Visualizing atomic sizes and molecular shapes with the classical turning surface of the Kohn–Sham potential

The Kohn–Sham potential v eff(r) is the effective multiplicative operator in a noninteracting Schrödinger equation that reproduces the ground-state density of a real (interacting) system. The sizes and shapes of atoms, molecules, and solids can be defined in terms of Kohn–Sham potentials in a nonarb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2018-12, Vol.115 (50), p.E11578-E11585
Hauptverfasser: Ospadov, Egor, Tao, Jianmin, Staroverov, Viktor N., Perdew, John P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E11585
container_issue 50
container_start_page E11578
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Ospadov, Egor
Tao, Jianmin
Staroverov, Viktor N.
Perdew, John P.
description The Kohn–Sham potential v eff(r) is the effective multiplicative operator in a noninteracting Schrödinger equation that reproduces the ground-state density of a real (interacting) system. The sizes and shapes of atoms, molecules, and solids can be defined in terms of Kohn–Sham potentials in a nonarbitrary way that accords with chemical intuition and can be implemented efficiently, permitting a natural pictorial representation for chemistry and condensed-matter physics. Let ϵ max be the maximum occupied orbital energy of the noninteracting electrons. Then the equation v eff(r) = ϵ max defines the surface at which classical electrons with energy ϵ ≤ ϵ max would be turned back and thus determines the surface of any electronic object. Atomic and ionic radii defined in this manner agree well with empirical estimates, show regular chemical trends, and allow one to identify the type of chemical bonding between two given atoms by comparing the actual internuclear distance to the sum of atomic radii. The molecular surfaces can be fused (for a covalent bond), seamed (ionic bond), necked (hydrogen bond), or divided (van der Waals bond). This contribution extends the pioneering work of Z.-Z. Yang et al. [Yang ZZ, Davidson ER (1997) Int J Quantum Chem 62:47–53; Zhao DX, et al. (2018) Mol Phys 116:969–977] by our consideration of the Kohn–Sham potential, protomolecules, doubly negative atomic ions, a bond-type parameter, seamed and necked molecular surfaces, and a more extensive table of atomic and ionic radii that are fully consistent with expected periodic trends.
doi_str_mv 10.1073/pnas.1814300115
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6294941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26580170</jstor_id><sourcerecordid>26580170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-10c1ed98c1cf68a8941fe7c295694014f6a25d089569cd5444457d435a4a52773</originalsourceid><addsrcrecordid>eNpdkctu1TAQhi1ERQ-FNSuQJTZs0o5jO4k3SKiCUrUSCy5ba3CcxkdOHOwERFe8A2_Ik9ThtIeLN5ZnvvnHMz8hTxgcM6j5yTRiOmYNExyAMXmPbBgoVlRCwX2yASjrohGlOCQPU9oCgJINPCCHHETFleAbMnxyaUHvrt14RXEOgzM0uWubKI4tHYK3ZvEYaepxysFvbu7p3FtqPKbkDHo6L3Fci9MSOzSWhu43cBH68dePn-97HOgUZjvODv0jctChT_bx7X1EPr55_eH0bXH57uz89NVlYYTgc8HAMNuqxjDTVQ02SrDO1qZUslICmOgqLGULzfo2rRT5yLoVXKJAWdY1PyIvd7rT8nmwrcndI3o9RTdg_K4DOv1vZnS9vgpfdVUqkbtlgRe3AjF8WWya9eCSsd7jaMOSdMmkZDJvfEWf_4duQ15JHm-llOKcl5Cpkx1lYkgp2m7_GQZ6tVKvVuo_VuaKZ3_PsOfvvMvA0x2wTXOI-3xZZY9ZDfwGE9Kl5g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159933320</pqid></control><display><type>article</type><title>Visualizing atomic sizes and molecular shapes with the classical turning surface of the Kohn–Sham potential</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Ospadov, Egor ; Tao, Jianmin ; Staroverov, Viktor N. ; Perdew, John P.</creator><creatorcontrib>Ospadov, Egor ; Tao, Jianmin ; Staroverov, Viktor N. ; Perdew, John P.</creatorcontrib><description>The Kohn–Sham potential v eff(r) is the effective multiplicative operator in a noninteracting Schrödinger equation that reproduces the ground-state density of a real (interacting) system. The sizes and shapes of atoms, molecules, and solids can be defined in terms of Kohn–Sham potentials in a nonarbitrary way that accords with chemical intuition and can be implemented efficiently, permitting a natural pictorial representation for chemistry and condensed-matter physics. Let ϵ max be the maximum occupied orbital energy of the noninteracting electrons. Then the equation v eff(r) = ϵ max defines the surface at which classical electrons with energy ϵ ≤ ϵ max would be turned back and thus determines the surface of any electronic object. Atomic and ionic radii defined in this manner agree well with empirical estimates, show regular chemical trends, and allow one to identify the type of chemical bonding between two given atoms by comparing the actual internuclear distance to the sum of atomic radii. The molecular surfaces can be fused (for a covalent bond), seamed (ionic bond), necked (hydrogen bond), or divided (van der Waals bond). This contribution extends the pioneering work of Z.-Z. Yang et al. [Yang ZZ, Davidson ER (1997) Int J Quantum Chem 62:47–53; Zhao DX, et al. (2018) Mol Phys 116:969–977] by our consideration of the Kohn–Sham potential, protomolecules, doubly negative atomic ions, a bond-type parameter, seamed and necked molecular surfaces, and a more extensive table of atomic and ionic radii that are fully consistent with expected periodic trends.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1814300115</identifier><identifier>PMID: 30463943</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Atomic radius ; Chemical bonds ; Condensed matter physics ; Covalent bonds ; Electrons ; Energy ; Hydrogen bonds ; Organic chemistry ; Physical Sciences ; PNAS Plus ; Quantum physics ; Schrodinger equation ; Shape recognition ; Trends</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-12, Vol.115 (50), p.E11578-E11585</ispartof><rights>Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Dec 11, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-10c1ed98c1cf68a8941fe7c295694014f6a25d089569cd5444457d435a4a52773</citedby><cites>FETCH-LOGICAL-c443t-10c1ed98c1cf68a8941fe7c295694014f6a25d089569cd5444457d435a4a52773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26580170$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26580170$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30463943$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ospadov, Egor</creatorcontrib><creatorcontrib>Tao, Jianmin</creatorcontrib><creatorcontrib>Staroverov, Viktor N.</creatorcontrib><creatorcontrib>Perdew, John P.</creatorcontrib><title>Visualizing atomic sizes and molecular shapes with the classical turning surface of the Kohn–Sham potential</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The Kohn–Sham potential v eff(r) is the effective multiplicative operator in a noninteracting Schrödinger equation that reproduces the ground-state density of a real (interacting) system. The sizes and shapes of atoms, molecules, and solids can be defined in terms of Kohn–Sham potentials in a nonarbitrary way that accords with chemical intuition and can be implemented efficiently, permitting a natural pictorial representation for chemistry and condensed-matter physics. Let ϵ max be the maximum occupied orbital energy of the noninteracting electrons. Then the equation v eff(r) = ϵ max defines the surface at which classical electrons with energy ϵ ≤ ϵ max would be turned back and thus determines the surface of any electronic object. Atomic and ionic radii defined in this manner agree well with empirical estimates, show regular chemical trends, and allow one to identify the type of chemical bonding between two given atoms by comparing the actual internuclear distance to the sum of atomic radii. The molecular surfaces can be fused (for a covalent bond), seamed (ionic bond), necked (hydrogen bond), or divided (van der Waals bond). This contribution extends the pioneering work of Z.-Z. Yang et al. [Yang ZZ, Davidson ER (1997) Int J Quantum Chem 62:47–53; Zhao DX, et al. (2018) Mol Phys 116:969–977] by our consideration of the Kohn–Sham potential, protomolecules, doubly negative atomic ions, a bond-type parameter, seamed and necked molecular surfaces, and a more extensive table of atomic and ionic radii that are fully consistent with expected periodic trends.</description><subject>Atomic radius</subject><subject>Chemical bonds</subject><subject>Condensed matter physics</subject><subject>Covalent bonds</subject><subject>Electrons</subject><subject>Energy</subject><subject>Hydrogen bonds</subject><subject>Organic chemistry</subject><subject>Physical Sciences</subject><subject>PNAS Plus</subject><subject>Quantum physics</subject><subject>Schrodinger equation</subject><subject>Shape recognition</subject><subject>Trends</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkctu1TAQhi1ERQ-FNSuQJTZs0o5jO4k3SKiCUrUSCy5ba3CcxkdOHOwERFe8A2_Ik9ThtIeLN5ZnvvnHMz8hTxgcM6j5yTRiOmYNExyAMXmPbBgoVlRCwX2yASjrohGlOCQPU9oCgJINPCCHHETFleAbMnxyaUHvrt14RXEOgzM0uWubKI4tHYK3ZvEYaepxysFvbu7p3FtqPKbkDHo6L3Fci9MSOzSWhu43cBH68dePn-97HOgUZjvODv0jctChT_bx7X1EPr55_eH0bXH57uz89NVlYYTgc8HAMNuqxjDTVQ02SrDO1qZUslICmOgqLGULzfo2rRT5yLoVXKJAWdY1PyIvd7rT8nmwrcndI3o9RTdg_K4DOv1vZnS9vgpfdVUqkbtlgRe3AjF8WWya9eCSsd7jaMOSdMmkZDJvfEWf_4duQ15JHm-llOKcl5Cpkx1lYkgp2m7_GQZ6tVKvVuo_VuaKZ3_PsOfvvMvA0x2wTXOI-3xZZY9ZDfwGE9Kl5g</recordid><startdate>20181211</startdate><enddate>20181211</enddate><creator>Ospadov, Egor</creator><creator>Tao, Jianmin</creator><creator>Staroverov, Viktor N.</creator><creator>Perdew, John P.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20181211</creationdate><title>Visualizing atomic sizes and molecular shapes with the classical turning surface of the Kohn–Sham potential</title><author>Ospadov, Egor ; Tao, Jianmin ; Staroverov, Viktor N. ; Perdew, John P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-10c1ed98c1cf68a8941fe7c295694014f6a25d089569cd5444457d435a4a52773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atomic radius</topic><topic>Chemical bonds</topic><topic>Condensed matter physics</topic><topic>Covalent bonds</topic><topic>Electrons</topic><topic>Energy</topic><topic>Hydrogen bonds</topic><topic>Organic chemistry</topic><topic>Physical Sciences</topic><topic>PNAS Plus</topic><topic>Quantum physics</topic><topic>Schrodinger equation</topic><topic>Shape recognition</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ospadov, Egor</creatorcontrib><creatorcontrib>Tao, Jianmin</creatorcontrib><creatorcontrib>Staroverov, Viktor N.</creatorcontrib><creatorcontrib>Perdew, John P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ospadov, Egor</au><au>Tao, Jianmin</au><au>Staroverov, Viktor N.</au><au>Perdew, John P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualizing atomic sizes and molecular shapes with the classical turning surface of the Kohn–Sham potential</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-12-11</date><risdate>2018</risdate><volume>115</volume><issue>50</issue><spage>E11578</spage><epage>E11585</epage><pages>E11578-E11585</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The Kohn–Sham potential v eff(r) is the effective multiplicative operator in a noninteracting Schrödinger equation that reproduces the ground-state density of a real (interacting) system. The sizes and shapes of atoms, molecules, and solids can be defined in terms of Kohn–Sham potentials in a nonarbitrary way that accords with chemical intuition and can be implemented efficiently, permitting a natural pictorial representation for chemistry and condensed-matter physics. Let ϵ max be the maximum occupied orbital energy of the noninteracting electrons. Then the equation v eff(r) = ϵ max defines the surface at which classical electrons with energy ϵ ≤ ϵ max would be turned back and thus determines the surface of any electronic object. Atomic and ionic radii defined in this manner agree well with empirical estimates, show regular chemical trends, and allow one to identify the type of chemical bonding between two given atoms by comparing the actual internuclear distance to the sum of atomic radii. The molecular surfaces can be fused (for a covalent bond), seamed (ionic bond), necked (hydrogen bond), or divided (van der Waals bond). This contribution extends the pioneering work of Z.-Z. Yang et al. [Yang ZZ, Davidson ER (1997) Int J Quantum Chem 62:47–53; Zhao DX, et al. (2018) Mol Phys 116:969–977] by our consideration of the Kohn–Sham potential, protomolecules, doubly negative atomic ions, a bond-type parameter, seamed and necked molecular surfaces, and a more extensive table of atomic and ionic radii that are fully consistent with expected periodic trends.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30463943</pmid><doi>10.1073/pnas.1814300115</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-12, Vol.115 (50), p.E11578-E11585
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6294941
source PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR
subjects Atomic radius
Chemical bonds
Condensed matter physics
Covalent bonds
Electrons
Energy
Hydrogen bonds
Organic chemistry
Physical Sciences
PNAS Plus
Quantum physics
Schrodinger equation
Shape recognition
Trends
title Visualizing atomic sizes and molecular shapes with the classical turning surface of the Kohn–Sham potential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A38%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualizing%20atomic%20sizes%20and%20molecular%20shapes%20with%20the%20classical%20turning%20surface%20of%20the%20Kohn%E2%80%93Sham%20potential&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ospadov,%20Egor&rft.date=2018-12-11&rft.volume=115&rft.issue=50&rft.spage=E11578&rft.epage=E11585&rft.pages=E11578-E11585&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1814300115&rft_dat=%3Cjstor_pubme%3E26580170%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159933320&rft_id=info:pmid/30463943&rft_jstor_id=26580170&rfr_iscdi=true