Visualizing atomic sizes and molecular shapes with the classical turning surface of the Kohn–Sham potential
The Kohn–Sham potential v eff(r) is the effective multiplicative operator in a noninteracting Schrödinger equation that reproduces the ground-state density of a real (interacting) system. The sizes and shapes of atoms, molecules, and solids can be defined in terms of Kohn–Sham potentials in a nonarb...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2018-12, Vol.115 (50), p.E11578-E11585 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E11585 |
---|---|
container_issue | 50 |
container_start_page | E11578 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 115 |
creator | Ospadov, Egor Tao, Jianmin Staroverov, Viktor N. Perdew, John P. |
description | The Kohn–Sham potential v
eff(r) is the effective multiplicative operator in a noninteracting Schrödinger equation that reproduces the ground-state density of a real (interacting) system. The sizes and shapes of atoms, molecules, and solids can be defined in terms of Kohn–Sham potentials in a nonarbitrary way that accords with chemical intuition and can be implemented efficiently, permitting a natural pictorial representation for chemistry and condensed-matter physics. Let ϵ
max be the maximum occupied orbital energy of the noninteracting electrons. Then the equation v
eff(r) = ϵ
max defines the surface at which classical electrons with energy ϵ ≤ ϵ
max would be turned back and thus determines the surface of any electronic object. Atomic and ionic radii defined in this manner agree well with empirical estimates, show regular chemical trends, and allow one to identify the type of chemical bonding between two given atoms by comparing the actual internuclear distance to the sum of atomic radii. The molecular surfaces can be fused (for a covalent bond), seamed (ionic bond), necked (hydrogen bond), or divided (van der Waals bond). This contribution extends the pioneering work of Z.-Z. Yang et al. [Yang ZZ, Davidson ER (1997) Int J Quantum Chem 62:47–53; Zhao DX, et al. (2018) Mol Phys 116:969–977] by our consideration of the Kohn–Sham potential, protomolecules, doubly negative atomic ions, a bond-type parameter, seamed and necked molecular surfaces, and a more extensive table of atomic and ionic radii that are fully consistent with expected periodic trends. |
doi_str_mv | 10.1073/pnas.1814300115 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6294941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26580170</jstor_id><sourcerecordid>26580170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-10c1ed98c1cf68a8941fe7c295694014f6a25d089569cd5444457d435a4a52773</originalsourceid><addsrcrecordid>eNpdkctu1TAQhi1ERQ-FNSuQJTZs0o5jO4k3SKiCUrUSCy5ba3CcxkdOHOwERFe8A2_Ik9ThtIeLN5ZnvvnHMz8hTxgcM6j5yTRiOmYNExyAMXmPbBgoVlRCwX2yASjrohGlOCQPU9oCgJINPCCHHETFleAbMnxyaUHvrt14RXEOgzM0uWubKI4tHYK3ZvEYaepxysFvbu7p3FtqPKbkDHo6L3Fci9MSOzSWhu43cBH68dePn-97HOgUZjvODv0jctChT_bx7X1EPr55_eH0bXH57uz89NVlYYTgc8HAMNuqxjDTVQ02SrDO1qZUslICmOgqLGULzfo2rRT5yLoVXKJAWdY1PyIvd7rT8nmwrcndI3o9RTdg_K4DOv1vZnS9vgpfdVUqkbtlgRe3AjF8WWya9eCSsd7jaMOSdMmkZDJvfEWf_4duQ15JHm-llOKcl5Cpkx1lYkgp2m7_GQZ6tVKvVuo_VuaKZ3_PsOfvvMvA0x2wTXOI-3xZZY9ZDfwGE9Kl5g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159933320</pqid></control><display><type>article</type><title>Visualizing atomic sizes and molecular shapes with the classical turning surface of the Kohn–Sham potential</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Ospadov, Egor ; Tao, Jianmin ; Staroverov, Viktor N. ; Perdew, John P.</creator><creatorcontrib>Ospadov, Egor ; Tao, Jianmin ; Staroverov, Viktor N. ; Perdew, John P.</creatorcontrib><description>The Kohn–Sham potential v
eff(r) is the effective multiplicative operator in a noninteracting Schrödinger equation that reproduces the ground-state density of a real (interacting) system. The sizes and shapes of atoms, molecules, and solids can be defined in terms of Kohn–Sham potentials in a nonarbitrary way that accords with chemical intuition and can be implemented efficiently, permitting a natural pictorial representation for chemistry and condensed-matter physics. Let ϵ
max be the maximum occupied orbital energy of the noninteracting electrons. Then the equation v
eff(r) = ϵ
max defines the surface at which classical electrons with energy ϵ ≤ ϵ
max would be turned back and thus determines the surface of any electronic object. Atomic and ionic radii defined in this manner agree well with empirical estimates, show regular chemical trends, and allow one to identify the type of chemical bonding between two given atoms by comparing the actual internuclear distance to the sum of atomic radii. The molecular surfaces can be fused (for a covalent bond), seamed (ionic bond), necked (hydrogen bond), or divided (van der Waals bond). This contribution extends the pioneering work of Z.-Z. Yang et al. [Yang ZZ, Davidson ER (1997) Int J Quantum Chem 62:47–53; Zhao DX, et al. (2018) Mol Phys 116:969–977] by our consideration of the Kohn–Sham potential, protomolecules, doubly negative atomic ions, a bond-type parameter, seamed and necked molecular surfaces, and a more extensive table of atomic and ionic radii that are fully consistent with expected periodic trends.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1814300115</identifier><identifier>PMID: 30463943</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Atomic radius ; Chemical bonds ; Condensed matter physics ; Covalent bonds ; Electrons ; Energy ; Hydrogen bonds ; Organic chemistry ; Physical Sciences ; PNAS Plus ; Quantum physics ; Schrodinger equation ; Shape recognition ; Trends</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-12, Vol.115 (50), p.E11578-E11585</ispartof><rights>Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Dec 11, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-10c1ed98c1cf68a8941fe7c295694014f6a25d089569cd5444457d435a4a52773</citedby><cites>FETCH-LOGICAL-c443t-10c1ed98c1cf68a8941fe7c295694014f6a25d089569cd5444457d435a4a52773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26580170$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26580170$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30463943$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ospadov, Egor</creatorcontrib><creatorcontrib>Tao, Jianmin</creatorcontrib><creatorcontrib>Staroverov, Viktor N.</creatorcontrib><creatorcontrib>Perdew, John P.</creatorcontrib><title>Visualizing atomic sizes and molecular shapes with the classical turning surface of the Kohn–Sham potential</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The Kohn–Sham potential v
eff(r) is the effective multiplicative operator in a noninteracting Schrödinger equation that reproduces the ground-state density of a real (interacting) system. The sizes and shapes of atoms, molecules, and solids can be defined in terms of Kohn–Sham potentials in a nonarbitrary way that accords with chemical intuition and can be implemented efficiently, permitting a natural pictorial representation for chemistry and condensed-matter physics. Let ϵ
max be the maximum occupied orbital energy of the noninteracting electrons. Then the equation v
eff(r) = ϵ
max defines the surface at which classical electrons with energy ϵ ≤ ϵ
max would be turned back and thus determines the surface of any electronic object. Atomic and ionic radii defined in this manner agree well with empirical estimates, show regular chemical trends, and allow one to identify the type of chemical bonding between two given atoms by comparing the actual internuclear distance to the sum of atomic radii. The molecular surfaces can be fused (for a covalent bond), seamed (ionic bond), necked (hydrogen bond), or divided (van der Waals bond). This contribution extends the pioneering work of Z.-Z. Yang et al. [Yang ZZ, Davidson ER (1997) Int J Quantum Chem 62:47–53; Zhao DX, et al. (2018) Mol Phys 116:969–977] by our consideration of the Kohn–Sham potential, protomolecules, doubly negative atomic ions, a bond-type parameter, seamed and necked molecular surfaces, and a more extensive table of atomic and ionic radii that are fully consistent with expected periodic trends.</description><subject>Atomic radius</subject><subject>Chemical bonds</subject><subject>Condensed matter physics</subject><subject>Covalent bonds</subject><subject>Electrons</subject><subject>Energy</subject><subject>Hydrogen bonds</subject><subject>Organic chemistry</subject><subject>Physical Sciences</subject><subject>PNAS Plus</subject><subject>Quantum physics</subject><subject>Schrodinger equation</subject><subject>Shape recognition</subject><subject>Trends</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkctu1TAQhi1ERQ-FNSuQJTZs0o5jO4k3SKiCUrUSCy5ba3CcxkdOHOwERFe8A2_Ik9ThtIeLN5ZnvvnHMz8hTxgcM6j5yTRiOmYNExyAMXmPbBgoVlRCwX2yASjrohGlOCQPU9oCgJINPCCHHETFleAbMnxyaUHvrt14RXEOgzM0uWubKI4tHYK3ZvEYaepxysFvbu7p3FtqPKbkDHo6L3Fci9MSOzSWhu43cBH68dePn-97HOgUZjvODv0jctChT_bx7X1EPr55_eH0bXH57uz89NVlYYTgc8HAMNuqxjDTVQ02SrDO1qZUslICmOgqLGULzfo2rRT5yLoVXKJAWdY1PyIvd7rT8nmwrcndI3o9RTdg_K4DOv1vZnS9vgpfdVUqkbtlgRe3AjF8WWya9eCSsd7jaMOSdMmkZDJvfEWf_4duQ15JHm-llOKcl5Cpkx1lYkgp2m7_GQZ6tVKvVuo_VuaKZ3_PsOfvvMvA0x2wTXOI-3xZZY9ZDfwGE9Kl5g</recordid><startdate>20181211</startdate><enddate>20181211</enddate><creator>Ospadov, Egor</creator><creator>Tao, Jianmin</creator><creator>Staroverov, Viktor N.</creator><creator>Perdew, John P.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20181211</creationdate><title>Visualizing atomic sizes and molecular shapes with the classical turning surface of the Kohn–Sham potential</title><author>Ospadov, Egor ; Tao, Jianmin ; Staroverov, Viktor N. ; Perdew, John P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-10c1ed98c1cf68a8941fe7c295694014f6a25d089569cd5444457d435a4a52773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atomic radius</topic><topic>Chemical bonds</topic><topic>Condensed matter physics</topic><topic>Covalent bonds</topic><topic>Electrons</topic><topic>Energy</topic><topic>Hydrogen bonds</topic><topic>Organic chemistry</topic><topic>Physical Sciences</topic><topic>PNAS Plus</topic><topic>Quantum physics</topic><topic>Schrodinger equation</topic><topic>Shape recognition</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ospadov, Egor</creatorcontrib><creatorcontrib>Tao, Jianmin</creatorcontrib><creatorcontrib>Staroverov, Viktor N.</creatorcontrib><creatorcontrib>Perdew, John P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ospadov, Egor</au><au>Tao, Jianmin</au><au>Staroverov, Viktor N.</au><au>Perdew, John P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualizing atomic sizes and molecular shapes with the classical turning surface of the Kohn–Sham potential</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-12-11</date><risdate>2018</risdate><volume>115</volume><issue>50</issue><spage>E11578</spage><epage>E11585</epage><pages>E11578-E11585</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The Kohn–Sham potential v
eff(r) is the effective multiplicative operator in a noninteracting Schrödinger equation that reproduces the ground-state density of a real (interacting) system. The sizes and shapes of atoms, molecules, and solids can be defined in terms of Kohn–Sham potentials in a nonarbitrary way that accords with chemical intuition and can be implemented efficiently, permitting a natural pictorial representation for chemistry and condensed-matter physics. Let ϵ
max be the maximum occupied orbital energy of the noninteracting electrons. Then the equation v
eff(r) = ϵ
max defines the surface at which classical electrons with energy ϵ ≤ ϵ
max would be turned back and thus determines the surface of any electronic object. Atomic and ionic radii defined in this manner agree well with empirical estimates, show regular chemical trends, and allow one to identify the type of chemical bonding between two given atoms by comparing the actual internuclear distance to the sum of atomic radii. The molecular surfaces can be fused (for a covalent bond), seamed (ionic bond), necked (hydrogen bond), or divided (van der Waals bond). This contribution extends the pioneering work of Z.-Z. Yang et al. [Yang ZZ, Davidson ER (1997) Int J Quantum Chem 62:47–53; Zhao DX, et al. (2018) Mol Phys 116:969–977] by our consideration of the Kohn–Sham potential, protomolecules, doubly negative atomic ions, a bond-type parameter, seamed and necked molecular surfaces, and a more extensive table of atomic and ionic radii that are fully consistent with expected periodic trends.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30463943</pmid><doi>10.1073/pnas.1814300115</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2018-12, Vol.115 (50), p.E11578-E11585 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6294941 |
source | PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR |
subjects | Atomic radius Chemical bonds Condensed matter physics Covalent bonds Electrons Energy Hydrogen bonds Organic chemistry Physical Sciences PNAS Plus Quantum physics Schrodinger equation Shape recognition Trends |
title | Visualizing atomic sizes and molecular shapes with the classical turning surface of the Kohn–Sham potential |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A38%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualizing%20atomic%20sizes%20and%20molecular%20shapes%20with%20the%20classical%20turning%20surface%20of%20the%20Kohn%E2%80%93Sham%20potential&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ospadov,%20Egor&rft.date=2018-12-11&rft.volume=115&rft.issue=50&rft.spage=E11578&rft.epage=E11585&rft.pages=E11578-E11585&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1814300115&rft_dat=%3Cjstor_pubme%3E26580170%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159933320&rft_id=info:pmid/30463943&rft_jstor_id=26580170&rfr_iscdi=true |