Evolution of host support for two ancient bacterial symbionts with differentially degraded genomes in a leafhopper host

Plant sap-feeding insects (Hemiptera) rely on bacterial symbionts for nutrition absent in their diets. These bacteria experience extreme genome reduction and require genetic resources from their hosts, particularly for basic cellular processes other than nutrition synthesis. The host-derived mechani...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2018-12, Vol.115 (50), p.E11691-E11700
Hauptverfasser: Mao, Meng, Yang, Xiushuai, Bennett, Gordon M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E11700
container_issue 50
container_start_page E11691
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Mao, Meng
Yang, Xiushuai
Bennett, Gordon M.
description Plant sap-feeding insects (Hemiptera) rely on bacterial symbionts for nutrition absent in their diets. These bacteria experience extreme genome reduction and require genetic resources from their hosts, particularly for basic cellular processes other than nutrition synthesis. The host-derived mechanisms that complete these processes have remained poorly understood. It is also unclear how hosts meet the distinct needs of multiple bacterial partners with differentially degraded genomes. To address these questions, we investigated the cell-specific gene-expression patterns in the symbiotic organs of the aster leafhopper (ALF), Macrosteles quadrilineatus (Cicadellidae). ALF harbors two intracellular symbionts that have two of the smallest known bacterial genomes: Nasuia (112 kb) and Sulcia (190 kb). Symbionts are segregated into distinct host cell types (bacteriocytes) and vary widely in their basic cellular capabilities. ALF differentially expresses thousands of genes between the bacteriocyte types to meet the functional needs of each symbiont, including the provisioning of metabolites and support of cellular processes. For example, the host highly expresses genes in the bacteriocytes that likely complement gene losses in nucleic acid synthesis, DNA repair mechanisms, transcription, and translation. Such genes are required to function in the bacterial cytosol. Many host genes comprising these support mechanisms are derived from the evolution of novel functional traits via horizontally transferred genes, reassigned mitochondrial support genes, and gene duplications with bacteriocyte-specific expression. Comparison across other hemipteran lineages reveals that hosts generally support the incomplete symbiont cellular processes, but the origins of these support mechanisms are generally specific to the host–symbiont system.
doi_str_mv 10.1073/pnas.1811932115
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6294904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26580182</jstor_id><sourcerecordid>26580182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-92a66e79a7378d73f873ad25456fce7804b9f026ea4a82a74821b9c5a37c44c73</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EosvCmRPIEhcuaf0VO74gVVWhSJW4wNmaJPauV0kcbKer_e_xsmULHKw5vN88z8xD6C0ll5QofjVPkC5pQ6nmjNL6GVpRomklhSbP0YoQpqpGMHGBXqW0I4TouiEv0QUnQnIt9Artbx_CsGQfJhwc3oaUcVrmOcSMXYg47wOGqfN2yriFLtvoYcDpMLalIye893mLe--cjQUp2nDAvd1E6G2PN3YKo03YTxjwYMFtwzzb-PuX1-iFgyHZN491jX58vv1-c1fdf_vy9eb6vuqE4LnSDKS0SoPiqukVd43i0LNa1NJ1VjVEtNoRJi0IaBgo0TDa6q4GropBp_gafTr5zks72r4rU0YYzBz9CPFgAnjzrzL5rdmEByNZuQ8RxeDjo0EMPxebshl96uwwwGTDkgyjdU2FUIoV9MN_6C4scSrrHSmtOZflrdHViepiSCladx6GEnMM1RxDNU-hlo73f-9w5v-kWIB3J2CXcohnncmSNm0Y_wXP4an9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159933693</pqid></control><display><type>article</type><title>Evolution of host support for two ancient bacterial symbionts with differentially degraded genomes in a leafhopper host</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Mao, Meng ; Yang, Xiushuai ; Bennett, Gordon M.</creator><creatorcontrib>Mao, Meng ; Yang, Xiushuai ; Bennett, Gordon M.</creatorcontrib><description>Plant sap-feeding insects (Hemiptera) rely on bacterial symbionts for nutrition absent in their diets. These bacteria experience extreme genome reduction and require genetic resources from their hosts, particularly for basic cellular processes other than nutrition synthesis. The host-derived mechanisms that complete these processes have remained poorly understood. It is also unclear how hosts meet the distinct needs of multiple bacterial partners with differentially degraded genomes. To address these questions, we investigated the cell-specific gene-expression patterns in the symbiotic organs of the aster leafhopper (ALF), Macrosteles quadrilineatus (Cicadellidae). ALF harbors two intracellular symbionts that have two of the smallest known bacterial genomes: Nasuia (112 kb) and Sulcia (190 kb). Symbionts are segregated into distinct host cell types (bacteriocytes) and vary widely in their basic cellular capabilities. ALF differentially expresses thousands of genes between the bacteriocyte types to meet the functional needs of each symbiont, including the provisioning of metabolites and support of cellular processes. For example, the host highly expresses genes in the bacteriocytes that likely complement gene losses in nucleic acid synthesis, DNA repair mechanisms, transcription, and translation. Such genes are required to function in the bacterial cytosol. Many host genes comprising these support mechanisms are derived from the evolution of novel functional traits via horizontally transferred genes, reassigned mitochondrial support genes, and gene duplications with bacteriocyte-specific expression. Comparison across other hemipteran lineages reveals that hosts generally support the incomplete symbiont cellular processes, but the origins of these support mechanisms are generally specific to the host–symbiont system.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1811932115</identifier><identifier>PMID: 30463949</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Bacteria ; Bacteria - genetics ; Bacterial Physiological Phenomena ; Bacteroidetes - genetics ; Bacteroidetes - physiology ; Betaproteobacteria - genetics ; Betaproteobacteria - physiology ; Biological evolution ; Biological Sciences ; Cytosol ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA repair ; Evolution, Molecular ; Evolutionary genetics ; Gene Duplication ; Gene expression ; Gene Transfer, Horizontal ; Genes ; Genetic resources ; Genetics ; Genome, Bacterial ; Genome, Insect ; Genomes ; Hemiptera - cytology ; Hemiptera - genetics ; Hemiptera - microbiology ; Host Microbial Interactions - genetics ; Host Microbial Interactions - physiology ; Host plants ; Insects ; Metabolites ; Mitochondria ; Nucleic acids ; Nutrition ; Organs ; PNAS Plus ; Provisioning ; Symbionts ; Symbiosis ; Symbiosis - genetics ; Symbiosis - physiology ; Synthesis ; Transcription ; Transcriptome</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-12, Vol.115 (50), p.E11691-E11700</ispartof><rights>Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright © 2018 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Dec 11, 2018</rights><rights>Copyright © 2018 the Author(s). Published by PNAS. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-92a66e79a7378d73f873ad25456fce7804b9f026ea4a82a74821b9c5a37c44c73</citedby><cites>FETCH-LOGICAL-c443t-92a66e79a7378d73f873ad25456fce7804b9f026ea4a82a74821b9c5a37c44c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26580182$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26580182$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30463949$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mao, Meng</creatorcontrib><creatorcontrib>Yang, Xiushuai</creatorcontrib><creatorcontrib>Bennett, Gordon M.</creatorcontrib><title>Evolution of host support for two ancient bacterial symbionts with differentially degraded genomes in a leafhopper host</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Plant sap-feeding insects (Hemiptera) rely on bacterial symbionts for nutrition absent in their diets. These bacteria experience extreme genome reduction and require genetic resources from their hosts, particularly for basic cellular processes other than nutrition synthesis. The host-derived mechanisms that complete these processes have remained poorly understood. It is also unclear how hosts meet the distinct needs of multiple bacterial partners with differentially degraded genomes. To address these questions, we investigated the cell-specific gene-expression patterns in the symbiotic organs of the aster leafhopper (ALF), Macrosteles quadrilineatus (Cicadellidae). ALF harbors two intracellular symbionts that have two of the smallest known bacterial genomes: Nasuia (112 kb) and Sulcia (190 kb). Symbionts are segregated into distinct host cell types (bacteriocytes) and vary widely in their basic cellular capabilities. ALF differentially expresses thousands of genes between the bacteriocyte types to meet the functional needs of each symbiont, including the provisioning of metabolites and support of cellular processes. For example, the host highly expresses genes in the bacteriocytes that likely complement gene losses in nucleic acid synthesis, DNA repair mechanisms, transcription, and translation. Such genes are required to function in the bacterial cytosol. Many host genes comprising these support mechanisms are derived from the evolution of novel functional traits via horizontally transferred genes, reassigned mitochondrial support genes, and gene duplications with bacteriocyte-specific expression. Comparison across other hemipteran lineages reveals that hosts generally support the incomplete symbiont cellular processes, but the origins of these support mechanisms are generally specific to the host–symbiont system.</description><subject>Animals</subject><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Bacterial Physiological Phenomena</subject><subject>Bacteroidetes - genetics</subject><subject>Bacteroidetes - physiology</subject><subject>Betaproteobacteria - genetics</subject><subject>Betaproteobacteria - physiology</subject><subject>Biological evolution</subject><subject>Biological Sciences</subject><subject>Cytosol</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA repair</subject><subject>Evolution, Molecular</subject><subject>Evolutionary genetics</subject><subject>Gene Duplication</subject><subject>Gene expression</subject><subject>Gene Transfer, Horizontal</subject><subject>Genes</subject><subject>Genetic resources</subject><subject>Genetics</subject><subject>Genome, Bacterial</subject><subject>Genome, Insect</subject><subject>Genomes</subject><subject>Hemiptera - cytology</subject><subject>Hemiptera - genetics</subject><subject>Hemiptera - microbiology</subject><subject>Host Microbial Interactions - genetics</subject><subject>Host Microbial Interactions - physiology</subject><subject>Host plants</subject><subject>Insects</subject><subject>Metabolites</subject><subject>Mitochondria</subject><subject>Nucleic acids</subject><subject>Nutrition</subject><subject>Organs</subject><subject>PNAS Plus</subject><subject>Provisioning</subject><subject>Symbionts</subject><subject>Symbiosis</subject><subject>Symbiosis - genetics</subject><subject>Symbiosis - physiology</subject><subject>Synthesis</subject><subject>Transcription</subject><subject>Transcriptome</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS0EosvCmRPIEhcuaf0VO74gVVWhSJW4wNmaJPauV0kcbKer_e_xsmULHKw5vN88z8xD6C0ll5QofjVPkC5pQ6nmjNL6GVpRomklhSbP0YoQpqpGMHGBXqW0I4TouiEv0QUnQnIt9Artbx_CsGQfJhwc3oaUcVrmOcSMXYg47wOGqfN2yriFLtvoYcDpMLalIye893mLe--cjQUp2nDAvd1E6G2PN3YKo03YTxjwYMFtwzzb-PuX1-iFgyHZN491jX58vv1-c1fdf_vy9eb6vuqE4LnSDKS0SoPiqukVd43i0LNa1NJ1VjVEtNoRJi0IaBgo0TDa6q4GropBp_gafTr5zks72r4rU0YYzBz9CPFgAnjzrzL5rdmEByNZuQ8RxeDjo0EMPxebshl96uwwwGTDkgyjdU2FUIoV9MN_6C4scSrrHSmtOZflrdHViepiSCladx6GEnMM1RxDNU-hlo73f-9w5v-kWIB3J2CXcohnncmSNm0Y_wXP4an9</recordid><startdate>20181211</startdate><enddate>20181211</enddate><creator>Mao, Meng</creator><creator>Yang, Xiushuai</creator><creator>Bennett, Gordon M.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20181211</creationdate><title>Evolution of host support for two ancient bacterial symbionts with differentially degraded genomes in a leafhopper host</title><author>Mao, Meng ; Yang, Xiushuai ; Bennett, Gordon M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-92a66e79a7378d73f873ad25456fce7804b9f026ea4a82a74821b9c5a37c44c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Bacterial Physiological Phenomena</topic><topic>Bacteroidetes - genetics</topic><topic>Bacteroidetes - physiology</topic><topic>Betaproteobacteria - genetics</topic><topic>Betaproteobacteria - physiology</topic><topic>Biological evolution</topic><topic>Biological Sciences</topic><topic>Cytosol</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA repair</topic><topic>Evolution, Molecular</topic><topic>Evolutionary genetics</topic><topic>Gene Duplication</topic><topic>Gene expression</topic><topic>Gene Transfer, Horizontal</topic><topic>Genes</topic><topic>Genetic resources</topic><topic>Genetics</topic><topic>Genome, Bacterial</topic><topic>Genome, Insect</topic><topic>Genomes</topic><topic>Hemiptera - cytology</topic><topic>Hemiptera - genetics</topic><topic>Hemiptera - microbiology</topic><topic>Host Microbial Interactions - genetics</topic><topic>Host Microbial Interactions - physiology</topic><topic>Host plants</topic><topic>Insects</topic><topic>Metabolites</topic><topic>Mitochondria</topic><topic>Nucleic acids</topic><topic>Nutrition</topic><topic>Organs</topic><topic>PNAS Plus</topic><topic>Provisioning</topic><topic>Symbionts</topic><topic>Symbiosis</topic><topic>Symbiosis - genetics</topic><topic>Symbiosis - physiology</topic><topic>Synthesis</topic><topic>Transcription</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Meng</creatorcontrib><creatorcontrib>Yang, Xiushuai</creatorcontrib><creatorcontrib>Bennett, Gordon M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, Meng</au><au>Yang, Xiushuai</au><au>Bennett, Gordon M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of host support for two ancient bacterial symbionts with differentially degraded genomes in a leafhopper host</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-12-11</date><risdate>2018</risdate><volume>115</volume><issue>50</issue><spage>E11691</spage><epage>E11700</epage><pages>E11691-E11700</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Plant sap-feeding insects (Hemiptera) rely on bacterial symbionts for nutrition absent in their diets. These bacteria experience extreme genome reduction and require genetic resources from their hosts, particularly for basic cellular processes other than nutrition synthesis. The host-derived mechanisms that complete these processes have remained poorly understood. It is also unclear how hosts meet the distinct needs of multiple bacterial partners with differentially degraded genomes. To address these questions, we investigated the cell-specific gene-expression patterns in the symbiotic organs of the aster leafhopper (ALF), Macrosteles quadrilineatus (Cicadellidae). ALF harbors two intracellular symbionts that have two of the smallest known bacterial genomes: Nasuia (112 kb) and Sulcia (190 kb). Symbionts are segregated into distinct host cell types (bacteriocytes) and vary widely in their basic cellular capabilities. ALF differentially expresses thousands of genes between the bacteriocyte types to meet the functional needs of each symbiont, including the provisioning of metabolites and support of cellular processes. For example, the host highly expresses genes in the bacteriocytes that likely complement gene losses in nucleic acid synthesis, DNA repair mechanisms, transcription, and translation. Such genes are required to function in the bacterial cytosol. Many host genes comprising these support mechanisms are derived from the evolution of novel functional traits via horizontally transferred genes, reassigned mitochondrial support genes, and gene duplications with bacteriocyte-specific expression. Comparison across other hemipteran lineages reveals that hosts generally support the incomplete symbiont cellular processes, but the origins of these support mechanisms are generally specific to the host–symbiont system.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30463949</pmid><doi>10.1073/pnas.1811932115</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-12, Vol.115 (50), p.E11691-E11700
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6294904
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Bacteria
Bacteria - genetics
Bacterial Physiological Phenomena
Bacteroidetes - genetics
Bacteroidetes - physiology
Betaproteobacteria - genetics
Betaproteobacteria - physiology
Biological evolution
Biological Sciences
Cytosol
Deoxyribonucleic acid
DNA
DNA biosynthesis
DNA repair
Evolution, Molecular
Evolutionary genetics
Gene Duplication
Gene expression
Gene Transfer, Horizontal
Genes
Genetic resources
Genetics
Genome, Bacterial
Genome, Insect
Genomes
Hemiptera - cytology
Hemiptera - genetics
Hemiptera - microbiology
Host Microbial Interactions - genetics
Host Microbial Interactions - physiology
Host plants
Insects
Metabolites
Mitochondria
Nucleic acids
Nutrition
Organs
PNAS Plus
Provisioning
Symbionts
Symbiosis
Symbiosis - genetics
Symbiosis - physiology
Synthesis
Transcription
Transcriptome
title Evolution of host support for two ancient bacterial symbionts with differentially degraded genomes in a leafhopper host
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20host%20support%20for%20two%20ancient%20bacterial%20symbionts%20with%20differentially%20degraded%20genomes%20in%20a%20leafhopper%20host&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Mao,%20Meng&rft.date=2018-12-11&rft.volume=115&rft.issue=50&rft.spage=E11691&rft.epage=E11700&rft.pages=E11691-E11700&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1811932115&rft_dat=%3Cjstor_pubme%3E26580182%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159933693&rft_id=info:pmid/30463949&rft_jstor_id=26580182&rfr_iscdi=true