Kappa Opioid Receptor Distribution and Function in Primary Afferents
Primary afferents are known to be inhibited by kappa opioid receptor (KOR) signaling. However, the specific types of somatosensory neurons that express KOR remain unclear. Here, using a newly developed KOR-cre knockin allele, viral tracing, single-cell RT-PCR, and ex vivo recordings, we show that KO...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2018-09, Vol.99 (6), p.1274-1288.e6 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1288.e6 |
---|---|
container_issue | 6 |
container_start_page | 1274 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 99 |
creator | Snyder, Lindsey M. Chiang, Michael C. Loeza-Alcocer, Emanuel Omori, Yu Hachisuka, Junichi Sheahan, Tayler D. Gale, Jenna R. Adelman, Peter C. Sypek, Elizabeth I. Fulton, Stephanie A. Friedman, Robert L. Wright, Margaret C. Duque, Melissa Giraldo Lee, Yeon Sun Hu, Zeyu Huang, Huizhen Cai, Xiaoyun Meerschaert, Kimberly A. Nagarajan, Vidhya Hirai, Toshiro Scherrer, Gregory Kaplan, Daniel H. Porreca, Frank Davis, Brian M. Gold, Michael S. Koerber, H. Richard Ross, Sarah E. |
description | Primary afferents are known to be inhibited by kappa opioid receptor (KOR) signaling. However, the specific types of somatosensory neurons that express KOR remain unclear. Here, using a newly developed KOR-cre knockin allele, viral tracing, single-cell RT-PCR, and ex vivo recordings, we show that KOR is expressed in several populations of primary afferents: a subset of peptidergic sensory neurons, as well as low-threshold mechanoreceptors that form lanceolate or circumferential endings around hair follicles. We find that KOR acts centrally to inhibit excitatory neurotransmission from KOR-cre afferents in laminae I and III, and this effect is likely due to KOR-mediated inhibition of Ca2+ influx, which we observed in sensory neurons from both mouse and human. In the periphery, KOR signaling inhibits neurogenic inflammation and nociceptor sensitization by inflammatory mediators. Finally, peripherally restricted KOR agonists selectively reduce pain and itch behaviors, as well as mechanical hypersensitivity associated with a surgical incision. These experiments provide a rationale for the use of peripherally restricted KOR agonists for therapeutic treatment.
•KOR is expressed in peptidergic primary afferents in mouse and human•KOR is expressed in LTMRs that form circumferential and lanceolate endings•KOR signaling inhibits nociceptor sensitization and neurogenic inflammation•Peripherally selective KOR agonists inhibit nociception
Snyder et al. identify primary afferents that express the kappa opioid receptor in mouse and human and show that kappa opioid receptor signaling inhibits these cells in physiological and behavioral experiments. |
doi_str_mv | 10.1016/j.neuron.2018.08.044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6300132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627318307736</els_id><sourcerecordid>2109239579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-5793f8c49265013cd9afe4594257c7ed40e83049176ba23615016378ffd626893</originalsourceid><addsrcrecordid>eNp9UctKAzEUDaJorf6ByIAbN1PzmsxkIxTfWFBE1yHN3NGUNhmTGcG_N7W-F4YL4ZJzzz0nB6E9gkcEE3E0Gznog3cjikk1wqk4X0MDgmWZcyLlOhrgSopc0JJtoe0YZxgTXkiyibYYpkzQig_Q6bVuW53dtNbbOrsDA23nQ3ZqYxfstO-sd5l2dXbeO_PeWJfdBrvQ4TUbNw0EcF3cQRuNnkfY_biH6OH87P7kMp_cXFydjCe5KYqyy4tSsqYyXFJRYMJMLXUDSRGnRWlKqDmGimEuSSmmOgkkCSVYWTVNLaioJBui4xVv208XUJu0O-i5ald6lNdW_X5x9kk9-hclWPLOaCI4_CAI_rmH2KmFjQbmc-3A91FRkg6XuFjuOvgDnfk-uGQvobCkTC7tDBFfoUzwMQZovsQQrJYxqZlaxaSWMSmcivM0tv_TyNfQZy7fTiF954uFoKKx4AzUNoDpVO3t_xveACZipIs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2109239579</pqid></control><display><type>article</type><title>Kappa Opioid Receptor Distribution and Function in Primary Afferents</title><source>MEDLINE</source><source>Cell Press Archives</source><source>ScienceDirect Freedom Collection (Elsevier)</source><source>EZB Electronic Journals Library</source><creator>Snyder, Lindsey M. ; Chiang, Michael C. ; Loeza-Alcocer, Emanuel ; Omori, Yu ; Hachisuka, Junichi ; Sheahan, Tayler D. ; Gale, Jenna R. ; Adelman, Peter C. ; Sypek, Elizabeth I. ; Fulton, Stephanie A. ; Friedman, Robert L. ; Wright, Margaret C. ; Duque, Melissa Giraldo ; Lee, Yeon Sun ; Hu, Zeyu ; Huang, Huizhen ; Cai, Xiaoyun ; Meerschaert, Kimberly A. ; Nagarajan, Vidhya ; Hirai, Toshiro ; Scherrer, Gregory ; Kaplan, Daniel H. ; Porreca, Frank ; Davis, Brian M. ; Gold, Michael S. ; Koerber, H. Richard ; Ross, Sarah E.</creator><creatorcontrib>Snyder, Lindsey M. ; Chiang, Michael C. ; Loeza-Alcocer, Emanuel ; Omori, Yu ; Hachisuka, Junichi ; Sheahan, Tayler D. ; Gale, Jenna R. ; Adelman, Peter C. ; Sypek, Elizabeth I. ; Fulton, Stephanie A. ; Friedman, Robert L. ; Wright, Margaret C. ; Duque, Melissa Giraldo ; Lee, Yeon Sun ; Hu, Zeyu ; Huang, Huizhen ; Cai, Xiaoyun ; Meerschaert, Kimberly A. ; Nagarajan, Vidhya ; Hirai, Toshiro ; Scherrer, Gregory ; Kaplan, Daniel H. ; Porreca, Frank ; Davis, Brian M. ; Gold, Michael S. ; Koerber, H. Richard ; Ross, Sarah E.</creatorcontrib><description>Primary afferents are known to be inhibited by kappa opioid receptor (KOR) signaling. However, the specific types of somatosensory neurons that express KOR remain unclear. Here, using a newly developed KOR-cre knockin allele, viral tracing, single-cell RT-PCR, and ex vivo recordings, we show that KOR is expressed in several populations of primary afferents: a subset of peptidergic sensory neurons, as well as low-threshold mechanoreceptors that form lanceolate or circumferential endings around hair follicles. We find that KOR acts centrally to inhibit excitatory neurotransmission from KOR-cre afferents in laminae I and III, and this effect is likely due to KOR-mediated inhibition of Ca2+ influx, which we observed in sensory neurons from both mouse and human. In the periphery, KOR signaling inhibits neurogenic inflammation and nociceptor sensitization by inflammatory mediators. Finally, peripherally restricted KOR agonists selectively reduce pain and itch behaviors, as well as mechanical hypersensitivity associated with a surgical incision. These experiments provide a rationale for the use of peripherally restricted KOR agonists for therapeutic treatment.
•KOR is expressed in peptidergic primary afferents in mouse and human•KOR is expressed in LTMRs that form circumferential and lanceolate endings•KOR signaling inhibits nociceptor sensitization and neurogenic inflammation•Peripherally selective KOR agonists inhibit nociception
Snyder et al. identify primary afferents that express the kappa opioid receptor in mouse and human and show that kappa opioid receptor signaling inhibits these cells in physiological and behavioral experiments.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2018.08.044</identifier><identifier>PMID: 30236284</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Analgesics ; Animals ; Axons - physiology ; Calcium influx ; dorsal root ganglia ; DRG ; dynorphin ; Follicles ; Grants ; human ; Hypersensitivity ; Inflammation ; itch ; Mechanoreceptors ; Mice ; Mice, Transgenic ; mouse ; nalfurafine ; Narcotics ; Neurons ; Neurons - physiology ; Neurons, Afferent - drug effects ; Neurotransmission ; Nociceptors - drug effects ; Nociceptors - metabolism ; Opioid receptors (type kappa) ; Oprk1 ; Pain ; Pain - drug therapy ; Pain Management ; Peptides ; Polymerase chain reaction ; primary afferents ; Receptors, Opioid, kappa - antagonists & inhibitors ; Receptors, Opioid, kappa - metabolism ; Sensory neurons ; Signal Transduction - physiology</subject><ispartof>Neuron (Cambridge, Mass.), 2018-09, Vol.99 (6), p.1274-1288.e6</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Sep 19, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-5793f8c49265013cd9afe4594257c7ed40e83049176ba23615016378ffd626893</citedby><cites>FETCH-LOGICAL-c557t-5793f8c49265013cd9afe4594257c7ed40e83049176ba23615016378ffd626893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627318307736$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30236284$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Snyder, Lindsey M.</creatorcontrib><creatorcontrib>Chiang, Michael C.</creatorcontrib><creatorcontrib>Loeza-Alcocer, Emanuel</creatorcontrib><creatorcontrib>Omori, Yu</creatorcontrib><creatorcontrib>Hachisuka, Junichi</creatorcontrib><creatorcontrib>Sheahan, Tayler D.</creatorcontrib><creatorcontrib>Gale, Jenna R.</creatorcontrib><creatorcontrib>Adelman, Peter C.</creatorcontrib><creatorcontrib>Sypek, Elizabeth I.</creatorcontrib><creatorcontrib>Fulton, Stephanie A.</creatorcontrib><creatorcontrib>Friedman, Robert L.</creatorcontrib><creatorcontrib>Wright, Margaret C.</creatorcontrib><creatorcontrib>Duque, Melissa Giraldo</creatorcontrib><creatorcontrib>Lee, Yeon Sun</creatorcontrib><creatorcontrib>Hu, Zeyu</creatorcontrib><creatorcontrib>Huang, Huizhen</creatorcontrib><creatorcontrib>Cai, Xiaoyun</creatorcontrib><creatorcontrib>Meerschaert, Kimberly A.</creatorcontrib><creatorcontrib>Nagarajan, Vidhya</creatorcontrib><creatorcontrib>Hirai, Toshiro</creatorcontrib><creatorcontrib>Scherrer, Gregory</creatorcontrib><creatorcontrib>Kaplan, Daniel H.</creatorcontrib><creatorcontrib>Porreca, Frank</creatorcontrib><creatorcontrib>Davis, Brian M.</creatorcontrib><creatorcontrib>Gold, Michael S.</creatorcontrib><creatorcontrib>Koerber, H. Richard</creatorcontrib><creatorcontrib>Ross, Sarah E.</creatorcontrib><title>Kappa Opioid Receptor Distribution and Function in Primary Afferents</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Primary afferents are known to be inhibited by kappa opioid receptor (KOR) signaling. However, the specific types of somatosensory neurons that express KOR remain unclear. Here, using a newly developed KOR-cre knockin allele, viral tracing, single-cell RT-PCR, and ex vivo recordings, we show that KOR is expressed in several populations of primary afferents: a subset of peptidergic sensory neurons, as well as low-threshold mechanoreceptors that form lanceolate or circumferential endings around hair follicles. We find that KOR acts centrally to inhibit excitatory neurotransmission from KOR-cre afferents in laminae I and III, and this effect is likely due to KOR-mediated inhibition of Ca2+ influx, which we observed in sensory neurons from both mouse and human. In the periphery, KOR signaling inhibits neurogenic inflammation and nociceptor sensitization by inflammatory mediators. Finally, peripherally restricted KOR agonists selectively reduce pain and itch behaviors, as well as mechanical hypersensitivity associated with a surgical incision. These experiments provide a rationale for the use of peripherally restricted KOR agonists for therapeutic treatment.
•KOR is expressed in peptidergic primary afferents in mouse and human•KOR is expressed in LTMRs that form circumferential and lanceolate endings•KOR signaling inhibits nociceptor sensitization and neurogenic inflammation•Peripherally selective KOR agonists inhibit nociception
Snyder et al. identify primary afferents that express the kappa opioid receptor in mouse and human and show that kappa opioid receptor signaling inhibits these cells in physiological and behavioral experiments.</description><subject>Analgesics</subject><subject>Animals</subject><subject>Axons - physiology</subject><subject>Calcium influx</subject><subject>dorsal root ganglia</subject><subject>DRG</subject><subject>dynorphin</subject><subject>Follicles</subject><subject>Grants</subject><subject>human</subject><subject>Hypersensitivity</subject><subject>Inflammation</subject><subject>itch</subject><subject>Mechanoreceptors</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>mouse</subject><subject>nalfurafine</subject><subject>Narcotics</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neurons, Afferent - drug effects</subject><subject>Neurotransmission</subject><subject>Nociceptors - drug effects</subject><subject>Nociceptors - metabolism</subject><subject>Opioid receptors (type kappa)</subject><subject>Oprk1</subject><subject>Pain</subject><subject>Pain - drug therapy</subject><subject>Pain Management</subject><subject>Peptides</subject><subject>Polymerase chain reaction</subject><subject>primary afferents</subject><subject>Receptors, Opioid, kappa - antagonists & inhibitors</subject><subject>Receptors, Opioid, kappa - metabolism</subject><subject>Sensory neurons</subject><subject>Signal Transduction - physiology</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UctKAzEUDaJorf6ByIAbN1PzmsxkIxTfWFBE1yHN3NGUNhmTGcG_N7W-F4YL4ZJzzz0nB6E9gkcEE3E0Gznog3cjikk1wqk4X0MDgmWZcyLlOhrgSopc0JJtoe0YZxgTXkiyibYYpkzQig_Q6bVuW53dtNbbOrsDA23nQ3ZqYxfstO-sd5l2dXbeO_PeWJfdBrvQ4TUbNw0EcF3cQRuNnkfY_biH6OH87P7kMp_cXFydjCe5KYqyy4tSsqYyXFJRYMJMLXUDSRGnRWlKqDmGimEuSSmmOgkkCSVYWTVNLaioJBui4xVv208XUJu0O-i5ald6lNdW_X5x9kk9-hclWPLOaCI4_CAI_rmH2KmFjQbmc-3A91FRkg6XuFjuOvgDnfk-uGQvobCkTC7tDBFfoUzwMQZovsQQrJYxqZlaxaSWMSmcivM0tv_TyNfQZy7fTiF954uFoKKx4AzUNoDpVO3t_xveACZipIs</recordid><startdate>20180919</startdate><enddate>20180919</enddate><creator>Snyder, Lindsey M.</creator><creator>Chiang, Michael C.</creator><creator>Loeza-Alcocer, Emanuel</creator><creator>Omori, Yu</creator><creator>Hachisuka, Junichi</creator><creator>Sheahan, Tayler D.</creator><creator>Gale, Jenna R.</creator><creator>Adelman, Peter C.</creator><creator>Sypek, Elizabeth I.</creator><creator>Fulton, Stephanie A.</creator><creator>Friedman, Robert L.</creator><creator>Wright, Margaret C.</creator><creator>Duque, Melissa Giraldo</creator><creator>Lee, Yeon Sun</creator><creator>Hu, Zeyu</creator><creator>Huang, Huizhen</creator><creator>Cai, Xiaoyun</creator><creator>Meerschaert, Kimberly A.</creator><creator>Nagarajan, Vidhya</creator><creator>Hirai, Toshiro</creator><creator>Scherrer, Gregory</creator><creator>Kaplan, Daniel H.</creator><creator>Porreca, Frank</creator><creator>Davis, Brian M.</creator><creator>Gold, Michael S.</creator><creator>Koerber, H. Richard</creator><creator>Ross, Sarah E.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180919</creationdate><title>Kappa Opioid Receptor Distribution and Function in Primary Afferents</title><author>Snyder, Lindsey M. ; Chiang, Michael C. ; Loeza-Alcocer, Emanuel ; Omori, Yu ; Hachisuka, Junichi ; Sheahan, Tayler D. ; Gale, Jenna R. ; Adelman, Peter C. ; Sypek, Elizabeth I. ; Fulton, Stephanie A. ; Friedman, Robert L. ; Wright, Margaret C. ; Duque, Melissa Giraldo ; Lee, Yeon Sun ; Hu, Zeyu ; Huang, Huizhen ; Cai, Xiaoyun ; Meerschaert, Kimberly A. ; Nagarajan, Vidhya ; Hirai, Toshiro ; Scherrer, Gregory ; Kaplan, Daniel H. ; Porreca, Frank ; Davis, Brian M. ; Gold, Michael S. ; Koerber, H. Richard ; Ross, Sarah E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-5793f8c49265013cd9afe4594257c7ed40e83049176ba23615016378ffd626893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analgesics</topic><topic>Animals</topic><topic>Axons - physiology</topic><topic>Calcium influx</topic><topic>dorsal root ganglia</topic><topic>DRG</topic><topic>dynorphin</topic><topic>Follicles</topic><topic>Grants</topic><topic>human</topic><topic>Hypersensitivity</topic><topic>Inflammation</topic><topic>itch</topic><topic>Mechanoreceptors</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>mouse</topic><topic>nalfurafine</topic><topic>Narcotics</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neurons, Afferent - drug effects</topic><topic>Neurotransmission</topic><topic>Nociceptors - drug effects</topic><topic>Nociceptors - metabolism</topic><topic>Opioid receptors (type kappa)</topic><topic>Oprk1</topic><topic>Pain</topic><topic>Pain - drug therapy</topic><topic>Pain Management</topic><topic>Peptides</topic><topic>Polymerase chain reaction</topic><topic>primary afferents</topic><topic>Receptors, Opioid, kappa - antagonists & inhibitors</topic><topic>Receptors, Opioid, kappa - metabolism</topic><topic>Sensory neurons</topic><topic>Signal Transduction - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Snyder, Lindsey M.</creatorcontrib><creatorcontrib>Chiang, Michael C.</creatorcontrib><creatorcontrib>Loeza-Alcocer, Emanuel</creatorcontrib><creatorcontrib>Omori, Yu</creatorcontrib><creatorcontrib>Hachisuka, Junichi</creatorcontrib><creatorcontrib>Sheahan, Tayler D.</creatorcontrib><creatorcontrib>Gale, Jenna R.</creatorcontrib><creatorcontrib>Adelman, Peter C.</creatorcontrib><creatorcontrib>Sypek, Elizabeth I.</creatorcontrib><creatorcontrib>Fulton, Stephanie A.</creatorcontrib><creatorcontrib>Friedman, Robert L.</creatorcontrib><creatorcontrib>Wright, Margaret C.</creatorcontrib><creatorcontrib>Duque, Melissa Giraldo</creatorcontrib><creatorcontrib>Lee, Yeon Sun</creatorcontrib><creatorcontrib>Hu, Zeyu</creatorcontrib><creatorcontrib>Huang, Huizhen</creatorcontrib><creatorcontrib>Cai, Xiaoyun</creatorcontrib><creatorcontrib>Meerschaert, Kimberly A.</creatorcontrib><creatorcontrib>Nagarajan, Vidhya</creatorcontrib><creatorcontrib>Hirai, Toshiro</creatorcontrib><creatorcontrib>Scherrer, Gregory</creatorcontrib><creatorcontrib>Kaplan, Daniel H.</creatorcontrib><creatorcontrib>Porreca, Frank</creatorcontrib><creatorcontrib>Davis, Brian M.</creatorcontrib><creatorcontrib>Gold, Michael S.</creatorcontrib><creatorcontrib>Koerber, H. Richard</creatorcontrib><creatorcontrib>Ross, Sarah E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Snyder, Lindsey M.</au><au>Chiang, Michael C.</au><au>Loeza-Alcocer, Emanuel</au><au>Omori, Yu</au><au>Hachisuka, Junichi</au><au>Sheahan, Tayler D.</au><au>Gale, Jenna R.</au><au>Adelman, Peter C.</au><au>Sypek, Elizabeth I.</au><au>Fulton, Stephanie A.</au><au>Friedman, Robert L.</au><au>Wright, Margaret C.</au><au>Duque, Melissa Giraldo</au><au>Lee, Yeon Sun</au><au>Hu, Zeyu</au><au>Huang, Huizhen</au><au>Cai, Xiaoyun</au><au>Meerschaert, Kimberly A.</au><au>Nagarajan, Vidhya</au><au>Hirai, Toshiro</au><au>Scherrer, Gregory</au><au>Kaplan, Daniel H.</au><au>Porreca, Frank</au><au>Davis, Brian M.</au><au>Gold, Michael S.</au><au>Koerber, H. Richard</au><au>Ross, Sarah E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kappa Opioid Receptor Distribution and Function in Primary Afferents</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2018-09-19</date><risdate>2018</risdate><volume>99</volume><issue>6</issue><spage>1274</spage><epage>1288.e6</epage><pages>1274-1288.e6</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Primary afferents are known to be inhibited by kappa opioid receptor (KOR) signaling. However, the specific types of somatosensory neurons that express KOR remain unclear. Here, using a newly developed KOR-cre knockin allele, viral tracing, single-cell RT-PCR, and ex vivo recordings, we show that KOR is expressed in several populations of primary afferents: a subset of peptidergic sensory neurons, as well as low-threshold mechanoreceptors that form lanceolate or circumferential endings around hair follicles. We find that KOR acts centrally to inhibit excitatory neurotransmission from KOR-cre afferents in laminae I and III, and this effect is likely due to KOR-mediated inhibition of Ca2+ influx, which we observed in sensory neurons from both mouse and human. In the periphery, KOR signaling inhibits neurogenic inflammation and nociceptor sensitization by inflammatory mediators. Finally, peripherally restricted KOR agonists selectively reduce pain and itch behaviors, as well as mechanical hypersensitivity associated with a surgical incision. These experiments provide a rationale for the use of peripherally restricted KOR agonists for therapeutic treatment.
•KOR is expressed in peptidergic primary afferents in mouse and human•KOR is expressed in LTMRs that form circumferential and lanceolate endings•KOR signaling inhibits nociceptor sensitization and neurogenic inflammation•Peripherally selective KOR agonists inhibit nociception
Snyder et al. identify primary afferents that express the kappa opioid receptor in mouse and human and show that kappa opioid receptor signaling inhibits these cells in physiological and behavioral experiments.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30236284</pmid><doi>10.1016/j.neuron.2018.08.044</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2018-09, Vol.99 (6), p.1274-1288.e6 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6300132 |
source | MEDLINE; Cell Press Archives; ScienceDirect Freedom Collection (Elsevier); EZB Electronic Journals Library |
subjects | Analgesics Animals Axons - physiology Calcium influx dorsal root ganglia DRG dynorphin Follicles Grants human Hypersensitivity Inflammation itch Mechanoreceptors Mice Mice, Transgenic mouse nalfurafine Narcotics Neurons Neurons - physiology Neurons, Afferent - drug effects Neurotransmission Nociceptors - drug effects Nociceptors - metabolism Opioid receptors (type kappa) Oprk1 Pain Pain - drug therapy Pain Management Peptides Polymerase chain reaction primary afferents Receptors, Opioid, kappa - antagonists & inhibitors Receptors, Opioid, kappa - metabolism Sensory neurons Signal Transduction - physiology |
title | Kappa Opioid Receptor Distribution and Function in Primary Afferents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T20%3A51%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kappa%20Opioid%20Receptor%20Distribution%20and%20Function%20in%20Primary%20Afferents&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Snyder,%20Lindsey%20M.&rft.date=2018-09-19&rft.volume=99&rft.issue=6&rft.spage=1274&rft.epage=1288.e6&rft.pages=1274-1288.e6&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2018.08.044&rft_dat=%3Cproquest_pubme%3E2109239579%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2109239579&rft_id=info:pmid/30236284&rft_els_id=S0896627318307736&rfr_iscdi=true |