Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides
Algal polysaccharides are an important bacterial nutrient source and central component of marine food webs. However, cellular and ecological aspects concerning the bacterial degradation of polysaccharide mixtures, as presumably abundant in natural habitats, are poorly understood. Here, we contextual...
Gespeichert in:
Veröffentlicht in: | The ISME Journal 2019-01, Vol.13 (1), p.92-103 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 103 |
---|---|
container_issue | 1 |
container_start_page | 92 |
container_title | The ISME Journal |
container_volume | 13 |
creator | Koch, Hanna Dürwald, Alexandra Schweder, Thomas Noriega-Ortega, Beatriz Vidal-Melgosa, Silvia Hehemann, Jan-Hendrik Dittmar, Thorsten Freese, Heike M. Becher, Dörte Simon, Meinhard Wietz, Matthias |
description | Algal polysaccharides are an important bacterial nutrient source and central component of marine food webs. However, cellular and ecological aspects concerning the bacterial degradation of polysaccharide mixtures, as presumably abundant in natural habitats, are poorly understood. Here, we contextualize marine polysaccharide mixtures and their bacterial utilization in several ways using the model bacterium
Alteromonas macleodii
83-1, which can degrade multiple algal polysaccharides and contributes to polysaccharide degradation in the oceans. Transcriptomic, proteomic and exometabolomic profiling revealed cellular adaptations of
A. macleodii
83-1 when degrading a mix of laminarin, alginate and pectin. Strain 83-1 exhibited substrate prioritization driven by catabolite repression, with initial laminarin utilization followed by simultaneous alginate/pectin utilization. This biphasic phenotype coincided with pronounced shifts in gene expression, protein abundance and metabolite secretion, mainly involving CAZymes/polysaccharide utilization loci but also other functional traits. Distinct temporal changes in exometabolome composition, including the alginate/pectin-specific secretion of pyrroloquinoline quinone, suggest that substrate-dependent adaptations influence chemical interactions within the community. The ecological relevance of cellular adaptations was underlined by molecular evidence that common marine macroalgae, in particular
Saccharina
and
Fucus
, release mixtures of alginate and pectin-like rhamnogalacturonan. Moreover, CAZyme microdiversity and the genomic predisposition towards polysaccharide mixtures among
Alteromonas
spp. suggest polysaccharide-related traits as an ecophysiological factor, potentially relating to distinct ‘carbohydrate utilization types’ with different ecological strategies. Considering the substantial primary productivity of algae on global scales, these insights contribute to the understanding of bacteria–algae interactions and the remineralization of chemically diverse polysaccharide pools, a key step in marine carbon cycling. |
doi_str_mv | 10.1038/s41396-018-0252-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6298977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2089850884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-2f181db311489a022ece1ff62d83c53a893201ea9099244383caade0025974353</originalsourceid><addsrcrecordid>eNp1kUtrFjEUhoMotlZ_gBsJuHEzmstcko1Qi7ZCwY2uw2lyZr6UzGRMZsSu_OtmmPp5ASGQQ94nb3LOS8hzzl5zJtWbXHOp24pxVTHRiKp-QE551_Cqkx17eKxbcUKe5HzLWNO1bfeYnEjGeVscTsmPd34-QPaWWgxhDZAoOJgXWHycMoXJUbQxxMFbCNSPcyjFrsWenocFUxzjBJmOYANG5z11OCRwfhoo0NF_X9aEGwxhKBZzDHcZrD1A8g7zU_Koh5Dx2f1-Rr58eP_54qq6_nT58eL8urKNbJdK9FxxdyM5r5UGJgRa5H3fCqdkIUBpKRhH0ExrUdeynAI4ZGUsuqtlI8_I2913Xm9GdBanJUEwc_IjpDsTwZu_lckfzBC_mVZopbuuGLy6N0jx64p5MaPP28xgwrhmI5jSqmFK1QV9-Q96G9c0lfaM4I0SYluF4jtlU8w5YX_8DGdmi9fs8ZoSr9niNZvziz-7ON74lWcBxA7kIk0Dpt9P_9_1J4v8sn8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2158228228</pqid></control><display><type>article</type><title>Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides</title><source>MEDLINE</source><source>Access via Oxford University Press (Open Access Collection)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Koch, Hanna ; Dürwald, Alexandra ; Schweder, Thomas ; Noriega-Ortega, Beatriz ; Vidal-Melgosa, Silvia ; Hehemann, Jan-Hendrik ; Dittmar, Thorsten ; Freese, Heike M. ; Becher, Dörte ; Simon, Meinhard ; Wietz, Matthias</creator><creatorcontrib>Koch, Hanna ; Dürwald, Alexandra ; Schweder, Thomas ; Noriega-Ortega, Beatriz ; Vidal-Melgosa, Silvia ; Hehemann, Jan-Hendrik ; Dittmar, Thorsten ; Freese, Heike M. ; Becher, Dörte ; Simon, Meinhard ; Wietz, Matthias</creatorcontrib><description>Algal polysaccharides are an important bacterial nutrient source and central component of marine food webs. However, cellular and ecological aspects concerning the bacterial degradation of polysaccharide mixtures, as presumably abundant in natural habitats, are poorly understood. Here, we contextualize marine polysaccharide mixtures and their bacterial utilization in several ways using the model bacterium
Alteromonas macleodii
83-1, which can degrade multiple algal polysaccharides and contributes to polysaccharide degradation in the oceans. Transcriptomic, proteomic and exometabolomic profiling revealed cellular adaptations of
A. macleodii
83-1 when degrading a mix of laminarin, alginate and pectin. Strain 83-1 exhibited substrate prioritization driven by catabolite repression, with initial laminarin utilization followed by simultaneous alginate/pectin utilization. This biphasic phenotype coincided with pronounced shifts in gene expression, protein abundance and metabolite secretion, mainly involving CAZymes/polysaccharide utilization loci but also other functional traits. Distinct temporal changes in exometabolome composition, including the alginate/pectin-specific secretion of pyrroloquinoline quinone, suggest that substrate-dependent adaptations influence chemical interactions within the community. The ecological relevance of cellular adaptations was underlined by molecular evidence that common marine macroalgae, in particular
Saccharina
and
Fucus
, release mixtures of alginate and pectin-like rhamnogalacturonan. Moreover, CAZyme microdiversity and the genomic predisposition towards polysaccharide mixtures among
Alteromonas
spp. suggest polysaccharide-related traits as an ecophysiological factor, potentially relating to distinct ‘carbohydrate utilization types’ with different ecological strategies. Considering the substantial primary productivity of algae on global scales, these insights contribute to the understanding of bacteria–algae interactions and the remineralization of chemically diverse polysaccharide pools, a key step in marine carbon cycling.</description><identifier>ISSN: 1751-7362</identifier><identifier>ISSN: 1751-7370</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/s41396-018-0252-4</identifier><identifier>PMID: 30116038</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/91 ; 45/77 ; 631/326/171/1878 ; 631/337/2019 ; 82/16 ; 82/58 ; Abundance ; Acclimatization ; Adaptation ; Adaptation, Physiological ; Algae ; Alginates ; Alginates - metabolism ; Alginic acid ; Alteromonas - genetics ; Alteromonas - physiology ; Alteromonas macleodii ; Bacteria ; Biodegradation ; Biomedical and Life Sciences ; Carbohydrates ; Carbon cycle ; Catabolite repression ; Chemical interactions ; Degradation ; Ecological effects ; Ecology ; Ecosystem ; Evolutionary Biology ; Food chains ; Food webs ; Gene expression ; Laminarin ; Life Sciences ; Metabolites ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Oceans ; Organic chemistry ; Pectin ; Phenotypes ; Polysaccharides ; Polysaccharides - metabolism ; Proteins ; Proteomics ; Pyrroloquinoline quinone ; Quinones ; Remineralization ; Rhamnogalacturonan ; Saccharides ; Seaweeds ; Secretion ; Substrates ; Utilization</subject><ispartof>The ISME Journal, 2019-01, Vol.13 (1), p.92-103</ispartof><rights>International Society for Microbial Ecology 2018</rights><rights>Copyright Nature Publishing Group Jan 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-2f181db311489a022ece1ff62d83c53a893201ea9099244383caade0025974353</citedby><cites>FETCH-LOGICAL-c536t-2f181db311489a022ece1ff62d83c53a893201ea9099244383caade0025974353</cites><orcidid>0000-0002-9786-3026 ; 0000-0002-7213-3596 ; 0000-0002-3462-0107</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6298977/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6298977/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30116038$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koch, Hanna</creatorcontrib><creatorcontrib>Dürwald, Alexandra</creatorcontrib><creatorcontrib>Schweder, Thomas</creatorcontrib><creatorcontrib>Noriega-Ortega, Beatriz</creatorcontrib><creatorcontrib>Vidal-Melgosa, Silvia</creatorcontrib><creatorcontrib>Hehemann, Jan-Hendrik</creatorcontrib><creatorcontrib>Dittmar, Thorsten</creatorcontrib><creatorcontrib>Freese, Heike M.</creatorcontrib><creatorcontrib>Becher, Dörte</creatorcontrib><creatorcontrib>Simon, Meinhard</creatorcontrib><creatorcontrib>Wietz, Matthias</creatorcontrib><title>Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>Algal polysaccharides are an important bacterial nutrient source and central component of marine food webs. However, cellular and ecological aspects concerning the bacterial degradation of polysaccharide mixtures, as presumably abundant in natural habitats, are poorly understood. Here, we contextualize marine polysaccharide mixtures and their bacterial utilization in several ways using the model bacterium
Alteromonas macleodii
83-1, which can degrade multiple algal polysaccharides and contributes to polysaccharide degradation in the oceans. Transcriptomic, proteomic and exometabolomic profiling revealed cellular adaptations of
A. macleodii
83-1 when degrading a mix of laminarin, alginate and pectin. Strain 83-1 exhibited substrate prioritization driven by catabolite repression, with initial laminarin utilization followed by simultaneous alginate/pectin utilization. This biphasic phenotype coincided with pronounced shifts in gene expression, protein abundance and metabolite secretion, mainly involving CAZymes/polysaccharide utilization loci but also other functional traits. Distinct temporal changes in exometabolome composition, including the alginate/pectin-specific secretion of pyrroloquinoline quinone, suggest that substrate-dependent adaptations influence chemical interactions within the community. The ecological relevance of cellular adaptations was underlined by molecular evidence that common marine macroalgae, in particular
Saccharina
and
Fucus
, release mixtures of alginate and pectin-like rhamnogalacturonan. Moreover, CAZyme microdiversity and the genomic predisposition towards polysaccharide mixtures among
Alteromonas
spp. suggest polysaccharide-related traits as an ecophysiological factor, potentially relating to distinct ‘carbohydrate utilization types’ with different ecological strategies. Considering the substantial primary productivity of algae on global scales, these insights contribute to the understanding of bacteria–algae interactions and the remineralization of chemically diverse polysaccharide pools, a key step in marine carbon cycling.</description><subject>38/91</subject><subject>45/77</subject><subject>631/326/171/1878</subject><subject>631/337/2019</subject><subject>82/16</subject><subject>82/58</subject><subject>Abundance</subject><subject>Acclimatization</subject><subject>Adaptation</subject><subject>Adaptation, Physiological</subject><subject>Algae</subject><subject>Alginates</subject><subject>Alginates - metabolism</subject><subject>Alginic acid</subject><subject>Alteromonas - genetics</subject><subject>Alteromonas - physiology</subject><subject>Alteromonas macleodii</subject><subject>Bacteria</subject><subject>Biodegradation</subject><subject>Biomedical and Life Sciences</subject><subject>Carbohydrates</subject><subject>Carbon cycle</subject><subject>Catabolite repression</subject><subject>Chemical interactions</subject><subject>Degradation</subject><subject>Ecological effects</subject><subject>Ecology</subject><subject>Ecosystem</subject><subject>Evolutionary Biology</subject><subject>Food chains</subject><subject>Food webs</subject><subject>Gene expression</subject><subject>Laminarin</subject><subject>Life Sciences</subject><subject>Metabolites</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Oceans</subject><subject>Organic chemistry</subject><subject>Pectin</subject><subject>Phenotypes</subject><subject>Polysaccharides</subject><subject>Polysaccharides - metabolism</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Pyrroloquinoline quinone</subject><subject>Quinones</subject><subject>Remineralization</subject><subject>Rhamnogalacturonan</subject><subject>Saccharides</subject><subject>Seaweeds</subject><subject>Secretion</subject><subject>Substrates</subject><subject>Utilization</subject><issn>1751-7362</issn><issn>1751-7370</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUtrFjEUhoMotlZ_gBsJuHEzmstcko1Qi7ZCwY2uw2lyZr6UzGRMZsSu_OtmmPp5ASGQQ94nb3LOS8hzzl5zJtWbXHOp24pxVTHRiKp-QE551_Cqkx17eKxbcUKe5HzLWNO1bfeYnEjGeVscTsmPd34-QPaWWgxhDZAoOJgXWHycMoXJUbQxxMFbCNSPcyjFrsWenocFUxzjBJmOYANG5z11OCRwfhoo0NF_X9aEGwxhKBZzDHcZrD1A8g7zU_Koh5Dx2f1-Rr58eP_54qq6_nT58eL8urKNbJdK9FxxdyM5r5UGJgRa5H3fCqdkIUBpKRhH0ExrUdeynAI4ZGUsuqtlI8_I2913Xm9GdBanJUEwc_IjpDsTwZu_lckfzBC_mVZopbuuGLy6N0jx64p5MaPP28xgwrhmI5jSqmFK1QV9-Q96G9c0lfaM4I0SYluF4jtlU8w5YX_8DGdmi9fs8ZoSr9niNZvziz-7ON74lWcBxA7kIk0Dpt9P_9_1J4v8sn8</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Koch, Hanna</creator><creator>Dürwald, Alexandra</creator><creator>Schweder, Thomas</creator><creator>Noriega-Ortega, Beatriz</creator><creator>Vidal-Melgosa, Silvia</creator><creator>Hehemann, Jan-Hendrik</creator><creator>Dittmar, Thorsten</creator><creator>Freese, Heike M.</creator><creator>Becher, Dörte</creator><creator>Simon, Meinhard</creator><creator>Wietz, Matthias</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9786-3026</orcidid><orcidid>https://orcid.org/0000-0002-7213-3596</orcidid><orcidid>https://orcid.org/0000-0002-3462-0107</orcidid></search><sort><creationdate>20190101</creationdate><title>Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides</title><author>Koch, Hanna ; Dürwald, Alexandra ; Schweder, Thomas ; Noriega-Ortega, Beatriz ; Vidal-Melgosa, Silvia ; Hehemann, Jan-Hendrik ; Dittmar, Thorsten ; Freese, Heike M. ; Becher, Dörte ; Simon, Meinhard ; Wietz, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-2f181db311489a022ece1ff62d83c53a893201ea9099244383caade0025974353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>38/91</topic><topic>45/77</topic><topic>631/326/171/1878</topic><topic>631/337/2019</topic><topic>82/16</topic><topic>82/58</topic><topic>Abundance</topic><topic>Acclimatization</topic><topic>Adaptation</topic><topic>Adaptation, Physiological</topic><topic>Algae</topic><topic>Alginates</topic><topic>Alginates - metabolism</topic><topic>Alginic acid</topic><topic>Alteromonas - genetics</topic><topic>Alteromonas - physiology</topic><topic>Alteromonas macleodii</topic><topic>Bacteria</topic><topic>Biodegradation</topic><topic>Biomedical and Life Sciences</topic><topic>Carbohydrates</topic><topic>Carbon cycle</topic><topic>Catabolite repression</topic><topic>Chemical interactions</topic><topic>Degradation</topic><topic>Ecological effects</topic><topic>Ecology</topic><topic>Ecosystem</topic><topic>Evolutionary Biology</topic><topic>Food chains</topic><topic>Food webs</topic><topic>Gene expression</topic><topic>Laminarin</topic><topic>Life Sciences</topic><topic>Metabolites</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Oceans</topic><topic>Organic chemistry</topic><topic>Pectin</topic><topic>Phenotypes</topic><topic>Polysaccharides</topic><topic>Polysaccharides - metabolism</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Pyrroloquinoline quinone</topic><topic>Quinones</topic><topic>Remineralization</topic><topic>Rhamnogalacturonan</topic><topic>Saccharides</topic><topic>Seaweeds</topic><topic>Secretion</topic><topic>Substrates</topic><topic>Utilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koch, Hanna</creatorcontrib><creatorcontrib>Dürwald, Alexandra</creatorcontrib><creatorcontrib>Schweder, Thomas</creatorcontrib><creatorcontrib>Noriega-Ortega, Beatriz</creatorcontrib><creatorcontrib>Vidal-Melgosa, Silvia</creatorcontrib><creatorcontrib>Hehemann, Jan-Hendrik</creatorcontrib><creatorcontrib>Dittmar, Thorsten</creatorcontrib><creatorcontrib>Freese, Heike M.</creatorcontrib><creatorcontrib>Becher, Dörte</creatorcontrib><creatorcontrib>Simon, Meinhard</creatorcontrib><creatorcontrib>Wietz, Matthias</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koch, Hanna</au><au>Dürwald, Alexandra</au><au>Schweder, Thomas</au><au>Noriega-Ortega, Beatriz</au><au>Vidal-Melgosa, Silvia</au><au>Hehemann, Jan-Hendrik</au><au>Dittmar, Thorsten</au><au>Freese, Heike M.</au><au>Becher, Dörte</au><au>Simon, Meinhard</au><au>Wietz, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>13</volume><issue>1</issue><spage>92</spage><epage>103</epage><pages>92-103</pages><issn>1751-7362</issn><issn>1751-7370</issn><eissn>1751-7370</eissn><abstract>Algal polysaccharides are an important bacterial nutrient source and central component of marine food webs. However, cellular and ecological aspects concerning the bacterial degradation of polysaccharide mixtures, as presumably abundant in natural habitats, are poorly understood. Here, we contextualize marine polysaccharide mixtures and their bacterial utilization in several ways using the model bacterium
Alteromonas macleodii
83-1, which can degrade multiple algal polysaccharides and contributes to polysaccharide degradation in the oceans. Transcriptomic, proteomic and exometabolomic profiling revealed cellular adaptations of
A. macleodii
83-1 when degrading a mix of laminarin, alginate and pectin. Strain 83-1 exhibited substrate prioritization driven by catabolite repression, with initial laminarin utilization followed by simultaneous alginate/pectin utilization. This biphasic phenotype coincided with pronounced shifts in gene expression, protein abundance and metabolite secretion, mainly involving CAZymes/polysaccharide utilization loci but also other functional traits. Distinct temporal changes in exometabolome composition, including the alginate/pectin-specific secretion of pyrroloquinoline quinone, suggest that substrate-dependent adaptations influence chemical interactions within the community. The ecological relevance of cellular adaptations was underlined by molecular evidence that common marine macroalgae, in particular
Saccharina
and
Fucus
, release mixtures of alginate and pectin-like rhamnogalacturonan. Moreover, CAZyme microdiversity and the genomic predisposition towards polysaccharide mixtures among
Alteromonas
spp. suggest polysaccharide-related traits as an ecophysiological factor, potentially relating to distinct ‘carbohydrate utilization types’ with different ecological strategies. Considering the substantial primary productivity of algae on global scales, these insights contribute to the understanding of bacteria–algae interactions and the remineralization of chemically diverse polysaccharide pools, a key step in marine carbon cycling.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30116038</pmid><doi>10.1038/s41396-018-0252-4</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9786-3026</orcidid><orcidid>https://orcid.org/0000-0002-7213-3596</orcidid><orcidid>https://orcid.org/0000-0002-3462-0107</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-7362 |
ispartof | The ISME Journal, 2019-01, Vol.13 (1), p.92-103 |
issn | 1751-7362 1751-7370 1751-7370 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6298977 |
source | MEDLINE; Access via Oxford University Press (Open Access Collection); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | 38/91 45/77 631/326/171/1878 631/337/2019 82/16 82/58 Abundance Acclimatization Adaptation Adaptation, Physiological Algae Alginates Alginates - metabolism Alginic acid Alteromonas - genetics Alteromonas - physiology Alteromonas macleodii Bacteria Biodegradation Biomedical and Life Sciences Carbohydrates Carbon cycle Catabolite repression Chemical interactions Degradation Ecological effects Ecology Ecosystem Evolutionary Biology Food chains Food webs Gene expression Laminarin Life Sciences Metabolites Microbial Ecology Microbial Genetics and Genomics Microbiology Oceans Organic chemistry Pectin Phenotypes Polysaccharides Polysaccharides - metabolism Proteins Proteomics Pyrroloquinoline quinone Quinones Remineralization Rhamnogalacturonan Saccharides Seaweeds Secretion Substrates Utilization |
title | Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T01%3A44%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biphasic%20cellular%20adaptations%20and%20ecological%20implications%20of%20Alteromonas%20macleodii%20degrading%20a%20mixture%20of%20algal%20polysaccharides&rft.jtitle=The%20ISME%20Journal&rft.au=Koch,%20Hanna&rft.date=2019-01-01&rft.volume=13&rft.issue=1&rft.spage=92&rft.epage=103&rft.pages=92-103&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/s41396-018-0252-4&rft_dat=%3Cproquest_pubme%3E2089850884%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2158228228&rft_id=info:pmid/30116038&rfr_iscdi=true |