Highly sensitive ammonia sensor for diagnostic purpose using reduced graphene oxide and conductive polymer

In this study, we fabricate ammonia sensors based on hybrid thin films of reduced graphene oxide (RGO) and conducting polymers using the Langmuir-Schaefer (LS) technique. The RGO is first prepared using hydrazine (Hy) and/or pyrrole (Py) as the reducing agents, and the resulting pyrrole-reduced RGO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2018-12, Vol.8 (1), p.18030-12, Article 18030
Hauptverfasser: Ly, Tan Nhiem, Park, Sangkwon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 1
container_start_page 18030
container_title Scientific reports
container_volume 8
creator Ly, Tan Nhiem
Park, Sangkwon
description In this study, we fabricate ammonia sensors based on hybrid thin films of reduced graphene oxide (RGO) and conducting polymers using the Langmuir-Schaefer (LS) technique. The RGO is first prepared using hydrazine (Hy) and/or pyrrole (Py) as the reducing agents, and the resulting pyrrole-reduced RGO (Py-RGO) is then hybridized with polyaniline (PANI) and/or polypyrrole (PPy) by in-situ polymerization. The four different thin films of Hy-RGO, Py-RGO, Py-RGO/PANI, and Py-RGO/PPy are deposited on interdigitated microelectrodes by the LS techniques, and their structures are characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results of ammonia sensing experiments indicate that the Py-RGO/PANI film exhibits the highest sensor response of these four films, and that it exhibits high reproducibility, high linearity of concentration dependency, and a very low detection limit (0.2 ppm) both in N 2 and exhaled air environments. The current gas sensor, therefore, has potential for diagnostic purposes because it has the additional advantages of facile fabrication, ease of use at room temperature, and portability compared to conventional high-sensitivity ammonia sensors.
doi_str_mv 10.1038/s41598-018-36468-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6303394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2159984234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-3f79dd8837a421ed58d9cdffce1c792937b6d4f649e1009eb5e8a69607c21cfb3</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVJaUKSP9BDEfSSixN92ZYuhRDaJhDoJT0LrTT2arElV7JDN7--ym6ajx4qEBo0z7ya0YvQR0rOKeHyIgtaK1kRKiveiEZWD-_QESOirhhn7OBVfIhOc96QsmqmBFUf0CEndVu3Uh6hzbXv18MWZwjZz_4esBnHGLzZ3cSEu7KdN32IefYWT0uaYga8ZB96nMAtFhzuk5nWEADH394VieCwjaHkdopTHLYjpBP0vjNDhtOn8xj9_Pb17uq6uv3x_ebq8rayNaVzxbtWOSclb41gFFwtnbKu6yxQ2yqmeLtqnOgaoYASomBVgzSNakhrGbXdih-jL3vdaVmN4CyEOZlBT8mPJm11NF6_zQS_1n281w0nnCtRBM6eBFL8tUCe9eizhWEwAeKSNSs_r6Rg_BH9_A-6iUsKZbwd1RJSeiwU21M2xZwTdM_NUKIf3dR7N3VxU-_c1A-l6NPrMZ5L_npXAL4HckmFHtLL2_-R_QO9WK5r</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159700100</pqid></control><display><type>article</type><title>Highly sensitive ammonia sensor for diagnostic purpose using reduced graphene oxide and conductive polymer</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ly, Tan Nhiem ; Park, Sangkwon</creator><creatorcontrib>Ly, Tan Nhiem ; Park, Sangkwon</creatorcontrib><description>In this study, we fabricate ammonia sensors based on hybrid thin films of reduced graphene oxide (RGO) and conducting polymers using the Langmuir-Schaefer (LS) technique. The RGO is first prepared using hydrazine (Hy) and/or pyrrole (Py) as the reducing agents, and the resulting pyrrole-reduced RGO (Py-RGO) is then hybridized with polyaniline (PANI) and/or polypyrrole (PPy) by in-situ polymerization. The four different thin films of Hy-RGO, Py-RGO, Py-RGO/PANI, and Py-RGO/PPy are deposited on interdigitated microelectrodes by the LS techniques, and their structures are characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results of ammonia sensing experiments indicate that the Py-RGO/PANI film exhibits the highest sensor response of these four films, and that it exhibits high reproducibility, high linearity of concentration dependency, and a very low detection limit (0.2 ppm) both in N 2 and exhaled air environments. The current gas sensor, therefore, has potential for diagnostic purposes because it has the additional advantages of facile fabrication, ease of use at room temperature, and portability compared to conventional high-sensitivity ammonia sensors.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-36468-z</identifier><identifier>PMID: 30575788</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/133 ; 639/166/898 ; 639/301/357/918/1052 ; Ammonia ; Atomic force microscopy ; Fabrication ; Humanities and Social Sciences ; Hydrazine ; Microelectrodes ; Microscopy ; multidisciplinary ; Polymerization ; Polymers ; Polypyrroles ; Reducing agents ; Scanning electron microscopy ; Science ; Science (multidisciplinary) ; Sensors ; Thin films</subject><ispartof>Scientific reports, 2018-12, Vol.8 (1), p.18030-12, Article 18030</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-3f79dd8837a421ed58d9cdffce1c792937b6d4f649e1009eb5e8a69607c21cfb3</citedby><cites>FETCH-LOGICAL-c511t-3f79dd8837a421ed58d9cdffce1c792937b6d4f649e1009eb5e8a69607c21cfb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6303394/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6303394/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30575788$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ly, Tan Nhiem</creatorcontrib><creatorcontrib>Park, Sangkwon</creatorcontrib><title>Highly sensitive ammonia sensor for diagnostic purpose using reduced graphene oxide and conductive polymer</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>In this study, we fabricate ammonia sensors based on hybrid thin films of reduced graphene oxide (RGO) and conducting polymers using the Langmuir-Schaefer (LS) technique. The RGO is first prepared using hydrazine (Hy) and/or pyrrole (Py) as the reducing agents, and the resulting pyrrole-reduced RGO (Py-RGO) is then hybridized with polyaniline (PANI) and/or polypyrrole (PPy) by in-situ polymerization. The four different thin films of Hy-RGO, Py-RGO, Py-RGO/PANI, and Py-RGO/PPy are deposited on interdigitated microelectrodes by the LS techniques, and their structures are characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results of ammonia sensing experiments indicate that the Py-RGO/PANI film exhibits the highest sensor response of these four films, and that it exhibits high reproducibility, high linearity of concentration dependency, and a very low detection limit (0.2 ppm) both in N 2 and exhaled air environments. The current gas sensor, therefore, has potential for diagnostic purposes because it has the additional advantages of facile fabrication, ease of use at room temperature, and portability compared to conventional high-sensitivity ammonia sensors.</description><subject>140/133</subject><subject>639/166/898</subject><subject>639/301/357/918/1052</subject><subject>Ammonia</subject><subject>Atomic force microscopy</subject><subject>Fabrication</subject><subject>Humanities and Social Sciences</subject><subject>Hydrazine</subject><subject>Microelectrodes</subject><subject>Microscopy</subject><subject>multidisciplinary</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Polypyrroles</subject><subject>Reducing agents</subject><subject>Scanning electron microscopy</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensors</subject><subject>Thin films</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1r3DAQhkVJaUKSP9BDEfSSixN92ZYuhRDaJhDoJT0LrTT2arElV7JDN7--ym6ajx4qEBo0z7ya0YvQR0rOKeHyIgtaK1kRKiveiEZWD-_QESOirhhn7OBVfIhOc96QsmqmBFUf0CEndVu3Uh6hzbXv18MWZwjZz_4esBnHGLzZ3cSEu7KdN32IefYWT0uaYga8ZB96nMAtFhzuk5nWEADH394VieCwjaHkdopTHLYjpBP0vjNDhtOn8xj9_Pb17uq6uv3x_ebq8rayNaVzxbtWOSclb41gFFwtnbKu6yxQ2yqmeLtqnOgaoYASomBVgzSNakhrGbXdih-jL3vdaVmN4CyEOZlBT8mPJm11NF6_zQS_1n281w0nnCtRBM6eBFL8tUCe9eizhWEwAeKSNSs_r6Rg_BH9_A-6iUsKZbwd1RJSeiwU21M2xZwTdM_NUKIf3dR7N3VxU-_c1A-l6NPrMZ5L_npXAL4HckmFHtLL2_-R_QO9WK5r</recordid><startdate>20181221</startdate><enddate>20181221</enddate><creator>Ly, Tan Nhiem</creator><creator>Park, Sangkwon</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20181221</creationdate><title>Highly sensitive ammonia sensor for diagnostic purpose using reduced graphene oxide and conductive polymer</title><author>Ly, Tan Nhiem ; Park, Sangkwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-3f79dd8837a421ed58d9cdffce1c792937b6d4f649e1009eb5e8a69607c21cfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>140/133</topic><topic>639/166/898</topic><topic>639/301/357/918/1052</topic><topic>Ammonia</topic><topic>Atomic force microscopy</topic><topic>Fabrication</topic><topic>Humanities and Social Sciences</topic><topic>Hydrazine</topic><topic>Microelectrodes</topic><topic>Microscopy</topic><topic>multidisciplinary</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Polypyrroles</topic><topic>Reducing agents</topic><topic>Scanning electron microscopy</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensors</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ly, Tan Nhiem</creatorcontrib><creatorcontrib>Park, Sangkwon</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ly, Tan Nhiem</au><au>Park, Sangkwon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly sensitive ammonia sensor for diagnostic purpose using reduced graphene oxide and conductive polymer</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-12-21</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>18030</spage><epage>12</epage><pages>18030-12</pages><artnum>18030</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>In this study, we fabricate ammonia sensors based on hybrid thin films of reduced graphene oxide (RGO) and conducting polymers using the Langmuir-Schaefer (LS) technique. The RGO is first prepared using hydrazine (Hy) and/or pyrrole (Py) as the reducing agents, and the resulting pyrrole-reduced RGO (Py-RGO) is then hybridized with polyaniline (PANI) and/or polypyrrole (PPy) by in-situ polymerization. The four different thin films of Hy-RGO, Py-RGO, Py-RGO/PANI, and Py-RGO/PPy are deposited on interdigitated microelectrodes by the LS techniques, and their structures are characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results of ammonia sensing experiments indicate that the Py-RGO/PANI film exhibits the highest sensor response of these four films, and that it exhibits high reproducibility, high linearity of concentration dependency, and a very low detection limit (0.2 ppm) both in N 2 and exhaled air environments. The current gas sensor, therefore, has potential for diagnostic purposes because it has the additional advantages of facile fabrication, ease of use at room temperature, and portability compared to conventional high-sensitivity ammonia sensors.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30575788</pmid><doi>10.1038/s41598-018-36468-z</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2018-12, Vol.8 (1), p.18030-12, Article 18030
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6303394
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 140/133
639/166/898
639/301/357/918/1052
Ammonia
Atomic force microscopy
Fabrication
Humanities and Social Sciences
Hydrazine
Microelectrodes
Microscopy
multidisciplinary
Polymerization
Polymers
Polypyrroles
Reducing agents
Scanning electron microscopy
Science
Science (multidisciplinary)
Sensors
Thin films
title Highly sensitive ammonia sensor for diagnostic purpose using reduced graphene oxide and conductive polymer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20sensitive%20ammonia%20sensor%20for%20diagnostic%20purpose%20using%20reduced%20graphene%20oxide%20and%20conductive%20polymer&rft.jtitle=Scientific%20reports&rft.au=Ly,%20Tan%20Nhiem&rft.date=2018-12-21&rft.volume=8&rft.issue=1&rft.spage=18030&rft.epage=12&rft.pages=18030-12&rft.artnum=18030&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-36468-z&rft_dat=%3Cproquest_pubme%3E2159984234%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159700100&rft_id=info:pmid/30575788&rfr_iscdi=true