Improved in situ seeding of 3D printed scaffolds using cell-releasing hydrogels
The design of tissue engineered scaffolds based on polymerized high internal phase emulsions (polyHIPEs) has emerged as a promising bone grafting strategy. We previously reported the ability to 3D print emulsion inks to better mimic the structure and mechanical properties of native bone while precis...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2018-12, Vol.185, p.194-204 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 204 |
---|---|
container_issue | |
container_start_page | 194 |
container_title | Biomaterials |
container_volume | 185 |
creator | Whitely, Michael Cereceres, Stacy Dhavalikar, Prachi Salhadar, Karim Wilems, Thomas Smith, Brandon Mikos, Antonios Cosgriff-Hernandez, Elizabeth |
description | The design of tissue engineered scaffolds based on polymerized high internal phase emulsions (polyHIPEs) has emerged as a promising bone grafting strategy. We previously reported the ability to 3D print emulsion inks to better mimic the structure and mechanical properties of native bone while precisely matching defect geometry. In the current study, redox-initiated hydrogel carriers were investigated for in situ delivery of human mesenchymal stem cells (hMSCs) utilizing the biodegradable macromer, poly(ethylene glycol)-dithiothreitol. Hydrogel carrier properties including network formation time, sol-gel fraction, and swelling ratio were modulated to achieve rapid cure without external stimuli and a target cell-release period of 5–7 days. These in situ carriers enabled improved distribution of hMSCs in 3D printed polyHIPE grafts over standard suspension seeding. Additionally, carrier-loaded polyHIPEs supported sustained cell viability and osteogenic differentiation of hMSCs post-release. In summary, these findings demonstrate the potential of this in situ curing hydrogel carrier to enhance the cell distribution and retention of hMSCs in bone grafts. Although initially focused on improving bone regeneration, the ability to encapsulate cells in a hydrogel carrier without relying on external stimuli that can be attenuated in large grafts or tissues is expected to have a wide range of applications in tissue engineering.
[Display omitted] |
doi_str_mv | 10.1016/j.biomaterials.2018.09.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6298753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961218306641</els_id><sourcerecordid>2111746914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-ae980996351d649fa31c764a4886bb3a5f576d27ba20c06d570affba41ef971c3</originalsourceid><addsrcrecordid>eNqNUU1P3DAUtKpWZUv7F1DUUy8J_nbcQ6UKKCAhcSlny7FfFq-SeGsnK_Hv8bKA6I2T9TTzZuZ5EPpOcEMwkaebpgtxtDOkYIfcUEzaBusGU_UBrUir2lpoLD6iFSac1loSeoS-5LzBZcacfkZHDFMuWKtW6PZ63Ka4A1-FqcphXqoM4MO0rmJfsfNqm8I0FzQ72_dx8Lla8h51MAx1ggHs03j_4FNcw5C_ok99CQXfnt9jdPfn4u_ZVX1ze3l99vumdoKwubagW6y1ZIJ4yXVvGXFKcsvbVnYds6IXSnqqOkuxw9ILhYt_ZzmBXivi2DH6ddDdLt0I3sE0JzuYEne06cFEG8z_yBTuzTrujKS6VYIVgR_PAin-WyDPZgx5f5WdIC7ZUEKI4lITXqg_D1SXYs4J-lcbgs2-EbMxbxsx-0YM1qY0UpZP3gZ9XX2poBDOD4Tye7ALkEx2ASZXWkjgZuNjeI_PI8sjpaQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111746914</pqid></control><display><type>article</type><title>Improved in situ seeding of 3D printed scaffolds using cell-releasing hydrogels</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Whitely, Michael ; Cereceres, Stacy ; Dhavalikar, Prachi ; Salhadar, Karim ; Wilems, Thomas ; Smith, Brandon ; Mikos, Antonios ; Cosgriff-Hernandez, Elizabeth</creator><creatorcontrib>Whitely, Michael ; Cereceres, Stacy ; Dhavalikar, Prachi ; Salhadar, Karim ; Wilems, Thomas ; Smith, Brandon ; Mikos, Antonios ; Cosgriff-Hernandez, Elizabeth</creatorcontrib><description>The design of tissue engineered scaffolds based on polymerized high internal phase emulsions (polyHIPEs) has emerged as a promising bone grafting strategy. We previously reported the ability to 3D print emulsion inks to better mimic the structure and mechanical properties of native bone while precisely matching defect geometry. In the current study, redox-initiated hydrogel carriers were investigated for in situ delivery of human mesenchymal stem cells (hMSCs) utilizing the biodegradable macromer, poly(ethylene glycol)-dithiothreitol. Hydrogel carrier properties including network formation time, sol-gel fraction, and swelling ratio were modulated to achieve rapid cure without external stimuli and a target cell-release period of 5–7 days. These in situ carriers enabled improved distribution of hMSCs in 3D printed polyHIPE grafts over standard suspension seeding. Additionally, carrier-loaded polyHIPEs supported sustained cell viability and osteogenic differentiation of hMSCs post-release. In summary, these findings demonstrate the potential of this in situ curing hydrogel carrier to enhance the cell distribution and retention of hMSCs in bone grafts. Although initially focused on improving bone regeneration, the ability to encapsulate cells in a hydrogel carrier without relying on external stimuli that can be attenuated in large grafts or tissues is expected to have a wide range of applications in tissue engineering.
[Display omitted]</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2018.09.027</identifier><identifier>PMID: 30245387</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>3D printing ; Cell delivery ; Cell Differentiation ; Cell Line ; Cell Survival ; Cells, Immobilized - cytology ; Dithiothreitol - chemistry ; Humans ; Hydrogels - chemistry ; Mesenchymal Stem Cell Transplantation ; Mesenchymal stem cells ; Mesenchymal Stem Cells - cytology ; Osteogenesis ; Oxidation-Reduction ; Polyethylene Glycols - chemistry ; Polyhipes ; Printing, Three-Dimensional ; Tissue Engineering ; Tissue Scaffolds - chemistry</subject><ispartof>Biomaterials, 2018-12, Vol.185, p.194-204</ispartof><rights>2018</rights><rights>Copyright © 2018. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-ae980996351d649fa31c764a4886bb3a5f576d27ba20c06d570affba41ef971c3</citedby><cites>FETCH-LOGICAL-c513t-ae980996351d649fa31c764a4886bb3a5f576d27ba20c06d570affba41ef971c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2018.09.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,782,786,887,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30245387$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Whitely, Michael</creatorcontrib><creatorcontrib>Cereceres, Stacy</creatorcontrib><creatorcontrib>Dhavalikar, Prachi</creatorcontrib><creatorcontrib>Salhadar, Karim</creatorcontrib><creatorcontrib>Wilems, Thomas</creatorcontrib><creatorcontrib>Smith, Brandon</creatorcontrib><creatorcontrib>Mikos, Antonios</creatorcontrib><creatorcontrib>Cosgriff-Hernandez, Elizabeth</creatorcontrib><title>Improved in situ seeding of 3D printed scaffolds using cell-releasing hydrogels</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>The design of tissue engineered scaffolds based on polymerized high internal phase emulsions (polyHIPEs) has emerged as a promising bone grafting strategy. We previously reported the ability to 3D print emulsion inks to better mimic the structure and mechanical properties of native bone while precisely matching defect geometry. In the current study, redox-initiated hydrogel carriers were investigated for in situ delivery of human mesenchymal stem cells (hMSCs) utilizing the biodegradable macromer, poly(ethylene glycol)-dithiothreitol. Hydrogel carrier properties including network formation time, sol-gel fraction, and swelling ratio were modulated to achieve rapid cure without external stimuli and a target cell-release period of 5–7 days. These in situ carriers enabled improved distribution of hMSCs in 3D printed polyHIPE grafts over standard suspension seeding. Additionally, carrier-loaded polyHIPEs supported sustained cell viability and osteogenic differentiation of hMSCs post-release. In summary, these findings demonstrate the potential of this in situ curing hydrogel carrier to enhance the cell distribution and retention of hMSCs in bone grafts. Although initially focused on improving bone regeneration, the ability to encapsulate cells in a hydrogel carrier without relying on external stimuli that can be attenuated in large grafts or tissues is expected to have a wide range of applications in tissue engineering.
[Display omitted]</description><subject>3D printing</subject><subject>Cell delivery</subject><subject>Cell Differentiation</subject><subject>Cell Line</subject><subject>Cell Survival</subject><subject>Cells, Immobilized - cytology</subject><subject>Dithiothreitol - chemistry</subject><subject>Humans</subject><subject>Hydrogels - chemistry</subject><subject>Mesenchymal Stem Cell Transplantation</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Osteogenesis</subject><subject>Oxidation-Reduction</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polyhipes</subject><subject>Printing, Three-Dimensional</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds - chemistry</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUU1P3DAUtKpWZUv7F1DUUy8J_nbcQ6UKKCAhcSlny7FfFq-SeGsnK_Hv8bKA6I2T9TTzZuZ5EPpOcEMwkaebpgtxtDOkYIfcUEzaBusGU_UBrUir2lpoLD6iFSac1loSeoS-5LzBZcacfkZHDFMuWKtW6PZ63Ka4A1-FqcphXqoM4MO0rmJfsfNqm8I0FzQ72_dx8Lla8h51MAx1ggHs03j_4FNcw5C_ok99CQXfnt9jdPfn4u_ZVX1ze3l99vumdoKwubagW6y1ZIJ4yXVvGXFKcsvbVnYds6IXSnqqOkuxw9ILhYt_ZzmBXivi2DH6ddDdLt0I3sE0JzuYEne06cFEG8z_yBTuzTrujKS6VYIVgR_PAin-WyDPZgx5f5WdIC7ZUEKI4lITXqg_D1SXYs4J-lcbgs2-EbMxbxsx-0YM1qY0UpZP3gZ9XX2poBDOD4Tye7ALkEx2ASZXWkjgZuNjeI_PI8sjpaQ</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Whitely, Michael</creator><creator>Cereceres, Stacy</creator><creator>Dhavalikar, Prachi</creator><creator>Salhadar, Karim</creator><creator>Wilems, Thomas</creator><creator>Smith, Brandon</creator><creator>Mikos, Antonios</creator><creator>Cosgriff-Hernandez, Elizabeth</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20181201</creationdate><title>Improved in situ seeding of 3D printed scaffolds using cell-releasing hydrogels</title><author>Whitely, Michael ; Cereceres, Stacy ; Dhavalikar, Prachi ; Salhadar, Karim ; Wilems, Thomas ; Smith, Brandon ; Mikos, Antonios ; Cosgriff-Hernandez, Elizabeth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-ae980996351d649fa31c764a4886bb3a5f576d27ba20c06d570affba41ef971c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3D printing</topic><topic>Cell delivery</topic><topic>Cell Differentiation</topic><topic>Cell Line</topic><topic>Cell Survival</topic><topic>Cells, Immobilized - cytology</topic><topic>Dithiothreitol - chemistry</topic><topic>Humans</topic><topic>Hydrogels - chemistry</topic><topic>Mesenchymal Stem Cell Transplantation</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Osteogenesis</topic><topic>Oxidation-Reduction</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polyhipes</topic><topic>Printing, Three-Dimensional</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whitely, Michael</creatorcontrib><creatorcontrib>Cereceres, Stacy</creatorcontrib><creatorcontrib>Dhavalikar, Prachi</creatorcontrib><creatorcontrib>Salhadar, Karim</creatorcontrib><creatorcontrib>Wilems, Thomas</creatorcontrib><creatorcontrib>Smith, Brandon</creatorcontrib><creatorcontrib>Mikos, Antonios</creatorcontrib><creatorcontrib>Cosgriff-Hernandez, Elizabeth</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whitely, Michael</au><au>Cereceres, Stacy</au><au>Dhavalikar, Prachi</au><au>Salhadar, Karim</au><au>Wilems, Thomas</au><au>Smith, Brandon</au><au>Mikos, Antonios</au><au>Cosgriff-Hernandez, Elizabeth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved in situ seeding of 3D printed scaffolds using cell-releasing hydrogels</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>185</volume><spage>194</spage><epage>204</epage><pages>194-204</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>The design of tissue engineered scaffolds based on polymerized high internal phase emulsions (polyHIPEs) has emerged as a promising bone grafting strategy. We previously reported the ability to 3D print emulsion inks to better mimic the structure and mechanical properties of native bone while precisely matching defect geometry. In the current study, redox-initiated hydrogel carriers were investigated for in situ delivery of human mesenchymal stem cells (hMSCs) utilizing the biodegradable macromer, poly(ethylene glycol)-dithiothreitol. Hydrogel carrier properties including network formation time, sol-gel fraction, and swelling ratio were modulated to achieve rapid cure without external stimuli and a target cell-release period of 5–7 days. These in situ carriers enabled improved distribution of hMSCs in 3D printed polyHIPE grafts over standard suspension seeding. Additionally, carrier-loaded polyHIPEs supported sustained cell viability and osteogenic differentiation of hMSCs post-release. In summary, these findings demonstrate the potential of this in situ curing hydrogel carrier to enhance the cell distribution and retention of hMSCs in bone grafts. Although initially focused on improving bone regeneration, the ability to encapsulate cells in a hydrogel carrier without relying on external stimuli that can be attenuated in large grafts or tissues is expected to have a wide range of applications in tissue engineering.
[Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>30245387</pmid><doi>10.1016/j.biomaterials.2018.09.027</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2018-12, Vol.185, p.194-204 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6298753 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | 3D printing Cell delivery Cell Differentiation Cell Line Cell Survival Cells, Immobilized - cytology Dithiothreitol - chemistry Humans Hydrogels - chemistry Mesenchymal Stem Cell Transplantation Mesenchymal stem cells Mesenchymal Stem Cells - cytology Osteogenesis Oxidation-Reduction Polyethylene Glycols - chemistry Polyhipes Printing, Three-Dimensional Tissue Engineering Tissue Scaffolds - chemistry |
title | Improved in situ seeding of 3D printed scaffolds using cell-releasing hydrogels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T00%3A00%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20in%20situ%20seeding%20of%203D%20printed%20scaffolds%20using%20cell-releasing%20hydrogels&rft.jtitle=Biomaterials&rft.au=Whitely,%20Michael&rft.date=2018-12-01&rft.volume=185&rft.spage=194&rft.epage=204&rft.pages=194-204&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2018.09.027&rft_dat=%3Cproquest_pubme%3E2111746914%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111746914&rft_id=info:pmid/30245387&rft_els_id=S0142961218306641&rfr_iscdi=true |