Freezing copper as a noble metal-like catalyst for preliminary hydrogenation

The control of product distribution in a multistep catalytic selective hydrogenation reaction is challenging. For instance, the deep hydrogenation of dimethyl oxalate (DMO) is inclined to proceed over Cu/SiO catalysts because of inevitable coexistence of Cu and Cu , leading to hard acquisition of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2018-12, Vol.4 (12), p.eaau3275-eaau3275
Hauptverfasser: Sun, Jian, Yu, Jiafeng, Ma, Qingxiang, Meng, Fanqiong, Wei, Xiaoxuan, Sun, Yannan, Tsubaki, Noritatsu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page eaau3275
container_issue 12
container_start_page eaau3275
container_title Science advances
container_volume 4
creator Sun, Jian
Yu, Jiafeng
Ma, Qingxiang
Meng, Fanqiong
Wei, Xiaoxuan
Sun, Yannan
Tsubaki, Noritatsu
description The control of product distribution in a multistep catalytic selective hydrogenation reaction is challenging. For instance, the deep hydrogenation of dimethyl oxalate (DMO) is inclined to proceed over Cu/SiO catalysts because of inevitable coexistence of Cu and Cu , leading to hard acquisition of the preliminary hydrogenation product, methyl glycolate (MG). Here, the oriented DMO hydrogenation into MG is achieved over the sputtering (SP) Cu/SiO catalysts with a selectivity of more than 87% via freezing Cu in a zero-valence state. Our density functional theory calculation results revealed that Cu is the active site of the preliminary hydrogenation step, selectively converting DMO to MG via •H addition, while Cu is a key factor for deep hydrogenation. The prominent Coster-Kronig transition enhancement is observed over SP-Cu/SiO from Auger spectra, indicating that the electron density of inner shells in Cu atoms is enhanced by high-energy argon plasma bombardment during the SP process. Thus, the "penetration effect" of outermost electrons could also be enhanced, making these Cu nanoparticles exhibit high oxidation resistance ability and present noble metal-like behaviors as Au or Ag. Therefore, the regulation of Cu chemical properties by changing the electron structure is a feasible strategy to control the hydrogenation products, inspiring the rational design of selective hydrogenation catalysts.
doi_str_mv 10.1126/sciadv.aau3275
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6303123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2161065127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-b2dfc81fd263e597035c1d2b395f4a9ed9149f503dd06cc54d20460710e08ce73</originalsourceid><addsrcrecordid>eNpVUT1PwzAUtBCIotKVEXlkSfFH7CQLEqooIFVigdly7JfWkMTBTiuVX0-qlqpM76R37-70DqEbSqaUMnkfjdN2M9V6zVkmztAV45lImEjz8xM8QpMYPwkhNJVS0OISjTgReZ4W5Aot5gHgx7VLbHzXQcA6Yo1bX9aAG-h1ndTuC7DRA9zGHlc-4C5A7RrX6rDFq60Nfgmt7p1vr9FFpesIk8Mco4_50_vsJVm8Pb_OHheJSYXsk5LZyuS0skxyEEVGuDDUspIXokp1AbagaVEJwq0l0hiRWkZSSTJKgOQGMj5GD3vdbl02YA20fdC16oJrhkzKa6f-b1q3Uku_UZITThkfBO4OAsF_ryH2qnHRQF3rFvw6KkYlJcOv2M5ruqea4GMMUB1tKFG7FtS-BXVoYTi4PQ13pP_9nP8CfeiGlw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2161065127</pqid></control><display><type>article</type><title>Freezing copper as a noble metal-like catalyst for preliminary hydrogenation</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Sun, Jian ; Yu, Jiafeng ; Ma, Qingxiang ; Meng, Fanqiong ; Wei, Xiaoxuan ; Sun, Yannan ; Tsubaki, Noritatsu</creator><creatorcontrib>Sun, Jian ; Yu, Jiafeng ; Ma, Qingxiang ; Meng, Fanqiong ; Wei, Xiaoxuan ; Sun, Yannan ; Tsubaki, Noritatsu</creatorcontrib><description>The control of product distribution in a multistep catalytic selective hydrogenation reaction is challenging. For instance, the deep hydrogenation of dimethyl oxalate (DMO) is inclined to proceed over Cu/SiO catalysts because of inevitable coexistence of Cu and Cu , leading to hard acquisition of the preliminary hydrogenation product, methyl glycolate (MG). Here, the oriented DMO hydrogenation into MG is achieved over the sputtering (SP) Cu/SiO catalysts with a selectivity of more than 87% via freezing Cu in a zero-valence state. Our density functional theory calculation results revealed that Cu is the active site of the preliminary hydrogenation step, selectively converting DMO to MG via •H addition, while Cu is a key factor for deep hydrogenation. The prominent Coster-Kronig transition enhancement is observed over SP-Cu/SiO from Auger spectra, indicating that the electron density of inner shells in Cu atoms is enhanced by high-energy argon plasma bombardment during the SP process. Thus, the "penetration effect" of outermost electrons could also be enhanced, making these Cu nanoparticles exhibit high oxidation resistance ability and present noble metal-like behaviors as Au or Ag. Therefore, the regulation of Cu chemical properties by changing the electron structure is a feasible strategy to control the hydrogenation products, inspiring the rational design of selective hydrogenation catalysts.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.aau3275</identifier><identifier>PMID: 30588490</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Chemical Physics ; Chemistry ; SciAdv r-articles</subject><ispartof>Science advances, 2018-12, Vol.4 (12), p.eaau3275-eaau3275</ispartof><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2018 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-b2dfc81fd263e597035c1d2b395f4a9ed9149f503dd06cc54d20460710e08ce73</citedby><cites>FETCH-LOGICAL-c456t-b2dfc81fd263e597035c1d2b395f4a9ed9149f503dd06cc54d20460710e08ce73</cites><orcidid>0000-0003-4314-1324 ; 0000-0002-9384-4979 ; 0000-0002-4191-578X ; 0000-0001-6786-5058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6303123/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6303123/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30588490$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Yu, Jiafeng</creatorcontrib><creatorcontrib>Ma, Qingxiang</creatorcontrib><creatorcontrib>Meng, Fanqiong</creatorcontrib><creatorcontrib>Wei, Xiaoxuan</creatorcontrib><creatorcontrib>Sun, Yannan</creatorcontrib><creatorcontrib>Tsubaki, Noritatsu</creatorcontrib><title>Freezing copper as a noble metal-like catalyst for preliminary hydrogenation</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>The control of product distribution in a multistep catalytic selective hydrogenation reaction is challenging. For instance, the deep hydrogenation of dimethyl oxalate (DMO) is inclined to proceed over Cu/SiO catalysts because of inevitable coexistence of Cu and Cu , leading to hard acquisition of the preliminary hydrogenation product, methyl glycolate (MG). Here, the oriented DMO hydrogenation into MG is achieved over the sputtering (SP) Cu/SiO catalysts with a selectivity of more than 87% via freezing Cu in a zero-valence state. Our density functional theory calculation results revealed that Cu is the active site of the preliminary hydrogenation step, selectively converting DMO to MG via •H addition, while Cu is a key factor for deep hydrogenation. The prominent Coster-Kronig transition enhancement is observed over SP-Cu/SiO from Auger spectra, indicating that the electron density of inner shells in Cu atoms is enhanced by high-energy argon plasma bombardment during the SP process. Thus, the "penetration effect" of outermost electrons could also be enhanced, making these Cu nanoparticles exhibit high oxidation resistance ability and present noble metal-like behaviors as Au or Ag. Therefore, the regulation of Cu chemical properties by changing the electron structure is a feasible strategy to control the hydrogenation products, inspiring the rational design of selective hydrogenation catalysts.</description><subject>Chemical Physics</subject><subject>Chemistry</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVUT1PwzAUtBCIotKVEXlkSfFH7CQLEqooIFVigdly7JfWkMTBTiuVX0-qlqpM76R37-70DqEbSqaUMnkfjdN2M9V6zVkmztAV45lImEjz8xM8QpMYPwkhNJVS0OISjTgReZ4W5Aot5gHgx7VLbHzXQcA6Yo1bX9aAG-h1ndTuC7DRA9zGHlc-4C5A7RrX6rDFq60Nfgmt7p1vr9FFpesIk8Mco4_50_vsJVm8Pb_OHheJSYXsk5LZyuS0skxyEEVGuDDUspIXokp1AbagaVEJwq0l0hiRWkZSSTJKgOQGMj5GD3vdbl02YA20fdC16oJrhkzKa6f-b1q3Uku_UZITThkfBO4OAsF_ryH2qnHRQF3rFvw6KkYlJcOv2M5ruqea4GMMUB1tKFG7FtS-BXVoYTi4PQ13pP_9nP8CfeiGlw</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Sun, Jian</creator><creator>Yu, Jiafeng</creator><creator>Ma, Qingxiang</creator><creator>Meng, Fanqiong</creator><creator>Wei, Xiaoxuan</creator><creator>Sun, Yannan</creator><creator>Tsubaki, Noritatsu</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4314-1324</orcidid><orcidid>https://orcid.org/0000-0002-9384-4979</orcidid><orcidid>https://orcid.org/0000-0002-4191-578X</orcidid><orcidid>https://orcid.org/0000-0001-6786-5058</orcidid></search><sort><creationdate>20181201</creationdate><title>Freezing copper as a noble metal-like catalyst for preliminary hydrogenation</title><author>Sun, Jian ; Yu, Jiafeng ; Ma, Qingxiang ; Meng, Fanqiong ; Wei, Xiaoxuan ; Sun, Yannan ; Tsubaki, Noritatsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-b2dfc81fd263e597035c1d2b395f4a9ed9149f503dd06cc54d20460710e08ce73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemical Physics</topic><topic>Chemistry</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Yu, Jiafeng</creatorcontrib><creatorcontrib>Ma, Qingxiang</creatorcontrib><creatorcontrib>Meng, Fanqiong</creatorcontrib><creatorcontrib>Wei, Xiaoxuan</creatorcontrib><creatorcontrib>Sun, Yannan</creatorcontrib><creatorcontrib>Tsubaki, Noritatsu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Jian</au><au>Yu, Jiafeng</au><au>Ma, Qingxiang</au><au>Meng, Fanqiong</au><au>Wei, Xiaoxuan</au><au>Sun, Yannan</au><au>Tsubaki, Noritatsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Freezing copper as a noble metal-like catalyst for preliminary hydrogenation</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>4</volume><issue>12</issue><spage>eaau3275</spage><epage>eaau3275</epage><pages>eaau3275-eaau3275</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>The control of product distribution in a multistep catalytic selective hydrogenation reaction is challenging. For instance, the deep hydrogenation of dimethyl oxalate (DMO) is inclined to proceed over Cu/SiO catalysts because of inevitable coexistence of Cu and Cu , leading to hard acquisition of the preliminary hydrogenation product, methyl glycolate (MG). Here, the oriented DMO hydrogenation into MG is achieved over the sputtering (SP) Cu/SiO catalysts with a selectivity of more than 87% via freezing Cu in a zero-valence state. Our density functional theory calculation results revealed that Cu is the active site of the preliminary hydrogenation step, selectively converting DMO to MG via •H addition, while Cu is a key factor for deep hydrogenation. The prominent Coster-Kronig transition enhancement is observed over SP-Cu/SiO from Auger spectra, indicating that the electron density of inner shells in Cu atoms is enhanced by high-energy argon plasma bombardment during the SP process. Thus, the "penetration effect" of outermost electrons could also be enhanced, making these Cu nanoparticles exhibit high oxidation resistance ability and present noble metal-like behaviors as Au or Ag. Therefore, the regulation of Cu chemical properties by changing the electron structure is a feasible strategy to control the hydrogenation products, inspiring the rational design of selective hydrogenation catalysts.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>30588490</pmid><doi>10.1126/sciadv.aau3275</doi><orcidid>https://orcid.org/0000-0003-4314-1324</orcidid><orcidid>https://orcid.org/0000-0002-9384-4979</orcidid><orcidid>https://orcid.org/0000-0002-4191-578X</orcidid><orcidid>https://orcid.org/0000-0001-6786-5058</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2018-12, Vol.4 (12), p.eaau3275-eaau3275
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6303123
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Chemical Physics
Chemistry
SciAdv r-articles
title Freezing copper as a noble metal-like catalyst for preliminary hydrogenation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A19%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Freezing%20copper%20as%20a%20noble%20metal-like%20catalyst%20for%20preliminary%20hydrogenation&rft.jtitle=Science%20advances&rft.au=Sun,%20Jian&rft.date=2018-12-01&rft.volume=4&rft.issue=12&rft.spage=eaau3275&rft.epage=eaau3275&rft.pages=eaau3275-eaau3275&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.aau3275&rft_dat=%3Cproquest_pubme%3E2161065127%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2161065127&rft_id=info:pmid/30588490&rfr_iscdi=true