Highly sensitive ammonia sensor for diagnostic purpose using reduced graphene oxide and conductive polymer
In this study, we fabricate ammonia sensors based on hybrid thin films of reduced graphene oxide (RGO) and conducting polymers using the Langmuir-Schaefer (LS) technique. The RGO is first prepared using hydrazine (Hy) and/or pyrrole (Py) as the reducing agents, and the resulting pyrrole-reduced RGO...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2018-12, Vol.8 (1), p.18030-12, Article 18030 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 1 |
container_start_page | 18030 |
container_title | Scientific reports |
container_volume | 8 |
creator | Ly, Tan Nhiem Park, Sangkwon |
description | In this study, we fabricate ammonia sensors based on hybrid thin films of reduced graphene oxide (RGO) and conducting polymers using the Langmuir-Schaefer (LS) technique. The RGO is first prepared using hydrazine (Hy) and/or pyrrole (Py) as the reducing agents, and the resulting pyrrole-reduced RGO (Py-RGO) is then hybridized with polyaniline (PANI) and/or polypyrrole (PPy) by
in-situ
polymerization. The four different thin films of Hy-RGO, Py-RGO, Py-RGO/PANI, and Py-RGO/PPy are deposited on interdigitated microelectrodes by the LS techniques, and their structures are characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results of ammonia sensing experiments indicate that the Py-RGO/PANI film exhibits the highest sensor response of these four films, and that it exhibits high reproducibility, high linearity of concentration dependency, and a very low detection limit (0.2 ppm) both in N
2
and exhaled air environments. The current gas sensor, therefore, has potential for diagnostic purposes because it has the additional advantages of facile fabrication, ease of use at room temperature, and portability compared to conventional high-sensitivity ammonia sensors. |
doi_str_mv | 10.1038/s41598-018-36468-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6303394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2159984234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-3f79dd8837a421ed58d9cdffce1c792937b6d4f649e1009eb5e8a69607c21cfb3</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVJaUKSP9BDEfSSixN92ZYuhRDaJhDoJT0LrTT2arElV7JDN7--ym6ajx4qEBo0z7ya0YvQR0rOKeHyIgtaK1kRKiveiEZWD-_QESOirhhn7OBVfIhOc96QsmqmBFUf0CEndVu3Uh6hzbXv18MWZwjZz_4esBnHGLzZ3cSEu7KdN32IefYWT0uaYga8ZB96nMAtFhzuk5nWEADH394VieCwjaHkdopTHLYjpBP0vjNDhtOn8xj9_Pb17uq6uv3x_ebq8rayNaVzxbtWOSclb41gFFwtnbKu6yxQ2yqmeLtqnOgaoYASomBVgzSNakhrGbXdih-jL3vdaVmN4CyEOZlBT8mPJm11NF6_zQS_1n281w0nnCtRBM6eBFL8tUCe9eizhWEwAeKSNSs_r6Rg_BH9_A-6iUsKZbwd1RJSeiwU21M2xZwTdM_NUKIf3dR7N3VxU-_c1A-l6NPrMZ5L_npXAL4HckmFHtLL2_-R_QO9WK5r</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159700100</pqid></control><display><type>article</type><title>Highly sensitive ammonia sensor for diagnostic purpose using reduced graphene oxide and conductive polymer</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ly, Tan Nhiem ; Park, Sangkwon</creator><creatorcontrib>Ly, Tan Nhiem ; Park, Sangkwon</creatorcontrib><description>In this study, we fabricate ammonia sensors based on hybrid thin films of reduced graphene oxide (RGO) and conducting polymers using the Langmuir-Schaefer (LS) technique. The RGO is first prepared using hydrazine (Hy) and/or pyrrole (Py) as the reducing agents, and the resulting pyrrole-reduced RGO (Py-RGO) is then hybridized with polyaniline (PANI) and/or polypyrrole (PPy) by
in-situ
polymerization. The four different thin films of Hy-RGO, Py-RGO, Py-RGO/PANI, and Py-RGO/PPy are deposited on interdigitated microelectrodes by the LS techniques, and their structures are characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results of ammonia sensing experiments indicate that the Py-RGO/PANI film exhibits the highest sensor response of these four films, and that it exhibits high reproducibility, high linearity of concentration dependency, and a very low detection limit (0.2 ppm) both in N
2
and exhaled air environments. The current gas sensor, therefore, has potential for diagnostic purposes because it has the additional advantages of facile fabrication, ease of use at room temperature, and portability compared to conventional high-sensitivity ammonia sensors.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-36468-z</identifier><identifier>PMID: 30575788</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/133 ; 639/166/898 ; 639/301/357/918/1052 ; Ammonia ; Atomic force microscopy ; Fabrication ; Humanities and Social Sciences ; Hydrazine ; Microelectrodes ; Microscopy ; multidisciplinary ; Polymerization ; Polymers ; Polypyrroles ; Reducing agents ; Scanning electron microscopy ; Science ; Science (multidisciplinary) ; Sensors ; Thin films</subject><ispartof>Scientific reports, 2018-12, Vol.8 (1), p.18030-12, Article 18030</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-3f79dd8837a421ed58d9cdffce1c792937b6d4f649e1009eb5e8a69607c21cfb3</citedby><cites>FETCH-LOGICAL-c511t-3f79dd8837a421ed58d9cdffce1c792937b6d4f649e1009eb5e8a69607c21cfb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6303394/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6303394/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30575788$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ly, Tan Nhiem</creatorcontrib><creatorcontrib>Park, Sangkwon</creatorcontrib><title>Highly sensitive ammonia sensor for diagnostic purpose using reduced graphene oxide and conductive polymer</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>In this study, we fabricate ammonia sensors based on hybrid thin films of reduced graphene oxide (RGO) and conducting polymers using the Langmuir-Schaefer (LS) technique. The RGO is first prepared using hydrazine (Hy) and/or pyrrole (Py) as the reducing agents, and the resulting pyrrole-reduced RGO (Py-RGO) is then hybridized with polyaniline (PANI) and/or polypyrrole (PPy) by
in-situ
polymerization. The four different thin films of Hy-RGO, Py-RGO, Py-RGO/PANI, and Py-RGO/PPy are deposited on interdigitated microelectrodes by the LS techniques, and their structures are characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results of ammonia sensing experiments indicate that the Py-RGO/PANI film exhibits the highest sensor response of these four films, and that it exhibits high reproducibility, high linearity of concentration dependency, and a very low detection limit (0.2 ppm) both in N
2
and exhaled air environments. The current gas sensor, therefore, has potential for diagnostic purposes because it has the additional advantages of facile fabrication, ease of use at room temperature, and portability compared to conventional high-sensitivity ammonia sensors.</description><subject>140/133</subject><subject>639/166/898</subject><subject>639/301/357/918/1052</subject><subject>Ammonia</subject><subject>Atomic force microscopy</subject><subject>Fabrication</subject><subject>Humanities and Social Sciences</subject><subject>Hydrazine</subject><subject>Microelectrodes</subject><subject>Microscopy</subject><subject>multidisciplinary</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Polypyrroles</subject><subject>Reducing agents</subject><subject>Scanning electron microscopy</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensors</subject><subject>Thin films</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1r3DAQhkVJaUKSP9BDEfSSixN92ZYuhRDaJhDoJT0LrTT2arElV7JDN7--ym6ajx4qEBo0z7ya0YvQR0rOKeHyIgtaK1kRKiveiEZWD-_QESOirhhn7OBVfIhOc96QsmqmBFUf0CEndVu3Uh6hzbXv18MWZwjZz_4esBnHGLzZ3cSEu7KdN32IefYWT0uaYga8ZB96nMAtFhzuk5nWEADH394VieCwjaHkdopTHLYjpBP0vjNDhtOn8xj9_Pb17uq6uv3x_ebq8rayNaVzxbtWOSclb41gFFwtnbKu6yxQ2yqmeLtqnOgaoYASomBVgzSNakhrGbXdih-jL3vdaVmN4CyEOZlBT8mPJm11NF6_zQS_1n281w0nnCtRBM6eBFL8tUCe9eizhWEwAeKSNSs_r6Rg_BH9_A-6iUsKZbwd1RJSeiwU21M2xZwTdM_NUKIf3dR7N3VxU-_c1A-l6NPrMZ5L_npXAL4HckmFHtLL2_-R_QO9WK5r</recordid><startdate>20181221</startdate><enddate>20181221</enddate><creator>Ly, Tan Nhiem</creator><creator>Park, Sangkwon</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20181221</creationdate><title>Highly sensitive ammonia sensor for diagnostic purpose using reduced graphene oxide and conductive polymer</title><author>Ly, Tan Nhiem ; Park, Sangkwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-3f79dd8837a421ed58d9cdffce1c792937b6d4f649e1009eb5e8a69607c21cfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>140/133</topic><topic>639/166/898</topic><topic>639/301/357/918/1052</topic><topic>Ammonia</topic><topic>Atomic force microscopy</topic><topic>Fabrication</topic><topic>Humanities and Social Sciences</topic><topic>Hydrazine</topic><topic>Microelectrodes</topic><topic>Microscopy</topic><topic>multidisciplinary</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Polypyrroles</topic><topic>Reducing agents</topic><topic>Scanning electron microscopy</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensors</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ly, Tan Nhiem</creatorcontrib><creatorcontrib>Park, Sangkwon</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ly, Tan Nhiem</au><au>Park, Sangkwon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly sensitive ammonia sensor for diagnostic purpose using reduced graphene oxide and conductive polymer</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-12-21</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>18030</spage><epage>12</epage><pages>18030-12</pages><artnum>18030</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>In this study, we fabricate ammonia sensors based on hybrid thin films of reduced graphene oxide (RGO) and conducting polymers using the Langmuir-Schaefer (LS) technique. The RGO is first prepared using hydrazine (Hy) and/or pyrrole (Py) as the reducing agents, and the resulting pyrrole-reduced RGO (Py-RGO) is then hybridized with polyaniline (PANI) and/or polypyrrole (PPy) by
in-situ
polymerization. The four different thin films of Hy-RGO, Py-RGO, Py-RGO/PANI, and Py-RGO/PPy are deposited on interdigitated microelectrodes by the LS techniques, and their structures are characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results of ammonia sensing experiments indicate that the Py-RGO/PANI film exhibits the highest sensor response of these four films, and that it exhibits high reproducibility, high linearity of concentration dependency, and a very low detection limit (0.2 ppm) both in N
2
and exhaled air environments. The current gas sensor, therefore, has potential for diagnostic purposes because it has the additional advantages of facile fabrication, ease of use at room temperature, and portability compared to conventional high-sensitivity ammonia sensors.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30575788</pmid><doi>10.1038/s41598-018-36468-z</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2018-12, Vol.8 (1), p.18030-12, Article 18030 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6303394 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 140/133 639/166/898 639/301/357/918/1052 Ammonia Atomic force microscopy Fabrication Humanities and Social Sciences Hydrazine Microelectrodes Microscopy multidisciplinary Polymerization Polymers Polypyrroles Reducing agents Scanning electron microscopy Science Science (multidisciplinary) Sensors Thin films |
title | Highly sensitive ammonia sensor for diagnostic purpose using reduced graphene oxide and conductive polymer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20sensitive%20ammonia%20sensor%20for%20diagnostic%20purpose%20using%20reduced%20graphene%20oxide%20and%20conductive%20polymer&rft.jtitle=Scientific%20reports&rft.au=Ly,%20Tan%20Nhiem&rft.date=2018-12-21&rft.volume=8&rft.issue=1&rft.spage=18030&rft.epage=12&rft.pages=18030-12&rft.artnum=18030&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-36468-z&rft_dat=%3Cproquest_pubme%3E2159984234%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159700100&rft_id=info:pmid/30575788&rfr_iscdi=true |