Crystal structure of the bacterial acetate transporter SatP reveals that it forms a hexameric channel
Acetate is found ubiquitously in the natural environment and can be used as an exogenous carbon source by bacteria, fungi, and mammalian cells. A representative member of the acetate uptake transporter (AceTr) family named SatP (also yaaH) has been preliminarily identified as a succinate–acetate/pro...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2018-12, Vol.293 (50), p.19492-19500 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19500 |
---|---|
container_issue | 50 |
container_start_page | 19492 |
container_title | The Journal of biological chemistry |
container_volume | 293 |
creator | Sun, Pengcheng Li, Jialu Zhang, Xialin Guan, Zeyuan Xiao, Qingjie Zhao, Changjian Song, Mengxiao Zhou, Yanxia Mou, Luqiu Ke, Meng Guo, Li Geng, Jia Deng, Dong |
description | Acetate is found ubiquitously in the natural environment and can be used as an exogenous carbon source by bacteria, fungi, and mammalian cells. A representative member of the acetate uptake transporter (AceTr) family named SatP (also yaaH) has been preliminarily identified as a succinate–acetate/proton symporter in Escherichia coli. However, the molecular mechanism of acetate uptake by SatP still remains elusive. Here, we report the crystal structure of SatP from E. coli at 2.8 Å resolution, determined with a molecular replacement approach using a previously developed predicted model algorithm, which revealed a hexameric UreI-like channel structure. Structural analysis identified six transmembrane (TM) helices surrounding the central channel pore in each protomer and three conserved hydrophobic residues, FLY, located in the middle of the TM region for pore constriction. According to single-channel conductance recordings, performed with purified SatP reconstituted into lipid bilayer, three conserved polar residues in the TM1 facing to the periplasmic side are closely associated with acetate translocation activity. These analyses provide critical insights into the mechanism of acetate translocation in bacteria and a first glimpse of a structure of an AceTr family transporter. |
doi_str_mv | 10.1074/jbc.RA118.003876 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6302158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820341697</els_id><sourcerecordid>2122594633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-222e8d015c2ab3684eeac7060bb38c0da618bbb6ea25f7eebd6fca8ab17c9d5d3</originalsourceid><addsrcrecordid>eNp1kUlrHDEQhUVIiCeT3HMKOubSYy29qHMImMFZwOCQBXITperqjEwvE0k92P8-SsY29iG6CFTfeyreY-y1FBspmvL0yuHm65mUZiOENk39hK2kMLrQlfz5lK2EULJoVWVO2IsYr0Q-ZSufsxMttNZKlytG23ATEww8prBgWgLxuedpR9wBJgo-jwApQSKeAkxxP4f8zL9B-sIDHQiGmHFI3Cfez2GMHPiOrmHMWuS4g2mi4SV71meQXt3ea_bjw_n37afi4vLj5-3ZRYFlW6ZCKUWmE7JCBU7XpiQCbEQtnNMGRQe1NM65mkBVfUPkurpHMOBkg21XdXrN3h9994sbqUOa8s6D3Qc_QrixM3j7eDL5nf01H2ytc1SVyQZvbw3C_HuhmOzoI9IwwETzEq2SSlVtWef41kwcUQxzjIH6-2-ksH_bsbkd-68de2wnS948XO9ecFdHBt4dAcohHTwFG9HThNT5QJhsN_v_u_8BZoSi0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2122594633</pqid></control><display><type>article</type><title>Crystal structure of the bacterial acetate transporter SatP reveals that it forms a hexameric channel</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Sun, Pengcheng ; Li, Jialu ; Zhang, Xialin ; Guan, Zeyuan ; Xiao, Qingjie ; Zhao, Changjian ; Song, Mengxiao ; Zhou, Yanxia ; Mou, Luqiu ; Ke, Meng ; Guo, Li ; Geng, Jia ; Deng, Dong</creator><creatorcontrib>Sun, Pengcheng ; Li, Jialu ; Zhang, Xialin ; Guan, Zeyuan ; Xiao, Qingjie ; Zhao, Changjian ; Song, Mengxiao ; Zhou, Yanxia ; Mou, Luqiu ; Ke, Meng ; Guo, Li ; Geng, Jia ; Deng, Dong</creatorcontrib><description>Acetate is found ubiquitously in the natural environment and can be used as an exogenous carbon source by bacteria, fungi, and mammalian cells. A representative member of the acetate uptake transporter (AceTr) family named SatP (also yaaH) has been preliminarily identified as a succinate–acetate/proton symporter in Escherichia coli. However, the molecular mechanism of acetate uptake by SatP still remains elusive. Here, we report the crystal structure of SatP from E. coli at 2.8 Å resolution, determined with a molecular replacement approach using a previously developed predicted model algorithm, which revealed a hexameric UreI-like channel structure. Structural analysis identified six transmembrane (TM) helices surrounding the central channel pore in each protomer and three conserved hydrophobic residues, FLY, located in the middle of the TM region for pore constriction. According to single-channel conductance recordings, performed with purified SatP reconstituted into lipid bilayer, three conserved polar residues in the TM1 facing to the periplasmic side are closely associated with acetate translocation activity. These analyses provide critical insights into the mechanism of acetate translocation in bacteria and a first glimpse of a structure of an AceTr family transporter.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA118.003876</identifier><identifier>PMID: 30333234</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>acetate uptake ; Binding Sites ; Crystallography, X-Ray ; electrophysiology ; Escherichia coli ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - metabolism ; hexamer ; ion channel ; membrane channel ; membrane protein ; Models, Molecular ; monocarboxylate transport ; organic anion channel ; Organic Anion Transporters - chemistry ; Organic Anion Transporters - metabolism ; Protein Multimerization ; protein structure ; Protein Structure and Folding ; Protein Structure, Quaternary ; SatP ; structural biology</subject><ispartof>The Journal of biological chemistry, 2018-12, Vol.293 (50), p.19492-19500</ispartof><rights>2018 © 2018 Sun et al.</rights><rights>2018 Sun et al.</rights><rights>2018 Sun et al. 2018 Sun et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-222e8d015c2ab3684eeac7060bb38c0da618bbb6ea25f7eebd6fca8ab17c9d5d3</citedby><cites>FETCH-LOGICAL-c494t-222e8d015c2ab3684eeac7060bb38c0da618bbb6ea25f7eebd6fca8ab17c9d5d3</cites><orcidid>0000-0003-4753-1039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302158/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302158/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30333234$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Pengcheng</creatorcontrib><creatorcontrib>Li, Jialu</creatorcontrib><creatorcontrib>Zhang, Xialin</creatorcontrib><creatorcontrib>Guan, Zeyuan</creatorcontrib><creatorcontrib>Xiao, Qingjie</creatorcontrib><creatorcontrib>Zhao, Changjian</creatorcontrib><creatorcontrib>Song, Mengxiao</creatorcontrib><creatorcontrib>Zhou, Yanxia</creatorcontrib><creatorcontrib>Mou, Luqiu</creatorcontrib><creatorcontrib>Ke, Meng</creatorcontrib><creatorcontrib>Guo, Li</creatorcontrib><creatorcontrib>Geng, Jia</creatorcontrib><creatorcontrib>Deng, Dong</creatorcontrib><title>Crystal structure of the bacterial acetate transporter SatP reveals that it forms a hexameric channel</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Acetate is found ubiquitously in the natural environment and can be used as an exogenous carbon source by bacteria, fungi, and mammalian cells. A representative member of the acetate uptake transporter (AceTr) family named SatP (also yaaH) has been preliminarily identified as a succinate–acetate/proton symporter in Escherichia coli. However, the molecular mechanism of acetate uptake by SatP still remains elusive. Here, we report the crystal structure of SatP from E. coli at 2.8 Å resolution, determined with a molecular replacement approach using a previously developed predicted model algorithm, which revealed a hexameric UreI-like channel structure. Structural analysis identified six transmembrane (TM) helices surrounding the central channel pore in each protomer and three conserved hydrophobic residues, FLY, located in the middle of the TM region for pore constriction. According to single-channel conductance recordings, performed with purified SatP reconstituted into lipid bilayer, three conserved polar residues in the TM1 facing to the periplasmic side are closely associated with acetate translocation activity. These analyses provide critical insights into the mechanism of acetate translocation in bacteria and a first glimpse of a structure of an AceTr family transporter.</description><subject>acetate uptake</subject><subject>Binding Sites</subject><subject>Crystallography, X-Ray</subject><subject>electrophysiology</subject><subject>Escherichia coli</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>hexamer</subject><subject>ion channel</subject><subject>membrane channel</subject><subject>membrane protein</subject><subject>Models, Molecular</subject><subject>monocarboxylate transport</subject><subject>organic anion channel</subject><subject>Organic Anion Transporters - chemistry</subject><subject>Organic Anion Transporters - metabolism</subject><subject>Protein Multimerization</subject><subject>protein structure</subject><subject>Protein Structure and Folding</subject><subject>Protein Structure, Quaternary</subject><subject>SatP</subject><subject>structural biology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUlrHDEQhUVIiCeT3HMKOubSYy29qHMImMFZwOCQBXITperqjEwvE0k92P8-SsY29iG6CFTfeyreY-y1FBspmvL0yuHm65mUZiOENk39hK2kMLrQlfz5lK2EULJoVWVO2IsYr0Q-ZSufsxMttNZKlytG23ATEww8prBgWgLxuedpR9wBJgo-jwApQSKeAkxxP4f8zL9B-sIDHQiGmHFI3Cfez2GMHPiOrmHMWuS4g2mi4SV71meQXt3ea_bjw_n37afi4vLj5-3ZRYFlW6ZCKUWmE7JCBU7XpiQCbEQtnNMGRQe1NM65mkBVfUPkurpHMOBkg21XdXrN3h9994sbqUOa8s6D3Qc_QrixM3j7eDL5nf01H2ytc1SVyQZvbw3C_HuhmOzoI9IwwETzEq2SSlVtWef41kwcUQxzjIH6-2-ksH_bsbkd-68de2wnS948XO9ecFdHBt4dAcohHTwFG9HThNT5QJhsN_v_u_8BZoSi0g</recordid><startdate>20181214</startdate><enddate>20181214</enddate><creator>Sun, Pengcheng</creator><creator>Li, Jialu</creator><creator>Zhang, Xialin</creator><creator>Guan, Zeyuan</creator><creator>Xiao, Qingjie</creator><creator>Zhao, Changjian</creator><creator>Song, Mengxiao</creator><creator>Zhou, Yanxia</creator><creator>Mou, Luqiu</creator><creator>Ke, Meng</creator><creator>Guo, Li</creator><creator>Geng, Jia</creator><creator>Deng, Dong</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4753-1039</orcidid></search><sort><creationdate>20181214</creationdate><title>Crystal structure of the bacterial acetate transporter SatP reveals that it forms a hexameric channel</title><author>Sun, Pengcheng ; Li, Jialu ; Zhang, Xialin ; Guan, Zeyuan ; Xiao, Qingjie ; Zhao, Changjian ; Song, Mengxiao ; Zhou, Yanxia ; Mou, Luqiu ; Ke, Meng ; Guo, Li ; Geng, Jia ; Deng, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-222e8d015c2ab3684eeac7060bb38c0da618bbb6ea25f7eebd6fca8ab17c9d5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>acetate uptake</topic><topic>Binding Sites</topic><topic>Crystallography, X-Ray</topic><topic>electrophysiology</topic><topic>Escherichia coli</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>hexamer</topic><topic>ion channel</topic><topic>membrane channel</topic><topic>membrane protein</topic><topic>Models, Molecular</topic><topic>monocarboxylate transport</topic><topic>organic anion channel</topic><topic>Organic Anion Transporters - chemistry</topic><topic>Organic Anion Transporters - metabolism</topic><topic>Protein Multimerization</topic><topic>protein structure</topic><topic>Protein Structure and Folding</topic><topic>Protein Structure, Quaternary</topic><topic>SatP</topic><topic>structural biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Pengcheng</creatorcontrib><creatorcontrib>Li, Jialu</creatorcontrib><creatorcontrib>Zhang, Xialin</creatorcontrib><creatorcontrib>Guan, Zeyuan</creatorcontrib><creatorcontrib>Xiao, Qingjie</creatorcontrib><creatorcontrib>Zhao, Changjian</creatorcontrib><creatorcontrib>Song, Mengxiao</creatorcontrib><creatorcontrib>Zhou, Yanxia</creatorcontrib><creatorcontrib>Mou, Luqiu</creatorcontrib><creatorcontrib>Ke, Meng</creatorcontrib><creatorcontrib>Guo, Li</creatorcontrib><creatorcontrib>Geng, Jia</creatorcontrib><creatorcontrib>Deng, Dong</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Pengcheng</au><au>Li, Jialu</au><au>Zhang, Xialin</au><au>Guan, Zeyuan</au><au>Xiao, Qingjie</au><au>Zhao, Changjian</au><au>Song, Mengxiao</au><au>Zhou, Yanxia</au><au>Mou, Luqiu</au><au>Ke, Meng</au><au>Guo, Li</au><au>Geng, Jia</au><au>Deng, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal structure of the bacterial acetate transporter SatP reveals that it forms a hexameric channel</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2018-12-14</date><risdate>2018</risdate><volume>293</volume><issue>50</issue><spage>19492</spage><epage>19500</epage><pages>19492-19500</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Acetate is found ubiquitously in the natural environment and can be used as an exogenous carbon source by bacteria, fungi, and mammalian cells. A representative member of the acetate uptake transporter (AceTr) family named SatP (also yaaH) has been preliminarily identified as a succinate–acetate/proton symporter in Escherichia coli. However, the molecular mechanism of acetate uptake by SatP still remains elusive. Here, we report the crystal structure of SatP from E. coli at 2.8 Å resolution, determined with a molecular replacement approach using a previously developed predicted model algorithm, which revealed a hexameric UreI-like channel structure. Structural analysis identified six transmembrane (TM) helices surrounding the central channel pore in each protomer and three conserved hydrophobic residues, FLY, located in the middle of the TM region for pore constriction. According to single-channel conductance recordings, performed with purified SatP reconstituted into lipid bilayer, three conserved polar residues in the TM1 facing to the periplasmic side are closely associated with acetate translocation activity. These analyses provide critical insights into the mechanism of acetate translocation in bacteria and a first glimpse of a structure of an AceTr family transporter.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30333234</pmid><doi>10.1074/jbc.RA118.003876</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4753-1039</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2018-12, Vol.293 (50), p.19492-19500 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6302158 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | acetate uptake Binding Sites Crystallography, X-Ray electrophysiology Escherichia coli Escherichia coli Proteins - chemistry Escherichia coli Proteins - metabolism hexamer ion channel membrane channel membrane protein Models, Molecular monocarboxylate transport organic anion channel Organic Anion Transporters - chemistry Organic Anion Transporters - metabolism Protein Multimerization protein structure Protein Structure and Folding Protein Structure, Quaternary SatP structural biology |
title | Crystal structure of the bacterial acetate transporter SatP reveals that it forms a hexameric channel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A22%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20structure%20of%20the%20bacterial%20acetate%20transporter%20SatP%20reveals%20that%20it%20forms%20a%20hexameric%20channel&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Sun,%20Pengcheng&rft.date=2018-12-14&rft.volume=293&rft.issue=50&rft.spage=19492&rft.epage=19500&rft.pages=19492-19500&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA118.003876&rft_dat=%3Cproquest_pubme%3E2122594633%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2122594633&rft_id=info:pmid/30333234&rft_els_id=S0021925820341697&rfr_iscdi=true |