Evolution of host support for two ancient bacterial symbionts with differentially degraded genomes in a leafhopper host
Plant sap-feeding insects (Hemiptera) rely on bacterial symbionts for nutrition absent in their diets. These bacteria experience extreme genome reduction and require genetic resources from their hosts, particularly for basic cellular processes other than nutrition synthesis. The host-derived mechani...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2018-12, Vol.115 (50), p.E11691-E11700 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E11700 |
---|---|
container_issue | 50 |
container_start_page | E11691 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 115 |
creator | Mao, Meng Yang, Xiushuai Bennett, Gordon M. |
description | Plant sap-feeding insects (Hemiptera) rely on bacterial symbionts for nutrition absent in their diets. These bacteria experience extreme genome reduction and require genetic resources from their hosts, particularly for basic cellular processes other than nutrition synthesis. The host-derived mechanisms that complete these processes have remained poorly understood. It is also unclear how hosts meet the distinct needs of multiple bacterial partners with differentially degraded genomes. To address these questions, we investigated the cell-specific gene-expression patterns in the symbiotic organs of the aster leafhopper (ALF), Macrosteles quadrilineatus (Cicadellidae). ALF harbors two intracellular symbionts that have two of the smallest known bacterial genomes: Nasuia (112 kb) and Sulcia (190 kb). Symbionts are segregated into distinct host cell types (bacteriocytes) and vary widely in their basic cellular capabilities. ALF differentially expresses thousands of genes between the bacteriocyte types to meet the functional needs of each symbiont, including the provisioning of metabolites and support of cellular processes. For example, the host highly expresses genes in the bacteriocytes that likely complement gene losses in nucleic acid synthesis, DNA repair mechanisms, transcription, and translation. Such genes are required to function in the bacterial cytosol. Many host genes comprising these support mechanisms are derived from the evolution of novel functional traits via horizontally transferred genes, reassigned mitochondrial support genes, and gene duplications with bacteriocyte-specific expression. Comparison across other hemipteran lineages reveals that hosts generally support the incomplete symbiont cellular processes, but the origins of these support mechanisms are generally specific to the host–symbiont system. |
doi_str_mv | 10.1073/pnas.1811932115 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6294904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26580182</jstor_id><sourcerecordid>26580182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-92a66e79a7378d73f873ad25456fce7804b9f026ea4a82a74821b9c5a37c44c73</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EosvCmRPIEhcuaf0VO74gVVWhSJW4wNmaJPauV0kcbKer_e_xsmULHKw5vN88z8xD6C0ll5QofjVPkC5pQ6nmjNL6GVpRomklhSbP0YoQpqpGMHGBXqW0I4TouiEv0QUnQnIt9Artbx_CsGQfJhwc3oaUcVrmOcSMXYg47wOGqfN2yriFLtvoYcDpMLalIye893mLe--cjQUp2nDAvd1E6G2PN3YKo03YTxjwYMFtwzzb-PuX1-iFgyHZN491jX58vv1-c1fdf_vy9eb6vuqE4LnSDKS0SoPiqukVd43i0LNa1NJ1VjVEtNoRJi0IaBgo0TDa6q4GropBp_gafTr5zks72r4rU0YYzBz9CPFgAnjzrzL5rdmEByNZuQ8RxeDjo0EMPxebshl96uwwwGTDkgyjdU2FUIoV9MN_6C4scSrrHSmtOZflrdHViepiSCladx6GEnMM1RxDNU-hlo73f-9w5v-kWIB3J2CXcohnncmSNm0Y_wXP4an9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159933693</pqid></control><display><type>article</type><title>Evolution of host support for two ancient bacterial symbionts with differentially degraded genomes in a leafhopper host</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Mao, Meng ; Yang, Xiushuai ; Bennett, Gordon M.</creator><creatorcontrib>Mao, Meng ; Yang, Xiushuai ; Bennett, Gordon M.</creatorcontrib><description>Plant sap-feeding insects (Hemiptera) rely on bacterial symbionts for nutrition absent in their diets. These bacteria experience extreme genome reduction and require genetic resources from their hosts, particularly for basic cellular processes other than nutrition synthesis. The host-derived mechanisms that complete these processes have remained poorly understood. It is also unclear how hosts meet the distinct needs of multiple bacterial partners with differentially degraded genomes. To address these questions, we investigated the cell-specific gene-expression patterns in the symbiotic organs of the aster leafhopper (ALF), Macrosteles quadrilineatus (Cicadellidae). ALF harbors two intracellular symbionts that have two of the smallest known bacterial genomes: Nasuia (112 kb) and Sulcia (190 kb). Symbionts are segregated into distinct host cell types (bacteriocytes) and vary widely in their basic cellular capabilities. ALF differentially expresses thousands of genes between the bacteriocyte types to meet the functional needs of each symbiont, including the provisioning of metabolites and support of cellular processes. For example, the host highly expresses genes in the bacteriocytes that likely complement gene losses in nucleic acid synthesis, DNA repair mechanisms, transcription, and translation. Such genes are required to function in the bacterial cytosol. Many host genes comprising these support mechanisms are derived from the evolution of novel functional traits via horizontally transferred genes, reassigned mitochondrial support genes, and gene duplications with bacteriocyte-specific expression. Comparison across other hemipteran lineages reveals that hosts generally support the incomplete symbiont cellular processes, but the origins of these support mechanisms are generally specific to the host–symbiont system.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1811932115</identifier><identifier>PMID: 30463949</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Bacteria ; Bacteria - genetics ; Bacterial Physiological Phenomena ; Bacteroidetes - genetics ; Bacteroidetes - physiology ; Betaproteobacteria - genetics ; Betaproteobacteria - physiology ; Biological evolution ; Biological Sciences ; Cytosol ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA repair ; Evolution, Molecular ; Evolutionary genetics ; Gene Duplication ; Gene expression ; Gene Transfer, Horizontal ; Genes ; Genetic resources ; Genetics ; Genome, Bacterial ; Genome, Insect ; Genomes ; Hemiptera - cytology ; Hemiptera - genetics ; Hemiptera - microbiology ; Host Microbial Interactions - genetics ; Host Microbial Interactions - physiology ; Host plants ; Insects ; Metabolites ; Mitochondria ; Nucleic acids ; Nutrition ; Organs ; PNAS Plus ; Provisioning ; Symbionts ; Symbiosis ; Symbiosis - genetics ; Symbiosis - physiology ; Synthesis ; Transcription ; Transcriptome</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-12, Vol.115 (50), p.E11691-E11700</ispartof><rights>Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright © 2018 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Dec 11, 2018</rights><rights>Copyright © 2018 the Author(s). Published by PNAS. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-92a66e79a7378d73f873ad25456fce7804b9f026ea4a82a74821b9c5a37c44c73</citedby><cites>FETCH-LOGICAL-c443t-92a66e79a7378d73f873ad25456fce7804b9f026ea4a82a74821b9c5a37c44c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26580182$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26580182$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30463949$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mao, Meng</creatorcontrib><creatorcontrib>Yang, Xiushuai</creatorcontrib><creatorcontrib>Bennett, Gordon M.</creatorcontrib><title>Evolution of host support for two ancient bacterial symbionts with differentially degraded genomes in a leafhopper host</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Plant sap-feeding insects (Hemiptera) rely on bacterial symbionts for nutrition absent in their diets. These bacteria experience extreme genome reduction and require genetic resources from their hosts, particularly for basic cellular processes other than nutrition synthesis. The host-derived mechanisms that complete these processes have remained poorly understood. It is also unclear how hosts meet the distinct needs of multiple bacterial partners with differentially degraded genomes. To address these questions, we investigated the cell-specific gene-expression patterns in the symbiotic organs of the aster leafhopper (ALF), Macrosteles quadrilineatus (Cicadellidae). ALF harbors two intracellular symbionts that have two of the smallest known bacterial genomes: Nasuia (112 kb) and Sulcia (190 kb). Symbionts are segregated into distinct host cell types (bacteriocytes) and vary widely in their basic cellular capabilities. ALF differentially expresses thousands of genes between the bacteriocyte types to meet the functional needs of each symbiont, including the provisioning of metabolites and support of cellular processes. For example, the host highly expresses genes in the bacteriocytes that likely complement gene losses in nucleic acid synthesis, DNA repair mechanisms, transcription, and translation. Such genes are required to function in the bacterial cytosol. Many host genes comprising these support mechanisms are derived from the evolution of novel functional traits via horizontally transferred genes, reassigned mitochondrial support genes, and gene duplications with bacteriocyte-specific expression. Comparison across other hemipteran lineages reveals that hosts generally support the incomplete symbiont cellular processes, but the origins of these support mechanisms are generally specific to the host–symbiont system.</description><subject>Animals</subject><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Bacterial Physiological Phenomena</subject><subject>Bacteroidetes - genetics</subject><subject>Bacteroidetes - physiology</subject><subject>Betaproteobacteria - genetics</subject><subject>Betaproteobacteria - physiology</subject><subject>Biological evolution</subject><subject>Biological Sciences</subject><subject>Cytosol</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA repair</subject><subject>Evolution, Molecular</subject><subject>Evolutionary genetics</subject><subject>Gene Duplication</subject><subject>Gene expression</subject><subject>Gene Transfer, Horizontal</subject><subject>Genes</subject><subject>Genetic resources</subject><subject>Genetics</subject><subject>Genome, Bacterial</subject><subject>Genome, Insect</subject><subject>Genomes</subject><subject>Hemiptera - cytology</subject><subject>Hemiptera - genetics</subject><subject>Hemiptera - microbiology</subject><subject>Host Microbial Interactions - genetics</subject><subject>Host Microbial Interactions - physiology</subject><subject>Host plants</subject><subject>Insects</subject><subject>Metabolites</subject><subject>Mitochondria</subject><subject>Nucleic acids</subject><subject>Nutrition</subject><subject>Organs</subject><subject>PNAS Plus</subject><subject>Provisioning</subject><subject>Symbionts</subject><subject>Symbiosis</subject><subject>Symbiosis - genetics</subject><subject>Symbiosis - physiology</subject><subject>Synthesis</subject><subject>Transcription</subject><subject>Transcriptome</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS0EosvCmRPIEhcuaf0VO74gVVWhSJW4wNmaJPauV0kcbKer_e_xsmULHKw5vN88z8xD6C0ll5QofjVPkC5pQ6nmjNL6GVpRomklhSbP0YoQpqpGMHGBXqW0I4TouiEv0QUnQnIt9Artbx_CsGQfJhwc3oaUcVrmOcSMXYg47wOGqfN2yriFLtvoYcDpMLalIye893mLe--cjQUp2nDAvd1E6G2PN3YKo03YTxjwYMFtwzzb-PuX1-iFgyHZN491jX58vv1-c1fdf_vy9eb6vuqE4LnSDKS0SoPiqukVd43i0LNa1NJ1VjVEtNoRJi0IaBgo0TDa6q4GropBp_gafTr5zks72r4rU0YYzBz9CPFgAnjzrzL5rdmEByNZuQ8RxeDjo0EMPxebshl96uwwwGTDkgyjdU2FUIoV9MN_6C4scSrrHSmtOZflrdHViepiSCladx6GEnMM1RxDNU-hlo73f-9w5v-kWIB3J2CXcohnncmSNm0Y_wXP4an9</recordid><startdate>20181211</startdate><enddate>20181211</enddate><creator>Mao, Meng</creator><creator>Yang, Xiushuai</creator><creator>Bennett, Gordon M.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20181211</creationdate><title>Evolution of host support for two ancient bacterial symbionts with differentially degraded genomes in a leafhopper host</title><author>Mao, Meng ; Yang, Xiushuai ; Bennett, Gordon M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-92a66e79a7378d73f873ad25456fce7804b9f026ea4a82a74821b9c5a37c44c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Bacterial Physiological Phenomena</topic><topic>Bacteroidetes - genetics</topic><topic>Bacteroidetes - physiology</topic><topic>Betaproteobacteria - genetics</topic><topic>Betaproteobacteria - physiology</topic><topic>Biological evolution</topic><topic>Biological Sciences</topic><topic>Cytosol</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA repair</topic><topic>Evolution, Molecular</topic><topic>Evolutionary genetics</topic><topic>Gene Duplication</topic><topic>Gene expression</topic><topic>Gene Transfer, Horizontal</topic><topic>Genes</topic><topic>Genetic resources</topic><topic>Genetics</topic><topic>Genome, Bacterial</topic><topic>Genome, Insect</topic><topic>Genomes</topic><topic>Hemiptera - cytology</topic><topic>Hemiptera - genetics</topic><topic>Hemiptera - microbiology</topic><topic>Host Microbial Interactions - genetics</topic><topic>Host Microbial Interactions - physiology</topic><topic>Host plants</topic><topic>Insects</topic><topic>Metabolites</topic><topic>Mitochondria</topic><topic>Nucleic acids</topic><topic>Nutrition</topic><topic>Organs</topic><topic>PNAS Plus</topic><topic>Provisioning</topic><topic>Symbionts</topic><topic>Symbiosis</topic><topic>Symbiosis - genetics</topic><topic>Symbiosis - physiology</topic><topic>Synthesis</topic><topic>Transcription</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Meng</creatorcontrib><creatorcontrib>Yang, Xiushuai</creatorcontrib><creatorcontrib>Bennett, Gordon M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, Meng</au><au>Yang, Xiushuai</au><au>Bennett, Gordon M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of host support for two ancient bacterial symbionts with differentially degraded genomes in a leafhopper host</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-12-11</date><risdate>2018</risdate><volume>115</volume><issue>50</issue><spage>E11691</spage><epage>E11700</epage><pages>E11691-E11700</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Plant sap-feeding insects (Hemiptera) rely on bacterial symbionts for nutrition absent in their diets. These bacteria experience extreme genome reduction and require genetic resources from their hosts, particularly for basic cellular processes other than nutrition synthesis. The host-derived mechanisms that complete these processes have remained poorly understood. It is also unclear how hosts meet the distinct needs of multiple bacterial partners with differentially degraded genomes. To address these questions, we investigated the cell-specific gene-expression patterns in the symbiotic organs of the aster leafhopper (ALF), Macrosteles quadrilineatus (Cicadellidae). ALF harbors two intracellular symbionts that have two of the smallest known bacterial genomes: Nasuia (112 kb) and Sulcia (190 kb). Symbionts are segregated into distinct host cell types (bacteriocytes) and vary widely in their basic cellular capabilities. ALF differentially expresses thousands of genes between the bacteriocyte types to meet the functional needs of each symbiont, including the provisioning of metabolites and support of cellular processes. For example, the host highly expresses genes in the bacteriocytes that likely complement gene losses in nucleic acid synthesis, DNA repair mechanisms, transcription, and translation. Such genes are required to function in the bacterial cytosol. Many host genes comprising these support mechanisms are derived from the evolution of novel functional traits via horizontally transferred genes, reassigned mitochondrial support genes, and gene duplications with bacteriocyte-specific expression. Comparison across other hemipteran lineages reveals that hosts generally support the incomplete symbiont cellular processes, but the origins of these support mechanisms are generally specific to the host–symbiont system.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30463949</pmid><doi>10.1073/pnas.1811932115</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2018-12, Vol.115 (50), p.E11691-E11700 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6294904 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Bacteria Bacteria - genetics Bacterial Physiological Phenomena Bacteroidetes - genetics Bacteroidetes - physiology Betaproteobacteria - genetics Betaproteobacteria - physiology Biological evolution Biological Sciences Cytosol Deoxyribonucleic acid DNA DNA biosynthesis DNA repair Evolution, Molecular Evolutionary genetics Gene Duplication Gene expression Gene Transfer, Horizontal Genes Genetic resources Genetics Genome, Bacterial Genome, Insect Genomes Hemiptera - cytology Hemiptera - genetics Hemiptera - microbiology Host Microbial Interactions - genetics Host Microbial Interactions - physiology Host plants Insects Metabolites Mitochondria Nucleic acids Nutrition Organs PNAS Plus Provisioning Symbionts Symbiosis Symbiosis - genetics Symbiosis - physiology Synthesis Transcription Transcriptome |
title | Evolution of host support for two ancient bacterial symbionts with differentially degraded genomes in a leafhopper host |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20host%20support%20for%20two%20ancient%20bacterial%20symbionts%20with%20differentially%20degraded%20genomes%20in%20a%20leafhopper%20host&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Mao,%20Meng&rft.date=2018-12-11&rft.volume=115&rft.issue=50&rft.spage=E11691&rft.epage=E11700&rft.pages=E11691-E11700&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1811932115&rft_dat=%3Cjstor_pubme%3E26580182%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159933693&rft_id=info:pmid/30463949&rft_jstor_id=26580182&rfr_iscdi=true |