Crystal structure of the bacterial acetate transporter SatP reveals that it forms a hexameric channel

Acetate is found ubiquitously in the natural environment and can be used as an exogenous carbon source by bacteria, fungi, and mammalian cells. A representative member of the acetate uptake transporter (AceTr) family named SatP (also yaaH) has been preliminarily identified as a succinate–acetate/pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2018-12, Vol.293 (50), p.19492-19500
Hauptverfasser: Sun, Pengcheng, Li, Jialu, Zhang, Xialin, Guan, Zeyuan, Xiao, Qingjie, Zhao, Changjian, Song, Mengxiao, Zhou, Yanxia, Mou, Luqiu, Ke, Meng, Guo, Li, Geng, Jia, Deng, Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19500
container_issue 50
container_start_page 19492
container_title The Journal of biological chemistry
container_volume 293
creator Sun, Pengcheng
Li, Jialu
Zhang, Xialin
Guan, Zeyuan
Xiao, Qingjie
Zhao, Changjian
Song, Mengxiao
Zhou, Yanxia
Mou, Luqiu
Ke, Meng
Guo, Li
Geng, Jia
Deng, Dong
description Acetate is found ubiquitously in the natural environment and can be used as an exogenous carbon source by bacteria, fungi, and mammalian cells. A representative member of the acetate uptake transporter (AceTr) family named SatP (also yaaH) has been preliminarily identified as a succinate–acetate/proton symporter in Escherichia coli. However, the molecular mechanism of acetate uptake by SatP still remains elusive. Here, we report the crystal structure of SatP from E. coli at 2.8 Å resolution, determined with a molecular replacement approach using a previously developed predicted model algorithm, which revealed a hexameric UreI-like channel structure. Structural analysis identified six transmembrane (TM) helices surrounding the central channel pore in each protomer and three conserved hydrophobic residues, FLY, located in the middle of the TM region for pore constriction. According to single-channel conductance recordings, performed with purified SatP reconstituted into lipid bilayer, three conserved polar residues in the TM1 facing to the periplasmic side are closely associated with acetate translocation activity. These analyses provide critical insights into the mechanism of acetate translocation in bacteria and a first glimpse of a structure of an AceTr family transporter.
doi_str_mv 10.1074/jbc.RA118.003876
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6302158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820341697</els_id><sourcerecordid>2122594633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-222e8d015c2ab3684eeac7060bb38c0da618bbb6ea25f7eebd6fca8ab17c9d5d3</originalsourceid><addsrcrecordid>eNp1kUlrHDEQhUVIiCeT3HMKOubSYy29qHMImMFZwOCQBXITperqjEwvE0k92P8-SsY29iG6CFTfeyreY-y1FBspmvL0yuHm65mUZiOENk39hK2kMLrQlfz5lK2EULJoVWVO2IsYr0Q-ZSufsxMttNZKlytG23ATEww8prBgWgLxuedpR9wBJgo-jwApQSKeAkxxP4f8zL9B-sIDHQiGmHFI3Cfez2GMHPiOrmHMWuS4g2mi4SV71meQXt3ea_bjw_n37afi4vLj5-3ZRYFlW6ZCKUWmE7JCBU7XpiQCbEQtnNMGRQe1NM65mkBVfUPkurpHMOBkg21XdXrN3h9994sbqUOa8s6D3Qc_QrixM3j7eDL5nf01H2ytc1SVyQZvbw3C_HuhmOzoI9IwwETzEq2SSlVtWef41kwcUQxzjIH6-2-ksH_bsbkd-68de2wnS948XO9ecFdHBt4dAcohHTwFG9HThNT5QJhsN_v_u_8BZoSi0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2122594633</pqid></control><display><type>article</type><title>Crystal structure of the bacterial acetate transporter SatP reveals that it forms a hexameric channel</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Sun, Pengcheng ; Li, Jialu ; Zhang, Xialin ; Guan, Zeyuan ; Xiao, Qingjie ; Zhao, Changjian ; Song, Mengxiao ; Zhou, Yanxia ; Mou, Luqiu ; Ke, Meng ; Guo, Li ; Geng, Jia ; Deng, Dong</creator><creatorcontrib>Sun, Pengcheng ; Li, Jialu ; Zhang, Xialin ; Guan, Zeyuan ; Xiao, Qingjie ; Zhao, Changjian ; Song, Mengxiao ; Zhou, Yanxia ; Mou, Luqiu ; Ke, Meng ; Guo, Li ; Geng, Jia ; Deng, Dong</creatorcontrib><description>Acetate is found ubiquitously in the natural environment and can be used as an exogenous carbon source by bacteria, fungi, and mammalian cells. A representative member of the acetate uptake transporter (AceTr) family named SatP (also yaaH) has been preliminarily identified as a succinate–acetate/proton symporter in Escherichia coli. However, the molecular mechanism of acetate uptake by SatP still remains elusive. Here, we report the crystal structure of SatP from E. coli at 2.8 Å resolution, determined with a molecular replacement approach using a previously developed predicted model algorithm, which revealed a hexameric UreI-like channel structure. Structural analysis identified six transmembrane (TM) helices surrounding the central channel pore in each protomer and three conserved hydrophobic residues, FLY, located in the middle of the TM region for pore constriction. According to single-channel conductance recordings, performed with purified SatP reconstituted into lipid bilayer, three conserved polar residues in the TM1 facing to the periplasmic side are closely associated with acetate translocation activity. These analyses provide critical insights into the mechanism of acetate translocation in bacteria and a first glimpse of a structure of an AceTr family transporter.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA118.003876</identifier><identifier>PMID: 30333234</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>acetate uptake ; Binding Sites ; Crystallography, X-Ray ; electrophysiology ; Escherichia coli ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - metabolism ; hexamer ; ion channel ; membrane channel ; membrane protein ; Models, Molecular ; monocarboxylate transport ; organic anion channel ; Organic Anion Transporters - chemistry ; Organic Anion Transporters - metabolism ; Protein Multimerization ; protein structure ; Protein Structure and Folding ; Protein Structure, Quaternary ; SatP ; structural biology</subject><ispartof>The Journal of biological chemistry, 2018-12, Vol.293 (50), p.19492-19500</ispartof><rights>2018 © 2018 Sun et al.</rights><rights>2018 Sun et al.</rights><rights>2018 Sun et al. 2018 Sun et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-222e8d015c2ab3684eeac7060bb38c0da618bbb6ea25f7eebd6fca8ab17c9d5d3</citedby><cites>FETCH-LOGICAL-c494t-222e8d015c2ab3684eeac7060bb38c0da618bbb6ea25f7eebd6fca8ab17c9d5d3</cites><orcidid>0000-0003-4753-1039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302158/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302158/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30333234$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Pengcheng</creatorcontrib><creatorcontrib>Li, Jialu</creatorcontrib><creatorcontrib>Zhang, Xialin</creatorcontrib><creatorcontrib>Guan, Zeyuan</creatorcontrib><creatorcontrib>Xiao, Qingjie</creatorcontrib><creatorcontrib>Zhao, Changjian</creatorcontrib><creatorcontrib>Song, Mengxiao</creatorcontrib><creatorcontrib>Zhou, Yanxia</creatorcontrib><creatorcontrib>Mou, Luqiu</creatorcontrib><creatorcontrib>Ke, Meng</creatorcontrib><creatorcontrib>Guo, Li</creatorcontrib><creatorcontrib>Geng, Jia</creatorcontrib><creatorcontrib>Deng, Dong</creatorcontrib><title>Crystal structure of the bacterial acetate transporter SatP reveals that it forms a hexameric channel</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Acetate is found ubiquitously in the natural environment and can be used as an exogenous carbon source by bacteria, fungi, and mammalian cells. A representative member of the acetate uptake transporter (AceTr) family named SatP (also yaaH) has been preliminarily identified as a succinate–acetate/proton symporter in Escherichia coli. However, the molecular mechanism of acetate uptake by SatP still remains elusive. Here, we report the crystal structure of SatP from E. coli at 2.8 Å resolution, determined with a molecular replacement approach using a previously developed predicted model algorithm, which revealed a hexameric UreI-like channel structure. Structural analysis identified six transmembrane (TM) helices surrounding the central channel pore in each protomer and three conserved hydrophobic residues, FLY, located in the middle of the TM region for pore constriction. According to single-channel conductance recordings, performed with purified SatP reconstituted into lipid bilayer, three conserved polar residues in the TM1 facing to the periplasmic side are closely associated with acetate translocation activity. These analyses provide critical insights into the mechanism of acetate translocation in bacteria and a first glimpse of a structure of an AceTr family transporter.</description><subject>acetate uptake</subject><subject>Binding Sites</subject><subject>Crystallography, X-Ray</subject><subject>electrophysiology</subject><subject>Escherichia coli</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>hexamer</subject><subject>ion channel</subject><subject>membrane channel</subject><subject>membrane protein</subject><subject>Models, Molecular</subject><subject>monocarboxylate transport</subject><subject>organic anion channel</subject><subject>Organic Anion Transporters - chemistry</subject><subject>Organic Anion Transporters - metabolism</subject><subject>Protein Multimerization</subject><subject>protein structure</subject><subject>Protein Structure and Folding</subject><subject>Protein Structure, Quaternary</subject><subject>SatP</subject><subject>structural biology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUlrHDEQhUVIiCeT3HMKOubSYy29qHMImMFZwOCQBXITperqjEwvE0k92P8-SsY29iG6CFTfeyreY-y1FBspmvL0yuHm65mUZiOENk39hK2kMLrQlfz5lK2EULJoVWVO2IsYr0Q-ZSufsxMttNZKlytG23ATEww8prBgWgLxuedpR9wBJgo-jwApQSKeAkxxP4f8zL9B-sIDHQiGmHFI3Cfez2GMHPiOrmHMWuS4g2mi4SV71meQXt3ea_bjw_n37afi4vLj5-3ZRYFlW6ZCKUWmE7JCBU7XpiQCbEQtnNMGRQe1NM65mkBVfUPkurpHMOBkg21XdXrN3h9994sbqUOa8s6D3Qc_QrixM3j7eDL5nf01H2ytc1SVyQZvbw3C_HuhmOzoI9IwwETzEq2SSlVtWef41kwcUQxzjIH6-2-ksH_bsbkd-68de2wnS948XO9ecFdHBt4dAcohHTwFG9HThNT5QJhsN_v_u_8BZoSi0g</recordid><startdate>20181214</startdate><enddate>20181214</enddate><creator>Sun, Pengcheng</creator><creator>Li, Jialu</creator><creator>Zhang, Xialin</creator><creator>Guan, Zeyuan</creator><creator>Xiao, Qingjie</creator><creator>Zhao, Changjian</creator><creator>Song, Mengxiao</creator><creator>Zhou, Yanxia</creator><creator>Mou, Luqiu</creator><creator>Ke, Meng</creator><creator>Guo, Li</creator><creator>Geng, Jia</creator><creator>Deng, Dong</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4753-1039</orcidid></search><sort><creationdate>20181214</creationdate><title>Crystal structure of the bacterial acetate transporter SatP reveals that it forms a hexameric channel</title><author>Sun, Pengcheng ; Li, Jialu ; Zhang, Xialin ; Guan, Zeyuan ; Xiao, Qingjie ; Zhao, Changjian ; Song, Mengxiao ; Zhou, Yanxia ; Mou, Luqiu ; Ke, Meng ; Guo, Li ; Geng, Jia ; Deng, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-222e8d015c2ab3684eeac7060bb38c0da618bbb6ea25f7eebd6fca8ab17c9d5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>acetate uptake</topic><topic>Binding Sites</topic><topic>Crystallography, X-Ray</topic><topic>electrophysiology</topic><topic>Escherichia coli</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>hexamer</topic><topic>ion channel</topic><topic>membrane channel</topic><topic>membrane protein</topic><topic>Models, Molecular</topic><topic>monocarboxylate transport</topic><topic>organic anion channel</topic><topic>Organic Anion Transporters - chemistry</topic><topic>Organic Anion Transporters - metabolism</topic><topic>Protein Multimerization</topic><topic>protein structure</topic><topic>Protein Structure and Folding</topic><topic>Protein Structure, Quaternary</topic><topic>SatP</topic><topic>structural biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Pengcheng</creatorcontrib><creatorcontrib>Li, Jialu</creatorcontrib><creatorcontrib>Zhang, Xialin</creatorcontrib><creatorcontrib>Guan, Zeyuan</creatorcontrib><creatorcontrib>Xiao, Qingjie</creatorcontrib><creatorcontrib>Zhao, Changjian</creatorcontrib><creatorcontrib>Song, Mengxiao</creatorcontrib><creatorcontrib>Zhou, Yanxia</creatorcontrib><creatorcontrib>Mou, Luqiu</creatorcontrib><creatorcontrib>Ke, Meng</creatorcontrib><creatorcontrib>Guo, Li</creatorcontrib><creatorcontrib>Geng, Jia</creatorcontrib><creatorcontrib>Deng, Dong</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Pengcheng</au><au>Li, Jialu</au><au>Zhang, Xialin</au><au>Guan, Zeyuan</au><au>Xiao, Qingjie</au><au>Zhao, Changjian</au><au>Song, Mengxiao</au><au>Zhou, Yanxia</au><au>Mou, Luqiu</au><au>Ke, Meng</au><au>Guo, Li</au><au>Geng, Jia</au><au>Deng, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal structure of the bacterial acetate transporter SatP reveals that it forms a hexameric channel</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2018-12-14</date><risdate>2018</risdate><volume>293</volume><issue>50</issue><spage>19492</spage><epage>19500</epage><pages>19492-19500</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Acetate is found ubiquitously in the natural environment and can be used as an exogenous carbon source by bacteria, fungi, and mammalian cells. A representative member of the acetate uptake transporter (AceTr) family named SatP (also yaaH) has been preliminarily identified as a succinate–acetate/proton symporter in Escherichia coli. However, the molecular mechanism of acetate uptake by SatP still remains elusive. Here, we report the crystal structure of SatP from E. coli at 2.8 Å resolution, determined with a molecular replacement approach using a previously developed predicted model algorithm, which revealed a hexameric UreI-like channel structure. Structural analysis identified six transmembrane (TM) helices surrounding the central channel pore in each protomer and three conserved hydrophobic residues, FLY, located in the middle of the TM region for pore constriction. According to single-channel conductance recordings, performed with purified SatP reconstituted into lipid bilayer, three conserved polar residues in the TM1 facing to the periplasmic side are closely associated with acetate translocation activity. These analyses provide critical insights into the mechanism of acetate translocation in bacteria and a first glimpse of a structure of an AceTr family transporter.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30333234</pmid><doi>10.1074/jbc.RA118.003876</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4753-1039</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2018-12, Vol.293 (50), p.19492-19500
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6302158
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects acetate uptake
Binding Sites
Crystallography, X-Ray
electrophysiology
Escherichia coli
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - metabolism
hexamer
ion channel
membrane channel
membrane protein
Models, Molecular
monocarboxylate transport
organic anion channel
Organic Anion Transporters - chemistry
Organic Anion Transporters - metabolism
Protein Multimerization
protein structure
Protein Structure and Folding
Protein Structure, Quaternary
SatP
structural biology
title Crystal structure of the bacterial acetate transporter SatP reveals that it forms a hexameric channel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A22%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20structure%20of%20the%20bacterial%20acetate%20transporter%20SatP%20reveals%20that%20it%20forms%20a%20hexameric%20channel&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Sun,%20Pengcheng&rft.date=2018-12-14&rft.volume=293&rft.issue=50&rft.spage=19492&rft.epage=19500&rft.pages=19492-19500&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA118.003876&rft_dat=%3Cproquest_pubme%3E2122594633%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2122594633&rft_id=info:pmid/30333234&rft_els_id=S0021925820341697&rfr_iscdi=true