Improved in situ seeding of 3D printed scaffolds using cell-releasing hydrogels

The design of tissue engineered scaffolds based on polymerized high internal phase emulsions (polyHIPEs) has emerged as a promising bone grafting strategy. We previously reported the ability to 3D print emulsion inks to better mimic the structure and mechanical properties of native bone while precis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2018-12, Vol.185, p.194-204
Hauptverfasser: Whitely, Michael, Cereceres, Stacy, Dhavalikar, Prachi, Salhadar, Karim, Wilems, Thomas, Smith, Brandon, Mikos, Antonios, Cosgriff-Hernandez, Elizabeth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 204
container_issue
container_start_page 194
container_title Biomaterials
container_volume 185
creator Whitely, Michael
Cereceres, Stacy
Dhavalikar, Prachi
Salhadar, Karim
Wilems, Thomas
Smith, Brandon
Mikos, Antonios
Cosgriff-Hernandez, Elizabeth
description The design of tissue engineered scaffolds based on polymerized high internal phase emulsions (polyHIPEs) has emerged as a promising bone grafting strategy. We previously reported the ability to 3D print emulsion inks to better mimic the structure and mechanical properties of native bone while precisely matching defect geometry. In the current study, redox-initiated hydrogel carriers were investigated for in situ delivery of human mesenchymal stem cells (hMSCs) utilizing the biodegradable macromer, poly(ethylene glycol)-dithiothreitol. Hydrogel carrier properties including network formation time, sol-gel fraction, and swelling ratio were modulated to achieve rapid cure without external stimuli and a target cell-release period of 5–7 days. These in situ carriers enabled improved distribution of hMSCs in 3D printed polyHIPE grafts over standard suspension seeding. Additionally, carrier-loaded polyHIPEs supported sustained cell viability and osteogenic differentiation of hMSCs post-release. In summary, these findings demonstrate the potential of this in situ curing hydrogel carrier to enhance the cell distribution and retention of hMSCs in bone grafts. Although initially focused on improving bone regeneration, the ability to encapsulate cells in a hydrogel carrier without relying on external stimuli that can be attenuated in large grafts or tissues is expected to have a wide range of applications in tissue engineering. [Display omitted]
doi_str_mv 10.1016/j.biomaterials.2018.09.027
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6298753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961218306641</els_id><sourcerecordid>2111746914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-ae980996351d649fa31c764a4886bb3a5f576d27ba20c06d570affba41ef971c3</originalsourceid><addsrcrecordid>eNqNUU1P3DAUtKpWZUv7F1DUUy8J_nbcQ6UKKCAhcSlny7FfFq-SeGsnK_Hv8bKA6I2T9TTzZuZ5EPpOcEMwkaebpgtxtDOkYIfcUEzaBusGU_UBrUir2lpoLD6iFSac1loSeoS-5LzBZcacfkZHDFMuWKtW6PZ63Ka4A1-FqcphXqoM4MO0rmJfsfNqm8I0FzQ72_dx8Lla8h51MAx1ggHs03j_4FNcw5C_ok99CQXfnt9jdPfn4u_ZVX1ze3l99vumdoKwubagW6y1ZIJ4yXVvGXFKcsvbVnYds6IXSnqqOkuxw9ILhYt_ZzmBXivi2DH6ddDdLt0I3sE0JzuYEne06cFEG8z_yBTuzTrujKS6VYIVgR_PAin-WyDPZgx5f5WdIC7ZUEKI4lITXqg_D1SXYs4J-lcbgs2-EbMxbxsx-0YM1qY0UpZP3gZ9XX2poBDOD4Tye7ALkEx2ASZXWkjgZuNjeI_PI8sjpaQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111746914</pqid></control><display><type>article</type><title>Improved in situ seeding of 3D printed scaffolds using cell-releasing hydrogels</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Whitely, Michael ; Cereceres, Stacy ; Dhavalikar, Prachi ; Salhadar, Karim ; Wilems, Thomas ; Smith, Brandon ; Mikos, Antonios ; Cosgriff-Hernandez, Elizabeth</creator><creatorcontrib>Whitely, Michael ; Cereceres, Stacy ; Dhavalikar, Prachi ; Salhadar, Karim ; Wilems, Thomas ; Smith, Brandon ; Mikos, Antonios ; Cosgriff-Hernandez, Elizabeth</creatorcontrib><description>The design of tissue engineered scaffolds based on polymerized high internal phase emulsions (polyHIPEs) has emerged as a promising bone grafting strategy. We previously reported the ability to 3D print emulsion inks to better mimic the structure and mechanical properties of native bone while precisely matching defect geometry. In the current study, redox-initiated hydrogel carriers were investigated for in situ delivery of human mesenchymal stem cells (hMSCs) utilizing the biodegradable macromer, poly(ethylene glycol)-dithiothreitol. Hydrogel carrier properties including network formation time, sol-gel fraction, and swelling ratio were modulated to achieve rapid cure without external stimuli and a target cell-release period of 5–7 days. These in situ carriers enabled improved distribution of hMSCs in 3D printed polyHIPE grafts over standard suspension seeding. Additionally, carrier-loaded polyHIPEs supported sustained cell viability and osteogenic differentiation of hMSCs post-release. In summary, these findings demonstrate the potential of this in situ curing hydrogel carrier to enhance the cell distribution and retention of hMSCs in bone grafts. Although initially focused on improving bone regeneration, the ability to encapsulate cells in a hydrogel carrier without relying on external stimuli that can be attenuated in large grafts or tissues is expected to have a wide range of applications in tissue engineering. [Display omitted]</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2018.09.027</identifier><identifier>PMID: 30245387</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>3D printing ; Cell delivery ; Cell Differentiation ; Cell Line ; Cell Survival ; Cells, Immobilized - cytology ; Dithiothreitol - chemistry ; Humans ; Hydrogels - chemistry ; Mesenchymal Stem Cell Transplantation ; Mesenchymal stem cells ; Mesenchymal Stem Cells - cytology ; Osteogenesis ; Oxidation-Reduction ; Polyethylene Glycols - chemistry ; Polyhipes ; Printing, Three-Dimensional ; Tissue Engineering ; Tissue Scaffolds - chemistry</subject><ispartof>Biomaterials, 2018-12, Vol.185, p.194-204</ispartof><rights>2018</rights><rights>Copyright © 2018. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-ae980996351d649fa31c764a4886bb3a5f576d27ba20c06d570affba41ef971c3</citedby><cites>FETCH-LOGICAL-c513t-ae980996351d649fa31c764a4886bb3a5f576d27ba20c06d570affba41ef971c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2018.09.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,782,786,887,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30245387$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Whitely, Michael</creatorcontrib><creatorcontrib>Cereceres, Stacy</creatorcontrib><creatorcontrib>Dhavalikar, Prachi</creatorcontrib><creatorcontrib>Salhadar, Karim</creatorcontrib><creatorcontrib>Wilems, Thomas</creatorcontrib><creatorcontrib>Smith, Brandon</creatorcontrib><creatorcontrib>Mikos, Antonios</creatorcontrib><creatorcontrib>Cosgriff-Hernandez, Elizabeth</creatorcontrib><title>Improved in situ seeding of 3D printed scaffolds using cell-releasing hydrogels</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>The design of tissue engineered scaffolds based on polymerized high internal phase emulsions (polyHIPEs) has emerged as a promising bone grafting strategy. We previously reported the ability to 3D print emulsion inks to better mimic the structure and mechanical properties of native bone while precisely matching defect geometry. In the current study, redox-initiated hydrogel carriers were investigated for in situ delivery of human mesenchymal stem cells (hMSCs) utilizing the biodegradable macromer, poly(ethylene glycol)-dithiothreitol. Hydrogel carrier properties including network formation time, sol-gel fraction, and swelling ratio were modulated to achieve rapid cure without external stimuli and a target cell-release period of 5–7 days. These in situ carriers enabled improved distribution of hMSCs in 3D printed polyHIPE grafts over standard suspension seeding. Additionally, carrier-loaded polyHIPEs supported sustained cell viability and osteogenic differentiation of hMSCs post-release. In summary, these findings demonstrate the potential of this in situ curing hydrogel carrier to enhance the cell distribution and retention of hMSCs in bone grafts. Although initially focused on improving bone regeneration, the ability to encapsulate cells in a hydrogel carrier without relying on external stimuli that can be attenuated in large grafts or tissues is expected to have a wide range of applications in tissue engineering. [Display omitted]</description><subject>3D printing</subject><subject>Cell delivery</subject><subject>Cell Differentiation</subject><subject>Cell Line</subject><subject>Cell Survival</subject><subject>Cells, Immobilized - cytology</subject><subject>Dithiothreitol - chemistry</subject><subject>Humans</subject><subject>Hydrogels - chemistry</subject><subject>Mesenchymal Stem Cell Transplantation</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Osteogenesis</subject><subject>Oxidation-Reduction</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polyhipes</subject><subject>Printing, Three-Dimensional</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds - chemistry</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUU1P3DAUtKpWZUv7F1DUUy8J_nbcQ6UKKCAhcSlny7FfFq-SeGsnK_Hv8bKA6I2T9TTzZuZ5EPpOcEMwkaebpgtxtDOkYIfcUEzaBusGU_UBrUir2lpoLD6iFSac1loSeoS-5LzBZcacfkZHDFMuWKtW6PZ63Ka4A1-FqcphXqoM4MO0rmJfsfNqm8I0FzQ72_dx8Lla8h51MAx1ggHs03j_4FNcw5C_ok99CQXfnt9jdPfn4u_ZVX1ze3l99vumdoKwubagW6y1ZIJ4yXVvGXFKcsvbVnYds6IXSnqqOkuxw9ILhYt_ZzmBXivi2DH6ddDdLt0I3sE0JzuYEne06cFEG8z_yBTuzTrujKS6VYIVgR_PAin-WyDPZgx5f5WdIC7ZUEKI4lITXqg_D1SXYs4J-lcbgs2-EbMxbxsx-0YM1qY0UpZP3gZ9XX2poBDOD4Tye7ALkEx2ASZXWkjgZuNjeI_PI8sjpaQ</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Whitely, Michael</creator><creator>Cereceres, Stacy</creator><creator>Dhavalikar, Prachi</creator><creator>Salhadar, Karim</creator><creator>Wilems, Thomas</creator><creator>Smith, Brandon</creator><creator>Mikos, Antonios</creator><creator>Cosgriff-Hernandez, Elizabeth</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20181201</creationdate><title>Improved in situ seeding of 3D printed scaffolds using cell-releasing hydrogels</title><author>Whitely, Michael ; Cereceres, Stacy ; Dhavalikar, Prachi ; Salhadar, Karim ; Wilems, Thomas ; Smith, Brandon ; Mikos, Antonios ; Cosgriff-Hernandez, Elizabeth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-ae980996351d649fa31c764a4886bb3a5f576d27ba20c06d570affba41ef971c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3D printing</topic><topic>Cell delivery</topic><topic>Cell Differentiation</topic><topic>Cell Line</topic><topic>Cell Survival</topic><topic>Cells, Immobilized - cytology</topic><topic>Dithiothreitol - chemistry</topic><topic>Humans</topic><topic>Hydrogels - chemistry</topic><topic>Mesenchymal Stem Cell Transplantation</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Osteogenesis</topic><topic>Oxidation-Reduction</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polyhipes</topic><topic>Printing, Three-Dimensional</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whitely, Michael</creatorcontrib><creatorcontrib>Cereceres, Stacy</creatorcontrib><creatorcontrib>Dhavalikar, Prachi</creatorcontrib><creatorcontrib>Salhadar, Karim</creatorcontrib><creatorcontrib>Wilems, Thomas</creatorcontrib><creatorcontrib>Smith, Brandon</creatorcontrib><creatorcontrib>Mikos, Antonios</creatorcontrib><creatorcontrib>Cosgriff-Hernandez, Elizabeth</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whitely, Michael</au><au>Cereceres, Stacy</au><au>Dhavalikar, Prachi</au><au>Salhadar, Karim</au><au>Wilems, Thomas</au><au>Smith, Brandon</au><au>Mikos, Antonios</au><au>Cosgriff-Hernandez, Elizabeth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved in situ seeding of 3D printed scaffolds using cell-releasing hydrogels</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>185</volume><spage>194</spage><epage>204</epage><pages>194-204</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>The design of tissue engineered scaffolds based on polymerized high internal phase emulsions (polyHIPEs) has emerged as a promising bone grafting strategy. We previously reported the ability to 3D print emulsion inks to better mimic the structure and mechanical properties of native bone while precisely matching defect geometry. In the current study, redox-initiated hydrogel carriers were investigated for in situ delivery of human mesenchymal stem cells (hMSCs) utilizing the biodegradable macromer, poly(ethylene glycol)-dithiothreitol. Hydrogel carrier properties including network formation time, sol-gel fraction, and swelling ratio were modulated to achieve rapid cure without external stimuli and a target cell-release period of 5–7 days. These in situ carriers enabled improved distribution of hMSCs in 3D printed polyHIPE grafts over standard suspension seeding. Additionally, carrier-loaded polyHIPEs supported sustained cell viability and osteogenic differentiation of hMSCs post-release. In summary, these findings demonstrate the potential of this in situ curing hydrogel carrier to enhance the cell distribution and retention of hMSCs in bone grafts. Although initially focused on improving bone regeneration, the ability to encapsulate cells in a hydrogel carrier without relying on external stimuli that can be attenuated in large grafts or tissues is expected to have a wide range of applications in tissue engineering. [Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>30245387</pmid><doi>10.1016/j.biomaterials.2018.09.027</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2018-12, Vol.185, p.194-204
issn 0142-9612
1878-5905
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6298753
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects 3D printing
Cell delivery
Cell Differentiation
Cell Line
Cell Survival
Cells, Immobilized - cytology
Dithiothreitol - chemistry
Humans
Hydrogels - chemistry
Mesenchymal Stem Cell Transplantation
Mesenchymal stem cells
Mesenchymal Stem Cells - cytology
Osteogenesis
Oxidation-Reduction
Polyethylene Glycols - chemistry
Polyhipes
Printing, Three-Dimensional
Tissue Engineering
Tissue Scaffolds - chemistry
title Improved in situ seeding of 3D printed scaffolds using cell-releasing hydrogels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T00%3A00%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20in%20situ%20seeding%20of%203D%20printed%20scaffolds%20using%20cell-releasing%20hydrogels&rft.jtitle=Biomaterials&rft.au=Whitely,%20Michael&rft.date=2018-12-01&rft.volume=185&rft.spage=194&rft.epage=204&rft.pages=194-204&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2018.09.027&rft_dat=%3Cproquest_pubme%3E2111746914%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111746914&rft_id=info:pmid/30245387&rft_els_id=S0142961218306641&rfr_iscdi=true