The cisd gene family regulates physiological germline apoptosis through ced-13 and the canonical cell death pathway in Caenorhabditis elegans
Programmed cell death, which occurs through a conserved core molecular pathway, is important for fundamental developmental and homeostatic processes. The human iron–sulfur binding protein NAF-1/CISD2 binds to Bcl-2 and its disruption in cells leads to an increase in apoptosis. Other members of the C...
Gespeichert in:
Veröffentlicht in: | Cell death and differentiation 2019-01, Vol.26 (1), p.162-178 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 178 |
---|---|
container_issue | 1 |
container_start_page | 162 |
container_title | Cell death and differentiation |
container_volume | 26 |
creator | King, Skylar D. Gray, Chipo F. Song, Luhua Nechushtai, Rachel Gumienny, Tina L. Mittler, Ron Padilla, Pamela A. |
description | Programmed cell death, which occurs through a conserved core molecular pathway, is important for fundamental developmental and homeostatic processes. The human iron–sulfur binding protein NAF-1/CISD2 binds to Bcl-2 and its disruption in cells leads to an increase in apoptosis. Other members of the CDGSH iron sulfur domain (CISD) family include mitoNEET/CISD1 and Miner2/CISD3. In humans, mutations in CISD2 result in Wolfram syndrome 2, a disease in which the patients display juvenile diabetes, neuropsychiatric disorders and defective platelet aggregation. The
C. elegans
genome contains three previously uncharacterized
cisd
genes that code for CISD-1, which has homology to mitoNEET/CISD1 and NAF-1/CISD2, and CISD-3.1 and CISD-3.2, both of which have homology to Miner2/CISD3. Disrupting the function of the
cisd
genes resulted in various germline abnormalities including distal tip cell migration defects and a significant increase in the number of cell corpses within the adult germline. This increased germ cell death is blocked by a gain-of-function mutation of the Bcl-2 homolog CED-9 and requires functional caspase CED-3 and the APAF-1 homolog CED-4. Furthermore, the increased germ cell death is facilitated by the pro-apoptotic, CED-9-binding protein CED-13, but not the related EGL-1 protein. This work is significant because it places the CISD family members as regulators of physiological germline programmed cell death acting through CED-13 and the core apoptotic machinery. |
doi_str_mv | 10.1038/s41418-018-0108-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6294797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2156485601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-81095152cdc07505d5138744467eaa82f9e11ec956ebe9acadda1eb747daf4443</originalsourceid><addsrcrecordid>eNp1kcuO1DAQRSMEYh7wAWyQJTZsAnbiR7JBQi0YkEZiM6ytaruSeOS2g50w6o_gn3F3D8NDYlF2yXXqukq3ql4w-obRtnubOeOsq-kxaFeLR9U540rWgtP2cclbQeuecnVWXeR8SymVqpdPq7Oml1Jyxc-rHzcTEuOyJSMGJAPsnN-ThOPqYcFM5mmfXfRxdAZ8YdLOu8LBHOclZpfJMqW4jhMxaGvWEgi2PBVJCDEcewx6TyzCMpG5HHewJy6QDWCIaYKtdUtRQY8jhPysejKAz_j8_r6svn78cLP5VF9_ufq8eX9dG9HKpe4Y7QUTjbGGKkGFFaztFOdcKgTomqFHxtD0QuIWezBgLTDcKq4sDAVrL6t3J9153e7QGgxLAq_n5HaQ9jqC039Xgpv0GL9r2fRc9aoIvL4XSPHbinnRO5cPm0LAuGbd0EZRWQZgBX31D3ob1xTKerphQvJOSHqg2IkyKeaccHgYhlF9MFufzNb0GLTTovS8_HOLh45f7hagOQG5lEIx7_fX_1f9CZCWt-s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2156485601</pqid></control><display><type>article</type><title>The cisd gene family regulates physiological germline apoptosis through ced-13 and the canonical cell death pathway in Caenorhabditis elegans</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>King, Skylar D. ; Gray, Chipo F. ; Song, Luhua ; Nechushtai, Rachel ; Gumienny, Tina L. ; Mittler, Ron ; Padilla, Pamela A.</creator><creatorcontrib>King, Skylar D. ; Gray, Chipo F. ; Song, Luhua ; Nechushtai, Rachel ; Gumienny, Tina L. ; Mittler, Ron ; Padilla, Pamela A.</creatorcontrib><description>Programmed cell death, which occurs through a conserved core molecular pathway, is important for fundamental developmental and homeostatic processes. The human iron–sulfur binding protein NAF-1/CISD2 binds to Bcl-2 and its disruption in cells leads to an increase in apoptosis. Other members of the CDGSH iron sulfur domain (CISD) family include mitoNEET/CISD1 and Miner2/CISD3. In humans, mutations in CISD2 result in Wolfram syndrome 2, a disease in which the patients display juvenile diabetes, neuropsychiatric disorders and defective platelet aggregation. The
C. elegans
genome contains three previously uncharacterized
cisd
genes that code for CISD-1, which has homology to mitoNEET/CISD1 and NAF-1/CISD2, and CISD-3.1 and CISD-3.2, both of which have homology to Miner2/CISD3. Disrupting the function of the
cisd
genes resulted in various germline abnormalities including distal tip cell migration defects and a significant increase in the number of cell corpses within the adult germline. This increased germ cell death is blocked by a gain-of-function mutation of the Bcl-2 homolog CED-9 and requires functional caspase CED-3 and the APAF-1 homolog CED-4. Furthermore, the increased germ cell death is facilitated by the pro-apoptotic, CED-9-binding protein CED-13, but not the related EGL-1 protein. This work is significant because it places the CISD family members as regulators of physiological germline programmed cell death acting through CED-13 and the core apoptotic machinery.</description><identifier>ISSN: 1350-9047</identifier><identifier>EISSN: 1476-5403</identifier><identifier>DOI: 10.1038/s41418-018-0108-5</identifier><identifier>PMID: 29666474</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14 ; 14/63 ; 38 ; 38/35 ; 42 ; 45/41 ; 631/208/135 ; 631/80 ; 64 ; 64/11 ; 96 ; 96/2 ; Animals ; Apaf-1 protein ; Apoptosis ; Apoptosis - genetics ; Apoptosis - physiology ; Bcl-2 protein ; Biochemistry ; Biomedical and Life Sciences ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans Proteins - metabolism ; Calcium-Binding Proteins - metabolism ; Caspase ; Caspases - metabolism ; Cell adhesion & migration ; Cell Biology ; Cell Cycle Analysis ; Cell death ; Cell migration ; Diabetes mellitus ; EGL-1 protein ; Genomes ; Germ Cells - metabolism ; Homology ; Iron ; Life Sciences ; Mental disorders ; Multigene Family ; Mutation ; Physiology ; Platelet aggregation ; Proteins ; Proto-Oncogene Proteins c-bcl-2 - metabolism ; Stem Cells ; Sulfur</subject><ispartof>Cell death and differentiation, 2019-01, Vol.26 (1), p.162-178</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-81095152cdc07505d5138744467eaa82f9e11ec956ebe9acadda1eb747daf4443</citedby><cites>FETCH-LOGICAL-c536t-81095152cdc07505d5138744467eaa82f9e11ec956ebe9acadda1eb747daf4443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294797/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294797/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41488,42557,51319,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29666474$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>King, Skylar D.</creatorcontrib><creatorcontrib>Gray, Chipo F.</creatorcontrib><creatorcontrib>Song, Luhua</creatorcontrib><creatorcontrib>Nechushtai, Rachel</creatorcontrib><creatorcontrib>Gumienny, Tina L.</creatorcontrib><creatorcontrib>Mittler, Ron</creatorcontrib><creatorcontrib>Padilla, Pamela A.</creatorcontrib><title>The cisd gene family regulates physiological germline apoptosis through ced-13 and the canonical cell death pathway in Caenorhabditis elegans</title><title>Cell death and differentiation</title><addtitle>Cell Death Differ</addtitle><addtitle>Cell Death Differ</addtitle><description>Programmed cell death, which occurs through a conserved core molecular pathway, is important for fundamental developmental and homeostatic processes. The human iron–sulfur binding protein NAF-1/CISD2 binds to Bcl-2 and its disruption in cells leads to an increase in apoptosis. Other members of the CDGSH iron sulfur domain (CISD) family include mitoNEET/CISD1 and Miner2/CISD3. In humans, mutations in CISD2 result in Wolfram syndrome 2, a disease in which the patients display juvenile diabetes, neuropsychiatric disorders and defective platelet aggregation. The
C. elegans
genome contains three previously uncharacterized
cisd
genes that code for CISD-1, which has homology to mitoNEET/CISD1 and NAF-1/CISD2, and CISD-3.1 and CISD-3.2, both of which have homology to Miner2/CISD3. Disrupting the function of the
cisd
genes resulted in various germline abnormalities including distal tip cell migration defects and a significant increase in the number of cell corpses within the adult germline. This increased germ cell death is blocked by a gain-of-function mutation of the Bcl-2 homolog CED-9 and requires functional caspase CED-3 and the APAF-1 homolog CED-4. Furthermore, the increased germ cell death is facilitated by the pro-apoptotic, CED-9-binding protein CED-13, but not the related EGL-1 protein. This work is significant because it places the CISD family members as regulators of physiological germline programmed cell death acting through CED-13 and the core apoptotic machinery.</description><subject>14</subject><subject>14/63</subject><subject>38</subject><subject>38/35</subject><subject>42</subject><subject>45/41</subject><subject>631/208/135</subject><subject>631/80</subject><subject>64</subject><subject>64/11</subject><subject>96</subject><subject>96/2</subject><subject>Animals</subject><subject>Apaf-1 protein</subject><subject>Apoptosis</subject><subject>Apoptosis - genetics</subject><subject>Apoptosis - physiology</subject><subject>Bcl-2 protein</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Calcium-Binding Proteins - metabolism</subject><subject>Caspase</subject><subject>Caspases - metabolism</subject><subject>Cell adhesion & migration</subject><subject>Cell Biology</subject><subject>Cell Cycle Analysis</subject><subject>Cell death</subject><subject>Cell migration</subject><subject>Diabetes mellitus</subject><subject>EGL-1 protein</subject><subject>Genomes</subject><subject>Germ Cells - metabolism</subject><subject>Homology</subject><subject>Iron</subject><subject>Life Sciences</subject><subject>Mental disorders</subject><subject>Multigene Family</subject><subject>Mutation</subject><subject>Physiology</subject><subject>Platelet aggregation</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins c-bcl-2 - metabolism</subject><subject>Stem Cells</subject><subject>Sulfur</subject><issn>1350-9047</issn><issn>1476-5403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kcuO1DAQRSMEYh7wAWyQJTZsAnbiR7JBQi0YkEZiM6ytaruSeOS2g50w6o_gn3F3D8NDYlF2yXXqukq3ql4w-obRtnubOeOsq-kxaFeLR9U540rWgtP2cclbQeuecnVWXeR8SymVqpdPq7Oml1Jyxc-rHzcTEuOyJSMGJAPsnN-ThOPqYcFM5mmfXfRxdAZ8YdLOu8LBHOclZpfJMqW4jhMxaGvWEgi2PBVJCDEcewx6TyzCMpG5HHewJy6QDWCIaYKtdUtRQY8jhPysejKAz_j8_r6svn78cLP5VF9_ufq8eX9dG9HKpe4Y7QUTjbGGKkGFFaztFOdcKgTomqFHxtD0QuIWezBgLTDcKq4sDAVrL6t3J9153e7QGgxLAq_n5HaQ9jqC039Xgpv0GL9r2fRc9aoIvL4XSPHbinnRO5cPm0LAuGbd0EZRWQZgBX31D3ob1xTKerphQvJOSHqg2IkyKeaccHgYhlF9MFufzNb0GLTTovS8_HOLh45f7hagOQG5lEIx7_fX_1f9CZCWt-s</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>King, Skylar D.</creator><creator>Gray, Chipo F.</creator><creator>Song, Luhua</creator><creator>Nechushtai, Rachel</creator><creator>Gumienny, Tina L.</creator><creator>Mittler, Ron</creator><creator>Padilla, Pamela A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190101</creationdate><title>The cisd gene family regulates physiological germline apoptosis through ced-13 and the canonical cell death pathway in Caenorhabditis elegans</title><author>King, Skylar D. ; Gray, Chipo F. ; Song, Luhua ; Nechushtai, Rachel ; Gumienny, Tina L. ; Mittler, Ron ; Padilla, Pamela A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-81095152cdc07505d5138744467eaa82f9e11ec956ebe9acadda1eb747daf4443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>14</topic><topic>14/63</topic><topic>38</topic><topic>38/35</topic><topic>42</topic><topic>45/41</topic><topic>631/208/135</topic><topic>631/80</topic><topic>64</topic><topic>64/11</topic><topic>96</topic><topic>96/2</topic><topic>Animals</topic><topic>Apaf-1 protein</topic><topic>Apoptosis</topic><topic>Apoptosis - genetics</topic><topic>Apoptosis - physiology</topic><topic>Bcl-2 protein</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Calcium-Binding Proteins - metabolism</topic><topic>Caspase</topic><topic>Caspases - metabolism</topic><topic>Cell adhesion & migration</topic><topic>Cell Biology</topic><topic>Cell Cycle Analysis</topic><topic>Cell death</topic><topic>Cell migration</topic><topic>Diabetes mellitus</topic><topic>EGL-1 protein</topic><topic>Genomes</topic><topic>Germ Cells - metabolism</topic><topic>Homology</topic><topic>Iron</topic><topic>Life Sciences</topic><topic>Mental disorders</topic><topic>Multigene Family</topic><topic>Mutation</topic><topic>Physiology</topic><topic>Platelet aggregation</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins c-bcl-2 - metabolism</topic><topic>Stem Cells</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>King, Skylar D.</creatorcontrib><creatorcontrib>Gray, Chipo F.</creatorcontrib><creatorcontrib>Song, Luhua</creatorcontrib><creatorcontrib>Nechushtai, Rachel</creatorcontrib><creatorcontrib>Gumienny, Tina L.</creatorcontrib><creatorcontrib>Mittler, Ron</creatorcontrib><creatorcontrib>Padilla, Pamela A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death and differentiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>King, Skylar D.</au><au>Gray, Chipo F.</au><au>Song, Luhua</au><au>Nechushtai, Rachel</au><au>Gumienny, Tina L.</au><au>Mittler, Ron</au><au>Padilla, Pamela A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The cisd gene family regulates physiological germline apoptosis through ced-13 and the canonical cell death pathway in Caenorhabditis elegans</atitle><jtitle>Cell death and differentiation</jtitle><stitle>Cell Death Differ</stitle><addtitle>Cell Death Differ</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>26</volume><issue>1</issue><spage>162</spage><epage>178</epage><pages>162-178</pages><issn>1350-9047</issn><eissn>1476-5403</eissn><abstract>Programmed cell death, which occurs through a conserved core molecular pathway, is important for fundamental developmental and homeostatic processes. The human iron–sulfur binding protein NAF-1/CISD2 binds to Bcl-2 and its disruption in cells leads to an increase in apoptosis. Other members of the CDGSH iron sulfur domain (CISD) family include mitoNEET/CISD1 and Miner2/CISD3. In humans, mutations in CISD2 result in Wolfram syndrome 2, a disease in which the patients display juvenile diabetes, neuropsychiatric disorders and defective platelet aggregation. The
C. elegans
genome contains three previously uncharacterized
cisd
genes that code for CISD-1, which has homology to mitoNEET/CISD1 and NAF-1/CISD2, and CISD-3.1 and CISD-3.2, both of which have homology to Miner2/CISD3. Disrupting the function of the
cisd
genes resulted in various germline abnormalities including distal tip cell migration defects and a significant increase in the number of cell corpses within the adult germline. This increased germ cell death is blocked by a gain-of-function mutation of the Bcl-2 homolog CED-9 and requires functional caspase CED-3 and the APAF-1 homolog CED-4. Furthermore, the increased germ cell death is facilitated by the pro-apoptotic, CED-9-binding protein CED-13, but not the related EGL-1 protein. This work is significant because it places the CISD family members as regulators of physiological germline programmed cell death acting through CED-13 and the core apoptotic machinery.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29666474</pmid><doi>10.1038/s41418-018-0108-5</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-9047 |
ispartof | Cell death and differentiation, 2019-01, Vol.26 (1), p.162-178 |
issn | 1350-9047 1476-5403 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6294797 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; SpringerLink Journals - AutoHoldings |
subjects | 14 14/63 38 38/35 42 45/41 631/208/135 631/80 64 64/11 96 96/2 Animals Apaf-1 protein Apoptosis Apoptosis - genetics Apoptosis - physiology Bcl-2 protein Biochemistry Biomedical and Life Sciences Caenorhabditis elegans - genetics Caenorhabditis elegans Proteins - metabolism Calcium-Binding Proteins - metabolism Caspase Caspases - metabolism Cell adhesion & migration Cell Biology Cell Cycle Analysis Cell death Cell migration Diabetes mellitus EGL-1 protein Genomes Germ Cells - metabolism Homology Iron Life Sciences Mental disorders Multigene Family Mutation Physiology Platelet aggregation Proteins Proto-Oncogene Proteins c-bcl-2 - metabolism Stem Cells Sulfur |
title | The cisd gene family regulates physiological germline apoptosis through ced-13 and the canonical cell death pathway in Caenorhabditis elegans |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A03%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20cisd%20gene%20family%20regulates%20physiological%20germline%20apoptosis%20through%20ced-13%20and%20the%20canonical%20cell%20death%20pathway%20in%20Caenorhabditis%20elegans&rft.jtitle=Cell%20death%20and%20differentiation&rft.au=King,%20Skylar%20D.&rft.date=2019-01-01&rft.volume=26&rft.issue=1&rft.spage=162&rft.epage=178&rft.pages=162-178&rft.issn=1350-9047&rft.eissn=1476-5403&rft_id=info:doi/10.1038/s41418-018-0108-5&rft_dat=%3Cproquest_pubme%3E2156485601%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2156485601&rft_id=info:pmid/29666474&rfr_iscdi=true |