TBX18 overexpression enhances pacemaker function in a rat subsidiary atrial pacemaker model of sick sinus syndrome

Key points The sinoatrial node (SAN) is the primary pacemaker of the heart. SAN dysfunction, or ‘sick sinus syndrome’, can cause excessively slow heart rates and pauses, leading to exercise limitation and syncope, currently treated by implantation of an electronic pacemaker. ‘Biopacemaking’ utilises...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of physiology 2018-12, Vol.596 (24), p.6141-6155
Hauptverfasser: Choudhury, M., Black, N., Alghamdi, A., D'Souza, A., Wang, R., Yanni, J., Dobrzynski, H., Kingston, P. A., Zhang, H., Boyett, M. R., Morris, G. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6155
container_issue 24
container_start_page 6141
container_title The Journal of physiology
container_volume 596
creator Choudhury, M.
Black, N.
Alghamdi, A.
D'Souza, A.
Wang, R.
Yanni, J.
Dobrzynski, H.
Kingston, P. A.
Zhang, H.
Boyett, M. R.
Morris, G. M.
description Key points The sinoatrial node (SAN) is the primary pacemaker of the heart. SAN dysfunction, or ‘sick sinus syndrome’, can cause excessively slow heart rates and pauses, leading to exercise limitation and syncope, currently treated by implantation of an electronic pacemaker. ‘Biopacemaking’ utilises gene therapy to restore pacemaker activity by manipulating gene expression. Overexpressing the HCN pacemaker ion channel has been widely used with limited success. We utilised bradycardic rat subsidiary atrial pacemaker tissue to evaluate alternative gene targets: the Na+/Ca2+ exchanger NCX1, and the transcription factors TBX3 and TBX18 known to be involved in SAN embryonic development. TBX18 overexpression restored normal SAN function, as assessed by increased rate, improved heart rate stability and restoration of isoprenaline response. TBX3 and NCX1 were not effective in accelerating the rate of subsidiary atrial pacemaker tissue. Gene therapy targeting TBX18 could therefore have the potential to restore pacemaker function in human sick sinus syndrome obviating electronic pacemakers. The sinoatrial node (SAN) is the primary pacemaker of the heart. Disease of the SAN, sick sinus syndrome, causes heart rate instability in the form of bradycardia and pauses, leading to exercise limitation and syncope. Biopacemaking aims to restore pacemaker activity by manipulating gene expression, and approaches utilising HCN channel overexpression have been widely used. We evaluated alternative gene targets for biopacemaking to restore normal SAN pacemaker physiology within bradycardic subsidiary atrial pacemaker (SAP) tissue, using the Na+/Ca2+ exchanger NCX1, and the transcription factors TBX3 and TBX18. TBX18 expression in SAP tissue restored normal SAN function, as assessed by increased rate (SAN 267.5 ± 13.6 bpm, SAP 144.1 ± 8.6 bpm, SAP‐TBX18 214.4 ± 14.4 bpm; P 
doi_str_mv 10.1113/JP276508
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6292813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2113271258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5445-bf91cce4780f728bfdaf2aa2cb7ecf60e9dabf8eaafcf5b90a0ded25ef79728c3</originalsourceid><addsrcrecordid>eNp1kU1rFTEUhoMo9loFf4EE3LiZmo_JZLIRtFi1FOziCu7CmcyJTTuTXJM7tfffm9IPq-DmZHEeHt6Tl5CXnB1wzuXb41OhO8X6R2TF2840Whv5mKwYE6KRWvE98qyUc8a4ZMY8JXuSCWWUUCuS1x--856mS8x4tclYSkiRYjyD6LDQDTic4QIz9Ut02-tdiBRohi0ty1DCGCDvKGxzgOkBPacRJ5o8LcFd1BGXQssujjnN-Jw88TAVfHH77pNvRx_Xh5-bk6-fvhy-P2mcalvVDN5w57DVPfNa9IMfwQsA4QaNzncMzQiD7xHAO68Gw4CNOAqFXpvKO7lP3t14N8sw4-gwbjNMdpPDXDPbBMH-vYnhzP5Il7YTRvRcVsGbW0FOPxcsWzuH4nCaIGJaihX164XmQvUVff0Pep6WHOt5lVKqlZ3U7I_Q5VRKRn8fhjN7XaS9K7Kirx6GvwfvmqvAwQ3wK0y4-6_Iro9Pa0ql5G-0sqn-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2155436370</pqid></control><display><type>article</type><title>TBX18 overexpression enhances pacemaker function in a rat subsidiary atrial pacemaker model of sick sinus syndrome</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>PubMed Central</source><creator>Choudhury, M. ; Black, N. ; Alghamdi, A. ; D'Souza, A. ; Wang, R. ; Yanni, J. ; Dobrzynski, H. ; Kingston, P. A. ; Zhang, H. ; Boyett, M. R. ; Morris, G. M.</creator><creatorcontrib>Choudhury, M. ; Black, N. ; Alghamdi, A. ; D'Souza, A. ; Wang, R. ; Yanni, J. ; Dobrzynski, H. ; Kingston, P. A. ; Zhang, H. ; Boyett, M. R. ; Morris, G. M.</creatorcontrib><description><![CDATA[Key points The sinoatrial node (SAN) is the primary pacemaker of the heart. SAN dysfunction, or ‘sick sinus syndrome’, can cause excessively slow heart rates and pauses, leading to exercise limitation and syncope, currently treated by implantation of an electronic pacemaker. ‘Biopacemaking’ utilises gene therapy to restore pacemaker activity by manipulating gene expression. Overexpressing the HCN pacemaker ion channel has been widely used with limited success. We utilised bradycardic rat subsidiary atrial pacemaker tissue to evaluate alternative gene targets: the Na+/Ca2+ exchanger NCX1, and the transcription factors TBX3 and TBX18 known to be involved in SAN embryonic development. TBX18 overexpression restored normal SAN function, as assessed by increased rate, improved heart rate stability and restoration of isoprenaline response. TBX3 and NCX1 were not effective in accelerating the rate of subsidiary atrial pacemaker tissue. Gene therapy targeting TBX18 could therefore have the potential to restore pacemaker function in human sick sinus syndrome obviating electronic pacemakers. The sinoatrial node (SAN) is the primary pacemaker of the heart. Disease of the SAN, sick sinus syndrome, causes heart rate instability in the form of bradycardia and pauses, leading to exercise limitation and syncope. Biopacemaking aims to restore pacemaker activity by manipulating gene expression, and approaches utilising HCN channel overexpression have been widely used. We evaluated alternative gene targets for biopacemaking to restore normal SAN pacemaker physiology within bradycardic subsidiary atrial pacemaker (SAP) tissue, using the Na+/Ca2+ exchanger NCX1, and the transcription factors TBX3 and TBX18. TBX18 expression in SAP tissue restored normal SAN function, as assessed by increased rate (SAN 267.5 ± 13.6 bpm, SAP 144.1 ± 8.6 bpm, SAP‐TBX18 214.4 ± 14.4 bpm; P < 0.001), improved heart rate stability (standard deviation of RR intervals fell from 39.3 ± 7.2 ms to 6.9 ± 0.8 ms, P < 0.01; root mean square of successive differences of RR intervals fell from 41.7 ± 8.2 ms to 6.1 ± 1.2 ms, P < 0.01; standard deviation of points perpendicular to the line of identity of Poincaré plots (SD1) fell from 29.5 ± 5.8 ms to 7.9 ± 2.0 ms, P < 0.05) and restoration of isoprenaline response (increases in rates of SAN 65.5 ± 1.3%, SAP 28.4 ± 3.4% and SAP‐TBX18 103.3 ± 10.2%; P < 0.001). These changes were driven by a TBX18‐induced switch in the dominant HCN isoform in SAP tissue, with a significant upregulation of HCN2 (from 1.01 × 10−5 ± 2.2 × 10−6 to 2.8 × 10−5 ± 4.3 × 10−6 arbitrary units, P < 0.001). Biophysically detailed computer modelling incorporating isoform‐specific HCN channel electrophysiology confirmed that the measured changes in HCN abundance could account for the observed changes in beating rates. TBX3 and NCX1 were not effective in accelerating the rate of SAP tissue. Key points The sinoatrial node (SAN) is the primary pacemaker of the heart. SAN dysfunction, or ‘sick sinus syndrome’, can cause excessively slow heart rates and pauses, leading to exercise limitation and syncope, currently treated by implantation of an electronic pacemaker. ‘Biopacemaking’ utilises gene therapy to restore pacemaker activity by manipulating gene expression. Overexpressing the HCN pacemaker ion channel has been widely used with limited success. We utilised bradycardic rat subsidiary atrial pacemaker tissue to evaluate alternative gene targets: the Na+/Ca2+ exchanger NCX1, and the transcription factors TBX3 and TBX18 known to be involved in SAN embryonic development. TBX18 overexpression restored normal SAN function, as assessed by increased rate, improved heart rate stability and restoration of isoprenaline response. TBX3 and NCX1 were not effective in accelerating the rate of subsidiary atrial pacemaker tissue. Gene therapy targeting TBX18 could therefore have the potential to restore pacemaker function in human sick sinus syndrome obviating electronic pacemakers.]]></description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1113/JP276508</identifier><identifier>PMID: 30259525</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Animals ; biopacemaking ; Bradycardia ; Calcium ; Cardiovascular ; Computer Simulation ; Coronary artery disease ; Electrophysiology ; Gene expression ; Gene Expression Regulation ; gene therapy ; Heart Atria ; Heart Conduction System - metabolism ; Heart diseases ; Heart rate ; Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels - genetics ; Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels - metabolism ; Ion channels (cyclic nucleotide-gated) ; Male ; Models, Biological ; Na+/Ca2+ exchanger ; NCX1 protein ; Pacemakers ; Protein Isoforms - genetics ; Protein Isoforms - metabolism ; Rats ; Research Paper ; sick sinus syndrome ; Sick Sinus Syndrome - therapy ; Sinoatrial Node - physiology ; Sodium-Calcium Exchanger - metabolism ; Standard deviation ; subsidiary atrial pacemaker tissue ; Syncope ; T-Box Domain Proteins - genetics ; T-Box Domain Proteins - metabolism ; TBX18 ; Tissue Culture Techniques ; Transcription factors</subject><ispartof>The Journal of physiology, 2018-12, Vol.596 (24), p.6141-6155</ispartof><rights>2018 The Authors. published by John Wiley &amp; Sons Ltd on behalf of The Physiological Society</rights><rights>2018 The Authors. The Journal of Physiology published by John Wiley &amp; Sons Ltd on behalf of The Physiological Society.</rights><rights>Journal compilation © 2018 The Physiological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5445-bf91cce4780f728bfdaf2aa2cb7ecf60e9dabf8eaafcf5b90a0ded25ef79728c3</citedby><cites>FETCH-LOGICAL-c5445-bf91cce4780f728bfdaf2aa2cb7ecf60e9dabf8eaafcf5b90a0ded25ef79728c3</cites><orcidid>0000-0001-9893-6648 ; 0000-0003-3795-8178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6292813/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6292813/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27903,27904,45553,45554,46387,46811,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30259525$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choudhury, M.</creatorcontrib><creatorcontrib>Black, N.</creatorcontrib><creatorcontrib>Alghamdi, A.</creatorcontrib><creatorcontrib>D'Souza, A.</creatorcontrib><creatorcontrib>Wang, R.</creatorcontrib><creatorcontrib>Yanni, J.</creatorcontrib><creatorcontrib>Dobrzynski, H.</creatorcontrib><creatorcontrib>Kingston, P. A.</creatorcontrib><creatorcontrib>Zhang, H.</creatorcontrib><creatorcontrib>Boyett, M. R.</creatorcontrib><creatorcontrib>Morris, G. M.</creatorcontrib><title>TBX18 overexpression enhances pacemaker function in a rat subsidiary atrial pacemaker model of sick sinus syndrome</title><title>The Journal of physiology</title><addtitle>J Physiol</addtitle><description><![CDATA[Key points The sinoatrial node (SAN) is the primary pacemaker of the heart. SAN dysfunction, or ‘sick sinus syndrome’, can cause excessively slow heart rates and pauses, leading to exercise limitation and syncope, currently treated by implantation of an electronic pacemaker. ‘Biopacemaking’ utilises gene therapy to restore pacemaker activity by manipulating gene expression. Overexpressing the HCN pacemaker ion channel has been widely used with limited success. We utilised bradycardic rat subsidiary atrial pacemaker tissue to evaluate alternative gene targets: the Na+/Ca2+ exchanger NCX1, and the transcription factors TBX3 and TBX18 known to be involved in SAN embryonic development. TBX18 overexpression restored normal SAN function, as assessed by increased rate, improved heart rate stability and restoration of isoprenaline response. TBX3 and NCX1 were not effective in accelerating the rate of subsidiary atrial pacemaker tissue. Gene therapy targeting TBX18 could therefore have the potential to restore pacemaker function in human sick sinus syndrome obviating electronic pacemakers. The sinoatrial node (SAN) is the primary pacemaker of the heart. Disease of the SAN, sick sinus syndrome, causes heart rate instability in the form of bradycardia and pauses, leading to exercise limitation and syncope. Biopacemaking aims to restore pacemaker activity by manipulating gene expression, and approaches utilising HCN channel overexpression have been widely used. We evaluated alternative gene targets for biopacemaking to restore normal SAN pacemaker physiology within bradycardic subsidiary atrial pacemaker (SAP) tissue, using the Na+/Ca2+ exchanger NCX1, and the transcription factors TBX3 and TBX18. TBX18 expression in SAP tissue restored normal SAN function, as assessed by increased rate (SAN 267.5 ± 13.6 bpm, SAP 144.1 ± 8.6 bpm, SAP‐TBX18 214.4 ± 14.4 bpm; P < 0.001), improved heart rate stability (standard deviation of RR intervals fell from 39.3 ± 7.2 ms to 6.9 ± 0.8 ms, P < 0.01; root mean square of successive differences of RR intervals fell from 41.7 ± 8.2 ms to 6.1 ± 1.2 ms, P < 0.01; standard deviation of points perpendicular to the line of identity of Poincaré plots (SD1) fell from 29.5 ± 5.8 ms to 7.9 ± 2.0 ms, P < 0.05) and restoration of isoprenaline response (increases in rates of SAN 65.5 ± 1.3%, SAP 28.4 ± 3.4% and SAP‐TBX18 103.3 ± 10.2%; P < 0.001). These changes were driven by a TBX18‐induced switch in the dominant HCN isoform in SAP tissue, with a significant upregulation of HCN2 (from 1.01 × 10−5 ± 2.2 × 10−6 to 2.8 × 10−5 ± 4.3 × 10−6 arbitrary units, P < 0.001). Biophysically detailed computer modelling incorporating isoform‐specific HCN channel electrophysiology confirmed that the measured changes in HCN abundance could account for the observed changes in beating rates. TBX3 and NCX1 were not effective in accelerating the rate of SAP tissue. Key points The sinoatrial node (SAN) is the primary pacemaker of the heart. SAN dysfunction, or ‘sick sinus syndrome’, can cause excessively slow heart rates and pauses, leading to exercise limitation and syncope, currently treated by implantation of an electronic pacemaker. ‘Biopacemaking’ utilises gene therapy to restore pacemaker activity by manipulating gene expression. Overexpressing the HCN pacemaker ion channel has been widely used with limited success. We utilised bradycardic rat subsidiary atrial pacemaker tissue to evaluate alternative gene targets: the Na+/Ca2+ exchanger NCX1, and the transcription factors TBX3 and TBX18 known to be involved in SAN embryonic development. TBX18 overexpression restored normal SAN function, as assessed by increased rate, improved heart rate stability and restoration of isoprenaline response. TBX3 and NCX1 were not effective in accelerating the rate of subsidiary atrial pacemaker tissue. Gene therapy targeting TBX18 could therefore have the potential to restore pacemaker function in human sick sinus syndrome obviating electronic pacemakers.]]></description><subject>Animals</subject><subject>biopacemaking</subject><subject>Bradycardia</subject><subject>Calcium</subject><subject>Cardiovascular</subject><subject>Computer Simulation</subject><subject>Coronary artery disease</subject><subject>Electrophysiology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>gene therapy</subject><subject>Heart Atria</subject><subject>Heart Conduction System - metabolism</subject><subject>Heart diseases</subject><subject>Heart rate</subject><subject>Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels - genetics</subject><subject>Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels - metabolism</subject><subject>Ion channels (cyclic nucleotide-gated)</subject><subject>Male</subject><subject>Models, Biological</subject><subject>Na+/Ca2+ exchanger</subject><subject>NCX1 protein</subject><subject>Pacemakers</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - metabolism</subject><subject>Rats</subject><subject>Research Paper</subject><subject>sick sinus syndrome</subject><subject>Sick Sinus Syndrome - therapy</subject><subject>Sinoatrial Node - physiology</subject><subject>Sodium-Calcium Exchanger - metabolism</subject><subject>Standard deviation</subject><subject>subsidiary atrial pacemaker tissue</subject><subject>Syncope</subject><subject>T-Box Domain Proteins - genetics</subject><subject>T-Box Domain Proteins - metabolism</subject><subject>TBX18</subject><subject>Tissue Culture Techniques</subject><subject>Transcription factors</subject><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kU1rFTEUhoMo9loFf4EE3LiZmo_JZLIRtFi1FOziCu7CmcyJTTuTXJM7tfffm9IPq-DmZHEeHt6Tl5CXnB1wzuXb41OhO8X6R2TF2840Whv5mKwYE6KRWvE98qyUc8a4ZMY8JXuSCWWUUCuS1x--856mS8x4tclYSkiRYjyD6LDQDTic4QIz9Ut02-tdiBRohi0ty1DCGCDvKGxzgOkBPacRJ5o8LcFd1BGXQssujjnN-Jw88TAVfHH77pNvRx_Xh5-bk6-fvhy-P2mcalvVDN5w57DVPfNa9IMfwQsA4QaNzncMzQiD7xHAO68Gw4CNOAqFXpvKO7lP3t14N8sw4-gwbjNMdpPDXDPbBMH-vYnhzP5Il7YTRvRcVsGbW0FOPxcsWzuH4nCaIGJaihX164XmQvUVff0Pep6WHOt5lVKqlZ3U7I_Q5VRKRn8fhjN7XaS9K7Kirx6GvwfvmqvAwQ3wK0y4-6_Iro9Pa0ql5G-0sqn-</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Choudhury, M.</creator><creator>Black, N.</creator><creator>Alghamdi, A.</creator><creator>D'Souza, A.</creator><creator>Wang, R.</creator><creator>Yanni, J.</creator><creator>Dobrzynski, H.</creator><creator>Kingston, P. A.</creator><creator>Zhang, H.</creator><creator>Boyett, M. R.</creator><creator>Morris, G. M.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9893-6648</orcidid><orcidid>https://orcid.org/0000-0003-3795-8178</orcidid></search><sort><creationdate>201812</creationdate><title>TBX18 overexpression enhances pacemaker function in a rat subsidiary atrial pacemaker model of sick sinus syndrome</title><author>Choudhury, M. ; Black, N. ; Alghamdi, A. ; D'Souza, A. ; Wang, R. ; Yanni, J. ; Dobrzynski, H. ; Kingston, P. A. ; Zhang, H. ; Boyett, M. R. ; Morris, G. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5445-bf91cce4780f728bfdaf2aa2cb7ecf60e9dabf8eaafcf5b90a0ded25ef79728c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>biopacemaking</topic><topic>Bradycardia</topic><topic>Calcium</topic><topic>Cardiovascular</topic><topic>Computer Simulation</topic><topic>Coronary artery disease</topic><topic>Electrophysiology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>gene therapy</topic><topic>Heart Atria</topic><topic>Heart Conduction System - metabolism</topic><topic>Heart diseases</topic><topic>Heart rate</topic><topic>Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels - genetics</topic><topic>Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels - metabolism</topic><topic>Ion channels (cyclic nucleotide-gated)</topic><topic>Male</topic><topic>Models, Biological</topic><topic>Na+/Ca2+ exchanger</topic><topic>NCX1 protein</topic><topic>Pacemakers</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - metabolism</topic><topic>Rats</topic><topic>Research Paper</topic><topic>sick sinus syndrome</topic><topic>Sick Sinus Syndrome - therapy</topic><topic>Sinoatrial Node - physiology</topic><topic>Sodium-Calcium Exchanger - metabolism</topic><topic>Standard deviation</topic><topic>subsidiary atrial pacemaker tissue</topic><topic>Syncope</topic><topic>T-Box Domain Proteins - genetics</topic><topic>T-Box Domain Proteins - metabolism</topic><topic>TBX18</topic><topic>Tissue Culture Techniques</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choudhury, M.</creatorcontrib><creatorcontrib>Black, N.</creatorcontrib><creatorcontrib>Alghamdi, A.</creatorcontrib><creatorcontrib>D'Souza, A.</creatorcontrib><creatorcontrib>Wang, R.</creatorcontrib><creatorcontrib>Yanni, J.</creatorcontrib><creatorcontrib>Dobrzynski, H.</creatorcontrib><creatorcontrib>Kingston, P. A.</creatorcontrib><creatorcontrib>Zhang, H.</creatorcontrib><creatorcontrib>Boyett, M. R.</creatorcontrib><creatorcontrib>Morris, G. M.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choudhury, M.</au><au>Black, N.</au><au>Alghamdi, A.</au><au>D'Souza, A.</au><au>Wang, R.</au><au>Yanni, J.</au><au>Dobrzynski, H.</au><au>Kingston, P. A.</au><au>Zhang, H.</au><au>Boyett, M. R.</au><au>Morris, G. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TBX18 overexpression enhances pacemaker function in a rat subsidiary atrial pacemaker model of sick sinus syndrome</atitle><jtitle>The Journal of physiology</jtitle><addtitle>J Physiol</addtitle><date>2018-12</date><risdate>2018</risdate><volume>596</volume><issue>24</issue><spage>6141</spage><epage>6155</epage><pages>6141-6155</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><abstract><![CDATA[Key points The sinoatrial node (SAN) is the primary pacemaker of the heart. SAN dysfunction, or ‘sick sinus syndrome’, can cause excessively slow heart rates and pauses, leading to exercise limitation and syncope, currently treated by implantation of an electronic pacemaker. ‘Biopacemaking’ utilises gene therapy to restore pacemaker activity by manipulating gene expression. Overexpressing the HCN pacemaker ion channel has been widely used with limited success. We utilised bradycardic rat subsidiary atrial pacemaker tissue to evaluate alternative gene targets: the Na+/Ca2+ exchanger NCX1, and the transcription factors TBX3 and TBX18 known to be involved in SAN embryonic development. TBX18 overexpression restored normal SAN function, as assessed by increased rate, improved heart rate stability and restoration of isoprenaline response. TBX3 and NCX1 were not effective in accelerating the rate of subsidiary atrial pacemaker tissue. Gene therapy targeting TBX18 could therefore have the potential to restore pacemaker function in human sick sinus syndrome obviating electronic pacemakers. The sinoatrial node (SAN) is the primary pacemaker of the heart. Disease of the SAN, sick sinus syndrome, causes heart rate instability in the form of bradycardia and pauses, leading to exercise limitation and syncope. Biopacemaking aims to restore pacemaker activity by manipulating gene expression, and approaches utilising HCN channel overexpression have been widely used. We evaluated alternative gene targets for biopacemaking to restore normal SAN pacemaker physiology within bradycardic subsidiary atrial pacemaker (SAP) tissue, using the Na+/Ca2+ exchanger NCX1, and the transcription factors TBX3 and TBX18. TBX18 expression in SAP tissue restored normal SAN function, as assessed by increased rate (SAN 267.5 ± 13.6 bpm, SAP 144.1 ± 8.6 bpm, SAP‐TBX18 214.4 ± 14.4 bpm; P < 0.001), improved heart rate stability (standard deviation of RR intervals fell from 39.3 ± 7.2 ms to 6.9 ± 0.8 ms, P < 0.01; root mean square of successive differences of RR intervals fell from 41.7 ± 8.2 ms to 6.1 ± 1.2 ms, P < 0.01; standard deviation of points perpendicular to the line of identity of Poincaré plots (SD1) fell from 29.5 ± 5.8 ms to 7.9 ± 2.0 ms, P < 0.05) and restoration of isoprenaline response (increases in rates of SAN 65.5 ± 1.3%, SAP 28.4 ± 3.4% and SAP‐TBX18 103.3 ± 10.2%; P < 0.001). These changes were driven by a TBX18‐induced switch in the dominant HCN isoform in SAP tissue, with a significant upregulation of HCN2 (from 1.01 × 10−5 ± 2.2 × 10−6 to 2.8 × 10−5 ± 4.3 × 10−6 arbitrary units, P < 0.001). Biophysically detailed computer modelling incorporating isoform‐specific HCN channel electrophysiology confirmed that the measured changes in HCN abundance could account for the observed changes in beating rates. TBX3 and NCX1 were not effective in accelerating the rate of SAP tissue. Key points The sinoatrial node (SAN) is the primary pacemaker of the heart. SAN dysfunction, or ‘sick sinus syndrome’, can cause excessively slow heart rates and pauses, leading to exercise limitation and syncope, currently treated by implantation of an electronic pacemaker. ‘Biopacemaking’ utilises gene therapy to restore pacemaker activity by manipulating gene expression. Overexpressing the HCN pacemaker ion channel has been widely used with limited success. We utilised bradycardic rat subsidiary atrial pacemaker tissue to evaluate alternative gene targets: the Na+/Ca2+ exchanger NCX1, and the transcription factors TBX3 and TBX18 known to be involved in SAN embryonic development. TBX18 overexpression restored normal SAN function, as assessed by increased rate, improved heart rate stability and restoration of isoprenaline response. TBX3 and NCX1 were not effective in accelerating the rate of subsidiary atrial pacemaker tissue. Gene therapy targeting TBX18 could therefore have the potential to restore pacemaker function in human sick sinus syndrome obviating electronic pacemakers.]]></abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30259525</pmid><doi>10.1113/JP276508</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9893-6648</orcidid><orcidid>https://orcid.org/0000-0003-3795-8178</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3751
ispartof The Journal of physiology, 2018-12, Vol.596 (24), p.6141-6155
issn 0022-3751
1469-7793
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6292813
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; PubMed Central
subjects Animals
biopacemaking
Bradycardia
Calcium
Cardiovascular
Computer Simulation
Coronary artery disease
Electrophysiology
Gene expression
Gene Expression Regulation
gene therapy
Heart Atria
Heart Conduction System - metabolism
Heart diseases
Heart rate
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels - genetics
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels - metabolism
Ion channels (cyclic nucleotide-gated)
Male
Models, Biological
Na+/Ca2+ exchanger
NCX1 protein
Pacemakers
Protein Isoforms - genetics
Protein Isoforms - metabolism
Rats
Research Paper
sick sinus syndrome
Sick Sinus Syndrome - therapy
Sinoatrial Node - physiology
Sodium-Calcium Exchanger - metabolism
Standard deviation
subsidiary atrial pacemaker tissue
Syncope
T-Box Domain Proteins - genetics
T-Box Domain Proteins - metabolism
TBX18
Tissue Culture Techniques
Transcription factors
title TBX18 overexpression enhances pacemaker function in a rat subsidiary atrial pacemaker model of sick sinus syndrome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A24%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TBX18%20overexpression%20enhances%20pacemaker%20function%20in%20a%20rat%20subsidiary%20atrial%20pacemaker%20model%20of%20sick%20sinus%20syndrome&rft.jtitle=The%20Journal%20of%20physiology&rft.au=Choudhury,%20M.&rft.date=2018-12&rft.volume=596&rft.issue=24&rft.spage=6141&rft.epage=6155&rft.pages=6141-6155&rft.issn=0022-3751&rft.eissn=1469-7793&rft_id=info:doi/10.1113/JP276508&rft_dat=%3Cproquest_pubme%3E2113271258%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2155436370&rft_id=info:pmid/30259525&rfr_iscdi=true