Probabilistic control of HIV latency and transactivation by the Tat gene circuit

The reservoir of HIV latently infected cells is the major obstacle for eradication of HIV infection. The “shock-and-kill” strategy proposed earlier aims to reduce the reservoir by activating cells out of latency. While the intracellular HIV Tat gene circuit is known to play important roles in contro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2018-12, Vol.115 (49), p.12453-12458
Hauptverfasser: Cao, Youfang, 曹又方, Lei, Xue, 雷雪, Ribeiro, Ruy M., Perelson, Alan S., Liang, Jie, 梁杰
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12458
container_issue 49
container_start_page 12453
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Cao, Youfang
曹又方
Lei, Xue
雷雪
Ribeiro, Ruy M.
Perelson, Alan S.
Liang, Jie
梁杰
description The reservoir of HIV latently infected cells is the major obstacle for eradication of HIV infection. The “shock-and-kill” strategy proposed earlier aims to reduce the reservoir by activating cells out of latency. While the intracellular HIV Tat gene circuit is known to play important roles in controlling latency and its transactivation in HIV-infected cells, the detailed control mechanisms are not well understood. Here we study the mechanism of probabilistic control of the latent and the transactivated cell phenotypes of HIV-infected cells. We reconstructed the probability landscape, which is the probability distribution of the Tat gene circuit states, by directly computing the exact solution of the underlying chemical master equation. Results show that the Tat circuit exhibits a clear bimodal probability landscape (i.e., there are two distinct probability peaks, one associated with the latent cell phenotype and the other with the transactivated cell phenotype). We explore potential modifications to reactions in the Tat gene circuit for more effective transactivation of latent cells (i.e., the shock-and-kill strategy). Our results suggest that enhancing Tat acetylation can dramatically increase Tat and viral production, while increasing the Tat–transactivation response binding affinity can transactivate latent cells more rapidly than other manipulations. Our results further explored the “block and lock” strategy toward a functional cure for HIV. Overall, our study demonstrates a general approach toward discovery of effective therapeutic strategies and druggable targets by examining control mechanisms of cell phenotype switching via exactly computed probability landscapes of reaction networks.
doi_str_mv 10.1073/pnas.1811195115
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6298123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26573682</jstor_id><sourcerecordid>26573682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-78b82f1e17094d84091e0506b0c07769e0b3892bf869fdc545ff35b47b8de2cf3</originalsourceid><addsrcrecordid>eNpdkctvFCEAxonR2G317EmDevGyLe-BSxPTVNukiT1UrwQYpstmFlZgNtn_XjZT18eJAz8-vgcAbzA6x6ijF9toyjmWGGPFMebPwAIjhZeCKfQcLBAi3VIywk7AaSlrhJDiEr0EJxQxzikWC3B_n5M1Noyh1OCgS7HmNMI0wJvbH3A01Ue3hyb2sGYTi3E17EwNKUK7h3Xl4YOp8NFHD13Ibgr1FXgxmLH410_nGfj-5frh6mZ59-3r7dXnu6XjgtRlJ60kA_a4Q4r1kjXXHnEkLHKo64TyyFKpiB2kUEPvOOPDQLllnZW9J26gZ-By1t1OduN755txM-ptDhuT9zqZoP-9iWGlH9NOC6IkJrQJfJgFUkuuiwvVu1XLH72rGjNJmo0GfXr6Jaefky9Vb0JxfhxN9GkqmmAqkGjdq4Z-_A9dpynH1kGjeMc6hglq1MVMuZxKyX44OsZIHybVh0n1n0nbi3d_Bz3yvzdswPsZyM6Yrc5-17Y8aDQAa9ZKPZh7OzPrUlM-ahDBOyokob8Ay7Gwkw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2157474120</pqid></control><display><type>article</type><title>Probabilistic control of HIV latency and transactivation by the Tat gene circuit</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Cao, Youfang ; 曹又方 ; Lei, Xue ; 雷雪 ; Ribeiro, Ruy M. ; Perelson, Alan S. ; Liang, Jie ; 梁杰</creator><creatorcontrib>Cao, Youfang ; 曹又方 ; Lei, Xue ; 雷雪 ; Ribeiro, Ruy M. ; Perelson, Alan S. ; Liang, Jie ; 梁杰</creatorcontrib><description>The reservoir of HIV latently infected cells is the major obstacle for eradication of HIV infection. The “shock-and-kill” strategy proposed earlier aims to reduce the reservoir by activating cells out of latency. While the intracellular HIV Tat gene circuit is known to play important roles in controlling latency and its transactivation in HIV-infected cells, the detailed control mechanisms are not well understood. Here we study the mechanism of probabilistic control of the latent and the transactivated cell phenotypes of HIV-infected cells. We reconstructed the probability landscape, which is the probability distribution of the Tat gene circuit states, by directly computing the exact solution of the underlying chemical master equation. Results show that the Tat circuit exhibits a clear bimodal probability landscape (i.e., there are two distinct probability peaks, one associated with the latent cell phenotype and the other with the transactivated cell phenotype). We explore potential modifications to reactions in the Tat gene circuit for more effective transactivation of latent cells (i.e., the shock-and-kill strategy). Our results suggest that enhancing Tat acetylation can dramatically increase Tat and viral production, while increasing the Tat–transactivation response binding affinity can transactivate latent cells more rapidly than other manipulations. Our results further explored the “block and lock” strategy toward a functional cure for HIV. Overall, our study demonstrates a general approach toward discovery of effective therapeutic strategies and druggable targets by examining control mechanisms of cell phenotype switching via exactly computed probability landscapes of reaction networks.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1811195115</identifier><identifier>PMID: 30455316</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acetylation ; Anti-HIV Agents - pharmacology ; Biological Sciences ; Cellular biology ; Circuits ; Gene Expression Regulation, Viral - physiology ; Gene regulation network ; Gene Regulatory Networks ; Genetics ; HIV ; HIV Infections - drug therapy ; HIV Infections - virology ; HIV-1 - genetics ; HIV-1 - physiology ; Human immunodeficiency virus ; Humans ; Latency ; Latency reversing ; Latent infection ; Organic chemistry ; Phenotypes ; Physical Sciences ; Probability ; Probability distribution ; Probability landscape ; Signal Transduction ; State (computer science) ; Statistical analysis ; Strategy ; Switching theory ; Tat circuit ; Tat gene ; tat Gene Products, Human Immunodeficiency Virus - genetics ; tat Gene Products, Human Immunodeficiency Virus - metabolism ; Tat protein ; Transcriptional Activation ; Virus Latency - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-12, Vol.115 (49), p.12453-12458</ispartof><rights>Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Dec 4, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-78b82f1e17094d84091e0506b0c07769e0b3892bf869fdc545ff35b47b8de2cf3</citedby><cites>FETCH-LOGICAL-c562t-78b82f1e17094d84091e0506b0c07769e0b3892bf869fdc545ff35b47b8de2cf3</cites><orcidid>0000-0002-3988-8241 ; 0000-0002-2773-6427 ; 0000-0002-5880-0006 ; 0000000227736427 ; 0000000258800006 ; 0000000239888241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26573682$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26573682$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30455316$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1482776$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Youfang</creatorcontrib><creatorcontrib>曹又方</creatorcontrib><creatorcontrib>Lei, Xue</creatorcontrib><creatorcontrib>雷雪</creatorcontrib><creatorcontrib>Ribeiro, Ruy M.</creatorcontrib><creatorcontrib>Perelson, Alan S.</creatorcontrib><creatorcontrib>Liang, Jie</creatorcontrib><creatorcontrib>梁杰</creatorcontrib><title>Probabilistic control of HIV latency and transactivation by the Tat gene circuit</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The reservoir of HIV latently infected cells is the major obstacle for eradication of HIV infection. The “shock-and-kill” strategy proposed earlier aims to reduce the reservoir by activating cells out of latency. While the intracellular HIV Tat gene circuit is known to play important roles in controlling latency and its transactivation in HIV-infected cells, the detailed control mechanisms are not well understood. Here we study the mechanism of probabilistic control of the latent and the transactivated cell phenotypes of HIV-infected cells. We reconstructed the probability landscape, which is the probability distribution of the Tat gene circuit states, by directly computing the exact solution of the underlying chemical master equation. Results show that the Tat circuit exhibits a clear bimodal probability landscape (i.e., there are two distinct probability peaks, one associated with the latent cell phenotype and the other with the transactivated cell phenotype). We explore potential modifications to reactions in the Tat gene circuit for more effective transactivation of latent cells (i.e., the shock-and-kill strategy). Our results suggest that enhancing Tat acetylation can dramatically increase Tat and viral production, while increasing the Tat–transactivation response binding affinity can transactivate latent cells more rapidly than other manipulations. Our results further explored the “block and lock” strategy toward a functional cure for HIV. Overall, our study demonstrates a general approach toward discovery of effective therapeutic strategies and druggable targets by examining control mechanisms of cell phenotype switching via exactly computed probability landscapes of reaction networks.</description><subject>Acetylation</subject><subject>Anti-HIV Agents - pharmacology</subject><subject>Biological Sciences</subject><subject>Cellular biology</subject><subject>Circuits</subject><subject>Gene Expression Regulation, Viral - physiology</subject><subject>Gene regulation network</subject><subject>Gene Regulatory Networks</subject><subject>Genetics</subject><subject>HIV</subject><subject>HIV Infections - drug therapy</subject><subject>HIV Infections - virology</subject><subject>HIV-1 - genetics</subject><subject>HIV-1 - physiology</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Latency</subject><subject>Latency reversing</subject><subject>Latent infection</subject><subject>Organic chemistry</subject><subject>Phenotypes</subject><subject>Physical Sciences</subject><subject>Probability</subject><subject>Probability distribution</subject><subject>Probability landscape</subject><subject>Signal Transduction</subject><subject>State (computer science)</subject><subject>Statistical analysis</subject><subject>Strategy</subject><subject>Switching theory</subject><subject>Tat circuit</subject><subject>Tat gene</subject><subject>tat Gene Products, Human Immunodeficiency Virus - genetics</subject><subject>tat Gene Products, Human Immunodeficiency Virus - metabolism</subject><subject>Tat protein</subject><subject>Transcriptional Activation</subject><subject>Virus Latency - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctvFCEAxonR2G317EmDevGyLe-BSxPTVNukiT1UrwQYpstmFlZgNtn_XjZT18eJAz8-vgcAbzA6x6ijF9toyjmWGGPFMebPwAIjhZeCKfQcLBAi3VIywk7AaSlrhJDiEr0EJxQxzikWC3B_n5M1Noyh1OCgS7HmNMI0wJvbH3A01Ue3hyb2sGYTi3E17EwNKUK7h3Xl4YOp8NFHD13Ibgr1FXgxmLH410_nGfj-5frh6mZ59-3r7dXnu6XjgtRlJ60kA_a4Q4r1kjXXHnEkLHKo64TyyFKpiB2kUEPvOOPDQLllnZW9J26gZ-By1t1OduN755txM-ptDhuT9zqZoP-9iWGlH9NOC6IkJrQJfJgFUkuuiwvVu1XLH72rGjNJmo0GfXr6Jaefky9Vb0JxfhxN9GkqmmAqkGjdq4Z-_A9dpynH1kGjeMc6hglq1MVMuZxKyX44OsZIHybVh0n1n0nbi3d_Bz3yvzdswPsZyM6Yrc5-17Y8aDQAa9ZKPZh7OzPrUlM-ahDBOyokob8Ay7Gwkw</recordid><startdate>20181204</startdate><enddate>20181204</enddate><creator>Cao, Youfang</creator><creator>曹又方</creator><creator>Lei, Xue</creator><creator>雷雪</creator><creator>Ribeiro, Ruy M.</creator><creator>Perelson, Alan S.</creator><creator>Liang, Jie</creator><creator>梁杰</creator><general>National Academy of Sciences</general><general>Proceedings of the National Academy of Sciences</general><scope>RCLKO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3988-8241</orcidid><orcidid>https://orcid.org/0000-0002-2773-6427</orcidid><orcidid>https://orcid.org/0000-0002-5880-0006</orcidid><orcidid>https://orcid.org/0000000227736427</orcidid><orcidid>https://orcid.org/0000000258800006</orcidid><orcidid>https://orcid.org/0000000239888241</orcidid></search><sort><creationdate>20181204</creationdate><title>Probabilistic control of HIV latency and transactivation by the Tat gene circuit</title><author>Cao, Youfang ; 曹又方 ; Lei, Xue ; 雷雪 ; Ribeiro, Ruy M. ; Perelson, Alan S. ; Liang, Jie ; 梁杰</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-78b82f1e17094d84091e0506b0c07769e0b3892bf869fdc545ff35b47b8de2cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acetylation</topic><topic>Anti-HIV Agents - pharmacology</topic><topic>Biological Sciences</topic><topic>Cellular biology</topic><topic>Circuits</topic><topic>Gene Expression Regulation, Viral - physiology</topic><topic>Gene regulation network</topic><topic>Gene Regulatory Networks</topic><topic>Genetics</topic><topic>HIV</topic><topic>HIV Infections - drug therapy</topic><topic>HIV Infections - virology</topic><topic>HIV-1 - genetics</topic><topic>HIV-1 - physiology</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Latency</topic><topic>Latency reversing</topic><topic>Latent infection</topic><topic>Organic chemistry</topic><topic>Phenotypes</topic><topic>Physical Sciences</topic><topic>Probability</topic><topic>Probability distribution</topic><topic>Probability landscape</topic><topic>Signal Transduction</topic><topic>State (computer science)</topic><topic>Statistical analysis</topic><topic>Strategy</topic><topic>Switching theory</topic><topic>Tat circuit</topic><topic>Tat gene</topic><topic>tat Gene Products, Human Immunodeficiency Virus - genetics</topic><topic>tat Gene Products, Human Immunodeficiency Virus - metabolism</topic><topic>Tat protein</topic><topic>Transcriptional Activation</topic><topic>Virus Latency - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Youfang</creatorcontrib><creatorcontrib>曹又方</creatorcontrib><creatorcontrib>Lei, Xue</creatorcontrib><creatorcontrib>雷雪</creatorcontrib><creatorcontrib>Ribeiro, Ruy M.</creatorcontrib><creatorcontrib>Perelson, Alan S.</creatorcontrib><creatorcontrib>Liang, Jie</creatorcontrib><creatorcontrib>梁杰</creatorcontrib><collection>RCAAP open access repository</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Youfang</au><au>曹又方</au><au>Lei, Xue</au><au>雷雪</au><au>Ribeiro, Ruy M.</au><au>Perelson, Alan S.</au><au>Liang, Jie</au><au>梁杰</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic control of HIV latency and transactivation by the Tat gene circuit</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-12-04</date><risdate>2018</risdate><volume>115</volume><issue>49</issue><spage>12453</spage><epage>12458</epage><pages>12453-12458</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The reservoir of HIV latently infected cells is the major obstacle for eradication of HIV infection. The “shock-and-kill” strategy proposed earlier aims to reduce the reservoir by activating cells out of latency. While the intracellular HIV Tat gene circuit is known to play important roles in controlling latency and its transactivation in HIV-infected cells, the detailed control mechanisms are not well understood. Here we study the mechanism of probabilistic control of the latent and the transactivated cell phenotypes of HIV-infected cells. We reconstructed the probability landscape, which is the probability distribution of the Tat gene circuit states, by directly computing the exact solution of the underlying chemical master equation. Results show that the Tat circuit exhibits a clear bimodal probability landscape (i.e., there are two distinct probability peaks, one associated with the latent cell phenotype and the other with the transactivated cell phenotype). We explore potential modifications to reactions in the Tat gene circuit for more effective transactivation of latent cells (i.e., the shock-and-kill strategy). Our results suggest that enhancing Tat acetylation can dramatically increase Tat and viral production, while increasing the Tat–transactivation response binding affinity can transactivate latent cells more rapidly than other manipulations. Our results further explored the “block and lock” strategy toward a functional cure for HIV. Overall, our study demonstrates a general approach toward discovery of effective therapeutic strategies and druggable targets by examining control mechanisms of cell phenotype switching via exactly computed probability landscapes of reaction networks.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30455316</pmid><doi>10.1073/pnas.1811195115</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3988-8241</orcidid><orcidid>https://orcid.org/0000-0002-2773-6427</orcidid><orcidid>https://orcid.org/0000-0002-5880-0006</orcidid><orcidid>https://orcid.org/0000000227736427</orcidid><orcidid>https://orcid.org/0000000258800006</orcidid><orcidid>https://orcid.org/0000000239888241</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-12, Vol.115 (49), p.12453-12458
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6298123
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Acetylation
Anti-HIV Agents - pharmacology
Biological Sciences
Cellular biology
Circuits
Gene Expression Regulation, Viral - physiology
Gene regulation network
Gene Regulatory Networks
Genetics
HIV
HIV Infections - drug therapy
HIV Infections - virology
HIV-1 - genetics
HIV-1 - physiology
Human immunodeficiency virus
Humans
Latency
Latency reversing
Latent infection
Organic chemistry
Phenotypes
Physical Sciences
Probability
Probability distribution
Probability landscape
Signal Transduction
State (computer science)
Statistical analysis
Strategy
Switching theory
Tat circuit
Tat gene
tat Gene Products, Human Immunodeficiency Virus - genetics
tat Gene Products, Human Immunodeficiency Virus - metabolism
Tat protein
Transcriptional Activation
Virus Latency - physiology
title Probabilistic control of HIV latency and transactivation by the Tat gene circuit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A51%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20control%20of%20HIV%20latency%20and%20transactivation%20by%20the%20Tat%20gene%20circuit&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Cao,%20Youfang&rft.date=2018-12-04&rft.volume=115&rft.issue=49&rft.spage=12453&rft.epage=12458&rft.pages=12453-12458&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1811195115&rft_dat=%3Cjstor_pubme%3E26573682%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2157474120&rft_id=info:pmid/30455316&rft_jstor_id=26573682&rfr_iscdi=true