Development of transgenic Caenorhabditis elegans expressing human transthyretin as a model for drug screening

Familial amyloid polyneuropathy is a hereditary systemic amyloidosis caused by a mutation in the transthyretin (TTR) gene. Amyloid deposits in tissues of patients contain not only full-length TTR but also C-terminal TTR fragments. However, in vivo models to evaluate the pathogenicity of TTR fragment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2018-12, Vol.8 (1), p.17884-13, Article 17884
Hauptverfasser: Tsuda, Yukimoto, Yamanaka, Kunitoshi, Toyoshima, Risa, Ueda, Mitsuharu, Masuda, Teruaki, Misumi, Yohei, Ogura, Teru, Ando, Yukio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 1
container_start_page 17884
container_title Scientific reports
container_volume 8
creator Tsuda, Yukimoto
Yamanaka, Kunitoshi
Toyoshima, Risa
Ueda, Mitsuharu
Masuda, Teruaki
Misumi, Yohei
Ogura, Teru
Ando, Yukio
description Familial amyloid polyneuropathy is a hereditary systemic amyloidosis caused by a mutation in the transthyretin (TTR) gene. Amyloid deposits in tissues of patients contain not only full-length TTR but also C-terminal TTR fragments. However, in vivo models to evaluate the pathogenicity of TTR fragments have not yet been developed. Here, we generated transgenic Caenorhabditis elegans strains expressing several types of TTR fragments or full-length TTR fused to enhanced green fluorescent protein in the body wall muscle cells and analyzed the phenotypes of the worms. The transgenic strain expressing residues 81–127 of TTR, which included the β-strands F and H, formed aggregates and caused defective worm motility and a significantly shortened lifespan compared with other strains. These findings suggest that the C-terminal fragments of TTR may contribute to cytotoxicity of TTR amyloidosis in vivo . By using this C . elegans model system, we found that (−)-epigallocatechin-3-gallate, a major polyphenol in green tea, significantly inhibited the formation of aggregates, the defective motility, and the shortened lifespan caused by residues 81–127 of TTR. These results suggest that our newly developed C . elegans model system will be useful for in vivo pathological analyses of TTR amyloidosis as well as drug screening.
doi_str_mv 10.1038/s41598-018-36357-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6294829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2156486178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c705t-b3d03f0bda1ef8f810740cd0269bf0a5bb6ada952613c600fb9bc820d4b537893</originalsourceid><addsrcrecordid>eNp9kU1vFSEYhYnR2Kb2D7gwJG7cTOVjYJiNiblqNWniRteEj3fm0szAFWaa9t_LdWqtLmQDyXnOgZeD0EtKLijh6m1pqehVQ6hquOSia8QTdMpIKxrGGXv66HyCzku5JnUJ1re0f45OOBGCVdspmj_ADUzpMENccBrwkk0sI8Tg8M5ATHlvrA9LKBgmGKuG4faQoZQQR7xfZxM3y7K_y7CEiE3BBs_Jw4SHlLHP64iLy1Aj4_gCPRvMVOD8fj9D3z99_Lb73Fx9vfyye3_VuI6IpbHcEz4Q6w2FQQ2Kkq4lzhMmezsQI6yVxpteMEm5k4QMtrdOMeJbK3inen6G3m25h9XO4F0dLptJH3KYTb7TyQT9txLDXo_pRsv6Q4odA97cB-T0Y4Wy6DkUB9NkIqS1aEZFJ6XsVFvR1_-g12nNsY53pGSrJO1UpdhGuZxKyTA8PIYSfSxUb4XqWqj-VagW1fTq8RgPlt_1VYBvQKlSHCH_ufs_sT8B9Q6uXQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2156486178</pqid></control><display><type>article</type><title>Development of transgenic Caenorhabditis elegans expressing human transthyretin as a model for drug screening</title><source>Nature Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Tsuda, Yukimoto ; Yamanaka, Kunitoshi ; Toyoshima, Risa ; Ueda, Mitsuharu ; Masuda, Teruaki ; Misumi, Yohei ; Ogura, Teru ; Ando, Yukio</creator><creatorcontrib>Tsuda, Yukimoto ; Yamanaka, Kunitoshi ; Toyoshima, Risa ; Ueda, Mitsuharu ; Masuda, Teruaki ; Misumi, Yohei ; Ogura, Teru ; Ando, Yukio</creatorcontrib><description>Familial amyloid polyneuropathy is a hereditary systemic amyloidosis caused by a mutation in the transthyretin (TTR) gene. Amyloid deposits in tissues of patients contain not only full-length TTR but also C-terminal TTR fragments. However, in vivo models to evaluate the pathogenicity of TTR fragments have not yet been developed. Here, we generated transgenic Caenorhabditis elegans strains expressing several types of TTR fragments or full-length TTR fused to enhanced green fluorescent protein in the body wall muscle cells and analyzed the phenotypes of the worms. The transgenic strain expressing residues 81–127 of TTR, which included the β-strands F and H, formed aggregates and caused defective worm motility and a significantly shortened lifespan compared with other strains. These findings suggest that the C-terminal fragments of TTR may contribute to cytotoxicity of TTR amyloidosis in vivo . By using this C . elegans model system, we found that (−)-epigallocatechin-3-gallate, a major polyphenol in green tea, significantly inhibited the formation of aggregates, the defective motility, and the shortened lifespan caused by residues 81–127 of TTR. These results suggest that our newly developed C . elegans model system will be useful for in vivo pathological analyses of TTR amyloidosis as well as drug screening.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-36357-5</identifier><identifier>PMID: 30552363</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/63 ; 38/1 ; 38/35 ; 631/337/470/2284 ; 64/11 ; 692/699/375 ; Aggregates ; Amyloid ; Amyloid Neuropathies, Familial - drug therapy ; Amyloid Neuropathies, Familial - pathology ; Amyloidosis ; Animals ; Animals, Genetically Modified ; Body wall ; Caenorhabditis elegans ; Catechin - analogs &amp; derivatives ; Catechin - pharmacology ; Cytotoxicity ; Disease Models, Animal ; Drug Evaluation, Preclinical - methods ; Drug screening ; Epigallocatechin gallate ; Green fluorescent protein ; Green Fluorescent Proteins - analysis ; Green Fluorescent Proteins - genetics ; Green tea ; Humanities and Social Sciences ; Humans ; Life span ; Locomotion ; Longevity ; Motility ; multidisciplinary ; Nematodes ; Neuroprotective Agents - pharmacology ; Pathogenicity ; Pathogens ; Phenotypes ; Polyneuropathy ; Prealbumin - biosynthesis ; Prealbumin - genetics ; Recombinant Fusion Proteins - biosynthesis ; Recombinant Fusion Proteins - genetics ; Science ; Science (multidisciplinary) ; Staining and Labeling ; Transthyretin ; Worms</subject><ispartof>Scientific reports, 2018-12, Vol.8 (1), p.17884-13, Article 17884</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c705t-b3d03f0bda1ef8f810740cd0269bf0a5bb6ada952613c600fb9bc820d4b537893</citedby><cites>FETCH-LOGICAL-c705t-b3d03f0bda1ef8f810740cd0269bf0a5bb6ada952613c600fb9bc820d4b537893</cites><orcidid>0000-0003-3784-0970</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294829/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294829/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30552363$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsuda, Yukimoto</creatorcontrib><creatorcontrib>Yamanaka, Kunitoshi</creatorcontrib><creatorcontrib>Toyoshima, Risa</creatorcontrib><creatorcontrib>Ueda, Mitsuharu</creatorcontrib><creatorcontrib>Masuda, Teruaki</creatorcontrib><creatorcontrib>Misumi, Yohei</creatorcontrib><creatorcontrib>Ogura, Teru</creatorcontrib><creatorcontrib>Ando, Yukio</creatorcontrib><title>Development of transgenic Caenorhabditis elegans expressing human transthyretin as a model for drug screening</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Familial amyloid polyneuropathy is a hereditary systemic amyloidosis caused by a mutation in the transthyretin (TTR) gene. Amyloid deposits in tissues of patients contain not only full-length TTR but also C-terminal TTR fragments. However, in vivo models to evaluate the pathogenicity of TTR fragments have not yet been developed. Here, we generated transgenic Caenorhabditis elegans strains expressing several types of TTR fragments or full-length TTR fused to enhanced green fluorescent protein in the body wall muscle cells and analyzed the phenotypes of the worms. The transgenic strain expressing residues 81–127 of TTR, which included the β-strands F and H, formed aggregates and caused defective worm motility and a significantly shortened lifespan compared with other strains. These findings suggest that the C-terminal fragments of TTR may contribute to cytotoxicity of TTR amyloidosis in vivo . By using this C . elegans model system, we found that (−)-epigallocatechin-3-gallate, a major polyphenol in green tea, significantly inhibited the formation of aggregates, the defective motility, and the shortened lifespan caused by residues 81–127 of TTR. These results suggest that our newly developed C . elegans model system will be useful for in vivo pathological analyses of TTR amyloidosis as well as drug screening.</description><subject>14/63</subject><subject>38/1</subject><subject>38/35</subject><subject>631/337/470/2284</subject><subject>64/11</subject><subject>692/699/375</subject><subject>Aggregates</subject><subject>Amyloid</subject><subject>Amyloid Neuropathies, Familial - drug therapy</subject><subject>Amyloid Neuropathies, Familial - pathology</subject><subject>Amyloidosis</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Body wall</subject><subject>Caenorhabditis elegans</subject><subject>Catechin - analogs &amp; derivatives</subject><subject>Catechin - pharmacology</subject><subject>Cytotoxicity</subject><subject>Disease Models, Animal</subject><subject>Drug Evaluation, Preclinical - methods</subject><subject>Drug screening</subject><subject>Epigallocatechin gallate</subject><subject>Green fluorescent protein</subject><subject>Green Fluorescent Proteins - analysis</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green tea</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Life span</subject><subject>Locomotion</subject><subject>Longevity</subject><subject>Motility</subject><subject>multidisciplinary</subject><subject>Nematodes</subject><subject>Neuroprotective Agents - pharmacology</subject><subject>Pathogenicity</subject><subject>Pathogens</subject><subject>Phenotypes</subject><subject>Polyneuropathy</subject><subject>Prealbumin - biosynthesis</subject><subject>Prealbumin - genetics</subject><subject>Recombinant Fusion Proteins - biosynthesis</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Staining and Labeling</subject><subject>Transthyretin</subject><subject>Worms</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1vFSEYhYnR2Kb2D7gwJG7cTOVjYJiNiblqNWniRteEj3fm0szAFWaa9t_LdWqtLmQDyXnOgZeD0EtKLijh6m1pqehVQ6hquOSia8QTdMpIKxrGGXv66HyCzku5JnUJ1re0f45OOBGCVdspmj_ADUzpMENccBrwkk0sI8Tg8M5ATHlvrA9LKBgmGKuG4faQoZQQR7xfZxM3y7K_y7CEiE3BBs_Jw4SHlLHP64iLy1Aj4_gCPRvMVOD8fj9D3z99_Lb73Fx9vfyye3_VuI6IpbHcEz4Q6w2FQQ2Kkq4lzhMmezsQI6yVxpteMEm5k4QMtrdOMeJbK3inen6G3m25h9XO4F0dLptJH3KYTb7TyQT9txLDXo_pRsv6Q4odA97cB-T0Y4Wy6DkUB9NkIqS1aEZFJ6XsVFvR1_-g12nNsY53pGSrJO1UpdhGuZxKyTA8PIYSfSxUb4XqWqj-VagW1fTq8RgPlt_1VYBvQKlSHCH_ufs_sT8B9Q6uXQ</recordid><startdate>20181214</startdate><enddate>20181214</enddate><creator>Tsuda, Yukimoto</creator><creator>Yamanaka, Kunitoshi</creator><creator>Toyoshima, Risa</creator><creator>Ueda, Mitsuharu</creator><creator>Masuda, Teruaki</creator><creator>Misumi, Yohei</creator><creator>Ogura, Teru</creator><creator>Ando, Yukio</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3784-0970</orcidid></search><sort><creationdate>20181214</creationdate><title>Development of transgenic Caenorhabditis elegans expressing human transthyretin as a model for drug screening</title><author>Tsuda, Yukimoto ; Yamanaka, Kunitoshi ; Toyoshima, Risa ; Ueda, Mitsuharu ; Masuda, Teruaki ; Misumi, Yohei ; Ogura, Teru ; Ando, Yukio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c705t-b3d03f0bda1ef8f810740cd0269bf0a5bb6ada952613c600fb9bc820d4b537893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>14/63</topic><topic>38/1</topic><topic>38/35</topic><topic>631/337/470/2284</topic><topic>64/11</topic><topic>692/699/375</topic><topic>Aggregates</topic><topic>Amyloid</topic><topic>Amyloid Neuropathies, Familial - drug therapy</topic><topic>Amyloid Neuropathies, Familial - pathology</topic><topic>Amyloidosis</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Body wall</topic><topic>Caenorhabditis elegans</topic><topic>Catechin - analogs &amp; derivatives</topic><topic>Catechin - pharmacology</topic><topic>Cytotoxicity</topic><topic>Disease Models, Animal</topic><topic>Drug Evaluation, Preclinical - methods</topic><topic>Drug screening</topic><topic>Epigallocatechin gallate</topic><topic>Green fluorescent protein</topic><topic>Green Fluorescent Proteins - analysis</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green tea</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Life span</topic><topic>Locomotion</topic><topic>Longevity</topic><topic>Motility</topic><topic>multidisciplinary</topic><topic>Nematodes</topic><topic>Neuroprotective Agents - pharmacology</topic><topic>Pathogenicity</topic><topic>Pathogens</topic><topic>Phenotypes</topic><topic>Polyneuropathy</topic><topic>Prealbumin - biosynthesis</topic><topic>Prealbumin - genetics</topic><topic>Recombinant Fusion Proteins - biosynthesis</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Staining and Labeling</topic><topic>Transthyretin</topic><topic>Worms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsuda, Yukimoto</creatorcontrib><creatorcontrib>Yamanaka, Kunitoshi</creatorcontrib><creatorcontrib>Toyoshima, Risa</creatorcontrib><creatorcontrib>Ueda, Mitsuharu</creatorcontrib><creatorcontrib>Masuda, Teruaki</creatorcontrib><creatorcontrib>Misumi, Yohei</creatorcontrib><creatorcontrib>Ogura, Teru</creatorcontrib><creatorcontrib>Ando, Yukio</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsuda, Yukimoto</au><au>Yamanaka, Kunitoshi</au><au>Toyoshima, Risa</au><au>Ueda, Mitsuharu</au><au>Masuda, Teruaki</au><au>Misumi, Yohei</au><au>Ogura, Teru</au><au>Ando, Yukio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of transgenic Caenorhabditis elegans expressing human transthyretin as a model for drug screening</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-12-14</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>17884</spage><epage>13</epage><pages>17884-13</pages><artnum>17884</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Familial amyloid polyneuropathy is a hereditary systemic amyloidosis caused by a mutation in the transthyretin (TTR) gene. Amyloid deposits in tissues of patients contain not only full-length TTR but also C-terminal TTR fragments. However, in vivo models to evaluate the pathogenicity of TTR fragments have not yet been developed. Here, we generated transgenic Caenorhabditis elegans strains expressing several types of TTR fragments or full-length TTR fused to enhanced green fluorescent protein in the body wall muscle cells and analyzed the phenotypes of the worms. The transgenic strain expressing residues 81–127 of TTR, which included the β-strands F and H, formed aggregates and caused defective worm motility and a significantly shortened lifespan compared with other strains. These findings suggest that the C-terminal fragments of TTR may contribute to cytotoxicity of TTR amyloidosis in vivo . By using this C . elegans model system, we found that (−)-epigallocatechin-3-gallate, a major polyphenol in green tea, significantly inhibited the formation of aggregates, the defective motility, and the shortened lifespan caused by residues 81–127 of TTR. These results suggest that our newly developed C . elegans model system will be useful for in vivo pathological analyses of TTR amyloidosis as well as drug screening.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30552363</pmid><doi>10.1038/s41598-018-36357-5</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3784-0970</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2018-12, Vol.8 (1), p.17884-13, Article 17884
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6294829
source Nature Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 14/63
38/1
38/35
631/337/470/2284
64/11
692/699/375
Aggregates
Amyloid
Amyloid Neuropathies, Familial - drug therapy
Amyloid Neuropathies, Familial - pathology
Amyloidosis
Animals
Animals, Genetically Modified
Body wall
Caenorhabditis elegans
Catechin - analogs & derivatives
Catechin - pharmacology
Cytotoxicity
Disease Models, Animal
Drug Evaluation, Preclinical - methods
Drug screening
Epigallocatechin gallate
Green fluorescent protein
Green Fluorescent Proteins - analysis
Green Fluorescent Proteins - genetics
Green tea
Humanities and Social Sciences
Humans
Life span
Locomotion
Longevity
Motility
multidisciplinary
Nematodes
Neuroprotective Agents - pharmacology
Pathogenicity
Pathogens
Phenotypes
Polyneuropathy
Prealbumin - biosynthesis
Prealbumin - genetics
Recombinant Fusion Proteins - biosynthesis
Recombinant Fusion Proteins - genetics
Science
Science (multidisciplinary)
Staining and Labeling
Transthyretin
Worms
title Development of transgenic Caenorhabditis elegans expressing human transthyretin as a model for drug screening
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T08%3A23%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20transgenic%20Caenorhabditis%20elegans%20expressing%20human%20transthyretin%20as%20a%20model%20for%20drug%20screening&rft.jtitle=Scientific%20reports&rft.au=Tsuda,%20Yukimoto&rft.date=2018-12-14&rft.volume=8&rft.issue=1&rft.spage=17884&rft.epage=13&rft.pages=17884-13&rft.artnum=17884&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-36357-5&rft_dat=%3Cproquest_pubme%3E2156486178%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2156486178&rft_id=info:pmid/30552363&rfr_iscdi=true