms, namely histone modifications and DNA methylation, during a 7‐week‐long experiment in which staghorn coral fragments (Acropora cervicornis) were exposed to nutrient stress (nitrogen, nitrogen + phosphorus) in the presence of thermal stress. The major conclusion of this experiment can be summarized by two main results: First, coral holobiont responses to the combined effects of nutrient enrichment and thermal stress involve the post‐translational phosphorylation of the histone variant H2A.X (involved in responses to DNA damage), as well as nonsignificant modifications in DNA methylation trends. Second, the reduction in H2A.X phosphorylation (and the subsequent potential impairment of DNA repair mechanisms) observed after prolonged coral exposure to nitrogen enrichment and thermal stress is consistent with the symbiont‐driven phosphorus limitation previously observed in corals subject to nitrogen enrichment. The alteration of this epigenetic mechanism could help to explain the synergistic effects of nutrient imbalance and thermal stress on coral fitness (i.e., increased bleaching and mortality) while supporting the positive effect of phosphorus addition to improving coral resilience to thermal stress. Overall, this work provides new insights into the role of epigenetic mechanisms during coral responses to global change, discussing future research directions and the potential benefits for improving restoration, management and conservation of coral reef ecosystems worldwide.
Nutrient pollution constitutes one of the main drivers of global change in the coastal oceans. The present work constitutes the first study monitoring two types of epigenetic mechanisms during a 7‐week‐long experiment in which staghorn coral fragments were exposed to nutrient stress. This work sheds light into the role and the interactions among different mechanisms mediating epigenetic effects in corals.</description><identifier>ISSN: 2045-7758</identifier><identifier>EISSN: 2045-7758</identifier><identifier>DOI: 10.1002/ece3.4678</identifier><identifier>PMID: 30598811</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>acclimatization ; Acropora cervicornis ; Bleaching ; cnidarians ; Coastal ecology ; Coral reef ecosystems ; Coral reefs ; Corals ; Deoxyribonucleic acid ; DNA ; DNA damage ; DNA methylation ; DNA repair ; Ecological effects ; Ecological monitoring ; Environmental changes ; Epigenetics ; Fitness ; global change ; Histone H2A ; histones ; Nitrogen ; Nitrogen enrichment ; Nutrient dynamics ; Nutrient enrichment ; Nutrient pollution ; Nutrients ; Oceans ; Original Research ; Phosphorus ; Phosphorylation ; Physiological effects ; pollution ; Restoration ; Strategic management ; Synergistic effect ; Thermal stress</subject><ispartof>Ecology and evolution, 2018-12, Vol.8 (23), p.12193-12207</ispartof><rights>2018 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5098-f4a19fdec5af835121577cc4d101cf02a4520c9ba03adb19e93faa69fbc874623</citedby><cites>FETCH-LOGICAL-c5098-f4a19fdec5af835121577cc4d101cf02a4520c9ba03adb19e93faa69fbc874623</cites><orcidid>0000-0001-9955-4721 ; 0000-0002-8041-9770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6303763/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6303763/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30598811$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodriguez‐Casariego, Javier A.</creatorcontrib><creatorcontrib>Ladd, Mark C.</creatorcontrib><creatorcontrib>Shantz, Andrew A.</creatorcontrib><creatorcontrib>Lopes, Christian</creatorcontrib><creatorcontrib>Cheema, Manjinder S.</creatorcontrib><creatorcontrib>Kim, Bohyun</creatorcontrib><creatorcontrib>Roberts, Steven B.</creatorcontrib><creatorcontrib>Fourqurean, James W.</creatorcontrib><creatorcontrib>Ausio, Juan</creatorcontrib><creatorcontrib>Burkepile, Deron E.</creatorcontrib><creatorcontrib>Eirin‐Lopez, Jose M.</creatorcontrib><title>Coral epigenetic responses to nutrient stress: Histone H2A.X phosphorylation dynamics and DNA methylation in the staghorn coral Acropora cervicornis</title><title>Ecology and evolution</title><addtitle>Ecol Evol</addtitle><description>Nutrient pollution and thermal stress constitute two of the main drivers of global change in the coastal oceans. While different studies have addressed the physiological effects and ecological consequences of these stressors in corals, the role of acquired modifications in the coral epigenome during acclimatory and adaptive responses remains unknown. The present work aims to address that gap by monitoring two types of epigenetic mechanisms, namely histone modifications and DNA methylation, during a 7‐week‐long experiment in which staghorn coral fragments (Acropora cervicornis) were exposed to nutrient stress (nitrogen, nitrogen + phosphorus) in the presence of thermal stress. The major conclusion of this experiment can be summarized by two main results: First, coral holobiont responses to the combined effects of nutrient enrichment and thermal stress involve the post‐translational phosphorylation of the histone variant H2A.X (involved in responses to DNA damage), as well as nonsignificant modifications in DNA methylation trends. Second, the reduction in H2A.X phosphorylation (and the subsequent potential impairment of DNA repair mechanisms) observed after prolonged coral exposure to nitrogen enrichment and thermal stress is consistent with the symbiont‐driven phosphorus limitation previously observed in corals subject to nitrogen enrichment. The alteration of this epigenetic mechanism could help to explain the synergistic effects of nutrient imbalance and thermal stress on coral fitness (i.e., increased bleaching and mortality) while supporting the positive effect of phosphorus addition to improving coral resilience to thermal stress. Overall, this work provides new insights into the role of epigenetic mechanisms during coral responses to global change, discussing future research directions and the potential benefits for improving restoration, management and conservation of coral reef ecosystems worldwide.
Nutrient pollution constitutes one of the main drivers of global change in the coastal oceans. The present work constitutes the first study monitoring two types of epigenetic mechanisms during a 7‐week‐long experiment in which staghorn coral fragments were exposed to nutrient stress. This work sheds light into the role and the interactions among different mechanisms mediating epigenetic effects in corals.</description><subject>acclimatization</subject><subject>Acropora cervicornis</subject><subject>Bleaching</subject><subject>cnidarians</subject><subject>Coastal ecology</subject><subject>Coral reef ecosystems</subject><subject>Coral reefs</subject><subject>Corals</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA methylation</subject><subject>DNA repair</subject><subject>Ecological effects</subject><subject>Ecological monitoring</subject><subject>Environmental changes</subject><subject>Epigenetics</subject><subject>Fitness</subject><subject>global change</subject><subject>Histone H2A</subject><subject>histones</subject><subject>Nitrogen</subject><subject>Nitrogen enrichment</subject><subject>Nutrient dynamics</subject><subject>Nutrient enrichment</subject><subject>Nutrient pollution</subject><subject>Nutrients</subject><subject>Oceans</subject><subject>Original Research</subject><subject>Phosphorus</subject><subject>Phosphorylation</subject><subject>Physiological effects</subject><subject>pollution</subject><subject>Restoration</subject><subject>Strategic management</subject><subject>Synergistic effect</subject><subject>Thermal stress</subject><issn>2045-7758</issn><issn>2045-7758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UV1LYzEQDYuyivqwf2AJ-ORDaz5ucu_dB6HUagXRF4V9C2nu3DbSJtckrfR_7A_e9EPRBwfCDDMnZ85wEPpFSZ8Swi7BAO8Xsqx-oGNGCtErS1EdfKqP0FmMLySHJKwg5U90xImoq4rSY_Rv6IOeY-jsFBwka3CA2HkXIeLksVumYMElHFPuxz94bGPyDvCYDfp_cTfzMb-wnutkvcPN2umFNRFr1-DrhwFeQJq9D63DaQaZSU_zF4fNdvPABN_lChsIK5t7zsZTdNjqeYSzfT5Bzzejp-G4d_94ezcc3PeMIHXVawtN67YBI3RbcUEZFWVpTNFQQk1LmC4EI6aeaMJ1M6E11LzVWtbtxFRlIRk_QVc73m45WUBj8qFZkuqCXeiwVl5b9XXi7ExN_UpJTngpeSY43xME_7qEmNSLXwaXNassppZcMiky6mKHyqfGGKD92ECJ2nioNh6qjYcZ-_uzpA_ku2MZcLkDvNk5rL9nUqPhiG8p_wOt26nc</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Rodriguez‐Casariego, Javier A.</creator><creator>Ladd, Mark C.</creator><creator>Shantz, Andrew A.</creator><creator>Lopes, Christian</creator><creator>Cheema, Manjinder S.</creator><creator>Kim, Bohyun</creator><creator>Roberts, Steven B.</creator><creator>Fourqurean, James W.</creator><creator>Ausio, Juan</creator><creator>Burkepile, Deron E.</creator><creator>Eirin‐Lopez, Jose M.</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9955-4721</orcidid><orcidid>https://orcid.org/0000-0002-8041-9770</orcidid></search><sort><creationdate>201812</creationdate><title>Coral epigenetic responses to nutrient stress: Histone H2A.X phosphorylation dynamics and DNA methylation in the staghorn coral Acropora cervicornis</title><author>Rodriguez‐Casariego, Javier A. ; Ladd, Mark C. ; Shantz, Andrew A. ; Lopes, Christian ; Cheema, Manjinder S. ; Kim, Bohyun ; Roberts, Steven B. ; Fourqurean, James W. ; Ausio, Juan ; Burkepile, Deron E. ; Eirin‐Lopez, Jose M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5098-f4a19fdec5af835121577cc4d101cf02a4520c9ba03adb19e93faa69fbc874623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>acclimatization</topic><topic>Acropora cervicornis</topic><topic>Bleaching</topic><topic>cnidarians</topic><topic>Coastal ecology</topic><topic>Coral reef ecosystems</topic><topic>Coral reefs</topic><topic>Corals</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA methylation</topic><topic>DNA repair</topic><topic>Ecological effects</topic><topic>Ecological monitoring</topic><topic>Environmental changes</topic><topic>Epigenetics</topic><topic>Fitness</topic><topic>global change</topic><topic>Histone H2A</topic><topic>histones</topic><topic>Nitrogen</topic><topic>Nitrogen enrichment</topic><topic>Nutrient dynamics</topic><topic>Nutrient enrichment</topic><topic>Nutrient pollution</topic><topic>Nutrients</topic><topic>Oceans</topic><topic>Original Research</topic><topic>Phosphorus</topic><topic>Phosphorylation</topic><topic>Physiological effects</topic><topic>pollution</topic><topic>Restoration</topic><topic>Strategic management</topic><topic>Synergistic effect</topic><topic>Thermal stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodriguez‐Casariego, Javier A.</creatorcontrib><creatorcontrib>Ladd, Mark C.</creatorcontrib><creatorcontrib>Shantz, Andrew A.</creatorcontrib><creatorcontrib>Lopes, Christian</creatorcontrib><creatorcontrib>Cheema, Manjinder S.</creatorcontrib><creatorcontrib>Kim, Bohyun</creatorcontrib><creatorcontrib>Roberts, Steven B.</creatorcontrib><creatorcontrib>Fourqurean, James W.</creatorcontrib><creatorcontrib>Ausio, Juan</creatorcontrib><creatorcontrib>Burkepile, Deron E.</creatorcontrib><creatorcontrib>Eirin‐Lopez, Jose M.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Ecology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodriguez‐Casariego, Javier A.</au><au>Ladd, Mark C.</au><au>Shantz, Andrew A.</au><au>Lopes, Christian</au><au>Cheema, Manjinder S.</au><au>Kim, Bohyun</au><au>Roberts, Steven B.</au><au>Fourqurean, James W.</au><au>Ausio, Juan</au><au>Burkepile, Deron E.</au><au>Eirin‐Lopez, Jose M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coral epigenetic responses to nutrient stress: Histone H2A.X phosphorylation dynamics and DNA methylation in the staghorn coral Acropora cervicornis</atitle><jtitle>Ecology and evolution</jtitle><addtitle>Ecol Evol</addtitle><date>2018-12</date><risdate>2018</risdate><volume>8</volume><issue>23</issue><spage>12193</spage><epage>12207</epage><pages>12193-12207</pages><issn>2045-7758</issn><eissn>2045-7758</eissn><abstract>Nutrient pollution and thermal stress constitute two of the main drivers of global change in the coastal oceans. While different studies have addressed the physiological effects and ecological consequences of these stressors in corals, the role of acquired modifications in the coral epigenome during acclimatory and adaptive responses remains unknown. The present work aims to address that gap by monitoring two types of epigenetic mechanisms, namely histone modifications and DNA methylation, during a 7‐week‐long experiment in which staghorn coral fragments (Acropora cervicornis) were exposed to nutrient stress (nitrogen, nitrogen + phosphorus) in the presence of thermal stress. The major conclusion of this experiment can be summarized by two main results: First, coral holobiont responses to the combined effects of nutrient enrichment and thermal stress involve the post‐translational phosphorylation of the histone variant H2A.X (involved in responses to DNA damage), as well as nonsignificant modifications in DNA methylation trends. Second, the reduction in H2A.X phosphorylation (and the subsequent potential impairment of DNA repair mechanisms) observed after prolonged coral exposure to nitrogen enrichment and thermal stress is consistent with the symbiont‐driven phosphorus limitation previously observed in corals subject to nitrogen enrichment. The alteration of this epigenetic mechanism could help to explain the synergistic effects of nutrient imbalance and thermal stress on coral fitness (i.e., increased bleaching and mortality) while supporting the positive effect of phosphorus addition to improving coral resilience to thermal stress. Overall, this work provides new insights into the role of epigenetic mechanisms during coral responses to global change, discussing future research directions and the potential benefits for improving restoration, management and conservation of coral reef ecosystems worldwide.
Nutrient pollution constitutes one of the main drivers of global change in the coastal oceans. The present work constitutes the first study monitoring two types of epigenetic mechanisms during a 7‐week‐long experiment in which staghorn coral fragments were exposed to nutrient stress. This work sheds light into the role and the interactions among different mechanisms mediating epigenetic effects in corals.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>30598811</pmid><doi>10.1002/ece3.4678</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9955-4721</orcidid><orcidid>https://orcid.org/0000-0002-8041-9770</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-7758 |
ispartof | Ecology and evolution, 2018-12, Vol.8 (23), p.12193-12207 |
issn | 2045-7758 2045-7758 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6303763 |
source | DOAJ Directory of Open Access Journals; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; PubMed Central |
subjects | acclimatization Acropora cervicornis Bleaching cnidarians Coastal ecology Coral reef ecosystems Coral reefs Corals Deoxyribonucleic acid DNA DNA damage DNA methylation DNA repair Ecological effects Ecological monitoring Environmental changes Epigenetics Fitness global change Histone H2A histones Nitrogen Nitrogen enrichment Nutrient dynamics Nutrient enrichment Nutrient pollution Nutrients Oceans Original Research Phosphorus Phosphorylation Physiological effects pollution Restoration Strategic management Synergistic effect Thermal stress |
title | Coral epigenetic responses to nutrient stress: Histone H2A.X phosphorylation dynamics and DNA methylation in the staghorn coral Acropora cervicornis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A37%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coral%20epigenetic%20responses%20to%20nutrient%20stress:%20Histone%20H2A.X%20phosphorylation%20dynamics%20and%20DNA%20methylation%20in%20the%20staghorn%20coral%20Acropora%20cervicornis&rft.jtitle=Ecology%20and%20evolution&rft.au=Rodriguez%E2%80%90Casariego,%20Javier%20A.&rft.date=2018-12&rft.volume=8&rft.issue=23&rft.spage=12193&rft.epage=12207&rft.pages=12193-12207&rft.issn=2045-7758&rft.eissn=2045-7758&rft_id=info:doi/10.1002/ece3.4678&rft_dat=%3Cproquest_pubme%3E2159636265%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159636265&rft_id=info:pmid/30598811&rfr_iscdi=true |