Prediction of individualized task activation in sensory modality-selective frontal cortex with ‘connectome fingerprinting’
The human cerebral cortex is estimated to comprise 200–300 distinct functional regions per hemisphere. Identification of the precise anatomical location of an individual's unique set of functional regions is a challenge for neuroscience that has broad scientific and clinical utility. Recent stu...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2018-12, Vol.183, p.173-185 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 185 |
---|---|
container_issue | |
container_start_page | 173 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 183 |
creator | Tobyne, Sean M. Somers, David C. Brissenden, James A. Michalka, Samantha W. Noyce, Abigail L. Osher, David E. |
description | The human cerebral cortex is estimated to comprise 200–300 distinct functional regions per hemisphere. Identification of the precise anatomical location of an individual's unique set of functional regions is a challenge for neuroscience that has broad scientific and clinical utility. Recent studies have demonstrated the existence of four interleaved regions in lateral frontal cortex (LFC) that are part of broader visual attention and auditory attention networks (Michalka et al., 2015; Noyce et al., 2017; Tobyne et al., 2017). Due to a large degree of inter-subject anatomical variability, identification of these regions depends critically on within-subject analyses. Here, we demonstrate that, for both sexes, an individual's unique pattern of resting-state functional connectivity can accurately identify their specific pattern of visual- and auditory-selective working memory and attention task activation in lateral frontal cortex (LFC) using “connectome fingerprinting.” Building on prior techniques (Saygin et al., 2011; Osher et al., 2016; Tavor et al., 2016; Smittenaar et al., 2017; Wang et al., 2017; Parker Jones et al., 2017), we demonstrate here that connectome fingerprint predictions are far more accurate than group-average predictions and match the accuracy of within-subject task-based functional localization, while requiring less data. These findings are robust across brain parcellations and are improved with penalized regression methods. Because resting-state data can be easily and rapidly collected, these results have broad implications for both clinical and research investigations of frontal lobe function. Our findings also provide a set of recommendations for future research.
[Display omitted]
•Multiple visual- and auditory-biased regions exist in lateral frontal cortex (LFC).•‘Connectome Fingerprinting’ (CF) attempts to identify brain regions in individuals.•CF uses resting-state functional connectivity to predict task activation patterns.•CF accurately predicts location of sensory modality-selective regions in LFC.•Our findings also present ‘best practice’ recommendations for performing CF. |
doi_str_mv | 10.1016/j.neuroimage.2018.08.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6292512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811918306931</els_id><sourcerecordid>2122417143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-20cf7ffa93dc8c5baa6d756fb30bb40e6a16307900dcd340d86775cd7f234bec3</originalsourceid><addsrcrecordid>eNqFkctu1TAQhiMEoqXwCsgSGzY5jO04TjZIUHGTKsEC1pZjT059SOxiO6eUBepjwOv1SfDhlHLZII3kkeaby--_qgiFFQXaPtmsPC4xuFmvccWAdisoAfJWdUihF3UvJLu9ywWvO0r7g-peShsA6GnT3a0OeMkYb7rD6uu7iNaZ7IInYSTOW7d1dtGT-4KWZJ0-El2qW_2TcJ4k9CnECzIHW6B8USeccEcgGWPwWU_EhJjxMzl3-ZRcXX4zwftChLkQzq8xnkXnc8muLr_fr-6Mekr44Po9qj68fPH--HV98vbVm-NnJ7URIHPNwIxyHHXPremMGLRurRTtOHAYhgaw1bTlIHsAayxvwHatlMJYORaVAxp-VD3dzz1bhhmtQZ-jnlS5ZNbxQgXt1N8V707VOmxVy3omKCsDHl8PiOHTgimr2SWD06Q9hiUpBp0UPRfQF_TRP-gmLNEXeYpRxhoqacML1e0pE0NKEcebYyionclqo36brHYmKygBsrQ-_FPMTeMvVwvwfA9g-dKtw6iScehNcToWJ5QN7v9bfgBz1sTc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2122417143</pqid></control><display><type>article</type><title>Prediction of individualized task activation in sensory modality-selective frontal cortex with ‘connectome fingerprinting’</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Tobyne, Sean M. ; Somers, David C. ; Brissenden, James A. ; Michalka, Samantha W. ; Noyce, Abigail L. ; Osher, David E.</creator><creatorcontrib>Tobyne, Sean M. ; Somers, David C. ; Brissenden, James A. ; Michalka, Samantha W. ; Noyce, Abigail L. ; Osher, David E.</creatorcontrib><description>The human cerebral cortex is estimated to comprise 200–300 distinct functional regions per hemisphere. Identification of the precise anatomical location of an individual's unique set of functional regions is a challenge for neuroscience that has broad scientific and clinical utility. Recent studies have demonstrated the existence of four interleaved regions in lateral frontal cortex (LFC) that are part of broader visual attention and auditory attention networks (Michalka et al., 2015; Noyce et al., 2017; Tobyne et al., 2017). Due to a large degree of inter-subject anatomical variability, identification of these regions depends critically on within-subject analyses. Here, we demonstrate that, for both sexes, an individual's unique pattern of resting-state functional connectivity can accurately identify their specific pattern of visual- and auditory-selective working memory and attention task activation in lateral frontal cortex (LFC) using “connectome fingerprinting.” Building on prior techniques (Saygin et al., 2011; Osher et al., 2016; Tavor et al., 2016; Smittenaar et al., 2017; Wang et al., 2017; Parker Jones et al., 2017), we demonstrate here that connectome fingerprint predictions are far more accurate than group-average predictions and match the accuracy of within-subject task-based functional localization, while requiring less data. These findings are robust across brain parcellations and are improved with penalized regression methods. Because resting-state data can be easily and rapidly collected, these results have broad implications for both clinical and research investigations of frontal lobe function. Our findings also provide a set of recommendations for future research.
[Display omitted]
•Multiple visual- and auditory-biased regions exist in lateral frontal cortex (LFC).•‘Connectome Fingerprinting’ (CF) attempts to identify brain regions in individuals.•CF uses resting-state functional connectivity to predict task activation patterns.•CF accurately predicts location of sensory modality-selective regions in LFC.•Our findings also present ‘best practice’ recommendations for performing CF.</description><identifier>ISSN: 1053-8119</identifier><identifier>ISSN: 1095-9572</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2018.08.007</identifier><identifier>PMID: 30092348</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Accuracy ; Adult ; Algorithms ; Attention ; Attention - physiology ; Attention task ; Auditory ; Brain research ; Cerebral cortex ; Connectome - methods ; Cortex (frontal) ; Cost control ; Datasets ; Female ; Fingerprinting ; Frontal lobe ; Functional connectivity ; Functional MRI ; Humans ; Individuality ; Investigations ; Laboratories ; Localization ; Magnetic Resonance Imaging ; Male ; Memory ; Memory, Short-Term - physiology ; Nervous system ; Neural networks ; Prefrontal Cortex - diagnostic imaging ; Prefrontal Cortex - physiology ; R&D ; Recruitment ; Research & development ; Sensory integration ; Short term memory ; Somatosensory cortex ; Visual ; Visual cortex ; Visual perception ; Visual Perception - physiology ; Working memory ; Young Adult</subject><ispartof>NeuroImage (Orlando, Fla.), 2018-12, Vol.183, p.173-185</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><rights>2018. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-20cf7ffa93dc8c5baa6d756fb30bb40e6a16307900dcd340d86775cd7f234bec3</citedby><cites>FETCH-LOGICAL-c507t-20cf7ffa93dc8c5baa6d756fb30bb40e6a16307900dcd340d86775cd7f234bec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2122417143?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30092348$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tobyne, Sean M.</creatorcontrib><creatorcontrib>Somers, David C.</creatorcontrib><creatorcontrib>Brissenden, James A.</creatorcontrib><creatorcontrib>Michalka, Samantha W.</creatorcontrib><creatorcontrib>Noyce, Abigail L.</creatorcontrib><creatorcontrib>Osher, David E.</creatorcontrib><title>Prediction of individualized task activation in sensory modality-selective frontal cortex with ‘connectome fingerprinting’</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>The human cerebral cortex is estimated to comprise 200–300 distinct functional regions per hemisphere. Identification of the precise anatomical location of an individual's unique set of functional regions is a challenge for neuroscience that has broad scientific and clinical utility. Recent studies have demonstrated the existence of four interleaved regions in lateral frontal cortex (LFC) that are part of broader visual attention and auditory attention networks (Michalka et al., 2015; Noyce et al., 2017; Tobyne et al., 2017). Due to a large degree of inter-subject anatomical variability, identification of these regions depends critically on within-subject analyses. Here, we demonstrate that, for both sexes, an individual's unique pattern of resting-state functional connectivity can accurately identify their specific pattern of visual- and auditory-selective working memory and attention task activation in lateral frontal cortex (LFC) using “connectome fingerprinting.” Building on prior techniques (Saygin et al., 2011; Osher et al., 2016; Tavor et al., 2016; Smittenaar et al., 2017; Wang et al., 2017; Parker Jones et al., 2017), we demonstrate here that connectome fingerprint predictions are far more accurate than group-average predictions and match the accuracy of within-subject task-based functional localization, while requiring less data. These findings are robust across brain parcellations and are improved with penalized regression methods. Because resting-state data can be easily and rapidly collected, these results have broad implications for both clinical and research investigations of frontal lobe function. Our findings also provide a set of recommendations for future research.
[Display omitted]
•Multiple visual- and auditory-biased regions exist in lateral frontal cortex (LFC).•‘Connectome Fingerprinting’ (CF) attempts to identify brain regions in individuals.•CF uses resting-state functional connectivity to predict task activation patterns.•CF accurately predicts location of sensory modality-selective regions in LFC.•Our findings also present ‘best practice’ recommendations for performing CF.</description><subject>Accuracy</subject><subject>Adult</subject><subject>Algorithms</subject><subject>Attention</subject><subject>Attention - physiology</subject><subject>Attention task</subject><subject>Auditory</subject><subject>Brain research</subject><subject>Cerebral cortex</subject><subject>Connectome - methods</subject><subject>Cortex (frontal)</subject><subject>Cost control</subject><subject>Datasets</subject><subject>Female</subject><subject>Fingerprinting</subject><subject>Frontal lobe</subject><subject>Functional connectivity</subject><subject>Functional MRI</subject><subject>Humans</subject><subject>Individuality</subject><subject>Investigations</subject><subject>Laboratories</subject><subject>Localization</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Memory</subject><subject>Memory, Short-Term - physiology</subject><subject>Nervous system</subject><subject>Neural networks</subject><subject>Prefrontal Cortex - diagnostic imaging</subject><subject>Prefrontal Cortex - physiology</subject><subject>R&D</subject><subject>Recruitment</subject><subject>Research & development</subject><subject>Sensory integration</subject><subject>Short term memory</subject><subject>Somatosensory cortex</subject><subject>Visual</subject><subject>Visual cortex</subject><subject>Visual perception</subject><subject>Visual Perception - physiology</subject><subject>Working memory</subject><subject>Young Adult</subject><issn>1053-8119</issn><issn>1095-9572</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkctu1TAQhiMEoqXwCsgSGzY5jO04TjZIUHGTKsEC1pZjT059SOxiO6eUBepjwOv1SfDhlHLZII3kkeaby--_qgiFFQXaPtmsPC4xuFmvccWAdisoAfJWdUihF3UvJLu9ywWvO0r7g-peShsA6GnT3a0OeMkYb7rD6uu7iNaZ7IInYSTOW7d1dtGT-4KWZJ0-El2qW_2TcJ4k9CnECzIHW6B8USeccEcgGWPwWU_EhJjxMzl3-ZRcXX4zwftChLkQzq8xnkXnc8muLr_fr-6Mekr44Po9qj68fPH--HV98vbVm-NnJ7URIHPNwIxyHHXPremMGLRurRTtOHAYhgaw1bTlIHsAayxvwHatlMJYORaVAxp-VD3dzz1bhhmtQZ-jnlS5ZNbxQgXt1N8V707VOmxVy3omKCsDHl8PiOHTgimr2SWD06Q9hiUpBp0UPRfQF_TRP-gmLNEXeYpRxhoqacML1e0pE0NKEcebYyionclqo36brHYmKygBsrQ-_FPMTeMvVwvwfA9g-dKtw6iScehNcToWJ5QN7v9bfgBz1sTc</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Tobyne, Sean M.</creator><creator>Somers, David C.</creator><creator>Brissenden, James A.</creator><creator>Michalka, Samantha W.</creator><creator>Noyce, Abigail L.</creator><creator>Osher, David E.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20181201</creationdate><title>Prediction of individualized task activation in sensory modality-selective frontal cortex with ‘connectome fingerprinting’</title><author>Tobyne, Sean M. ; Somers, David C. ; Brissenden, James A. ; Michalka, Samantha W. ; Noyce, Abigail L. ; Osher, David E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-20cf7ffa93dc8c5baa6d756fb30bb40e6a16307900dcd340d86775cd7f234bec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>Adult</topic><topic>Algorithms</topic><topic>Attention</topic><topic>Attention - physiology</topic><topic>Attention task</topic><topic>Auditory</topic><topic>Brain research</topic><topic>Cerebral cortex</topic><topic>Connectome - methods</topic><topic>Cortex (frontal)</topic><topic>Cost control</topic><topic>Datasets</topic><topic>Female</topic><topic>Fingerprinting</topic><topic>Frontal lobe</topic><topic>Functional connectivity</topic><topic>Functional MRI</topic><topic>Humans</topic><topic>Individuality</topic><topic>Investigations</topic><topic>Laboratories</topic><topic>Localization</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Memory</topic><topic>Memory, Short-Term - physiology</topic><topic>Nervous system</topic><topic>Neural networks</topic><topic>Prefrontal Cortex - diagnostic imaging</topic><topic>Prefrontal Cortex - physiology</topic><topic>R&D</topic><topic>Recruitment</topic><topic>Research & development</topic><topic>Sensory integration</topic><topic>Short term memory</topic><topic>Somatosensory cortex</topic><topic>Visual</topic><topic>Visual cortex</topic><topic>Visual perception</topic><topic>Visual Perception - physiology</topic><topic>Working memory</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tobyne, Sean M.</creatorcontrib><creatorcontrib>Somers, David C.</creatorcontrib><creatorcontrib>Brissenden, James A.</creatorcontrib><creatorcontrib>Michalka, Samantha W.</creatorcontrib><creatorcontrib>Noyce, Abigail L.</creatorcontrib><creatorcontrib>Osher, David E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tobyne, Sean M.</au><au>Somers, David C.</au><au>Brissenden, James A.</au><au>Michalka, Samantha W.</au><au>Noyce, Abigail L.</au><au>Osher, David E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of individualized task activation in sensory modality-selective frontal cortex with ‘connectome fingerprinting’</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>183</volume><spage>173</spage><epage>185</epage><pages>173-185</pages><issn>1053-8119</issn><issn>1095-9572</issn><eissn>1095-9572</eissn><abstract>The human cerebral cortex is estimated to comprise 200–300 distinct functional regions per hemisphere. Identification of the precise anatomical location of an individual's unique set of functional regions is a challenge for neuroscience that has broad scientific and clinical utility. Recent studies have demonstrated the existence of four interleaved regions in lateral frontal cortex (LFC) that are part of broader visual attention and auditory attention networks (Michalka et al., 2015; Noyce et al., 2017; Tobyne et al., 2017). Due to a large degree of inter-subject anatomical variability, identification of these regions depends critically on within-subject analyses. Here, we demonstrate that, for both sexes, an individual's unique pattern of resting-state functional connectivity can accurately identify their specific pattern of visual- and auditory-selective working memory and attention task activation in lateral frontal cortex (LFC) using “connectome fingerprinting.” Building on prior techniques (Saygin et al., 2011; Osher et al., 2016; Tavor et al., 2016; Smittenaar et al., 2017; Wang et al., 2017; Parker Jones et al., 2017), we demonstrate here that connectome fingerprint predictions are far more accurate than group-average predictions and match the accuracy of within-subject task-based functional localization, while requiring less data. These findings are robust across brain parcellations and are improved with penalized regression methods. Because resting-state data can be easily and rapidly collected, these results have broad implications for both clinical and research investigations of frontal lobe function. Our findings also provide a set of recommendations for future research.
[Display omitted]
•Multiple visual- and auditory-biased regions exist in lateral frontal cortex (LFC).•‘Connectome Fingerprinting’ (CF) attempts to identify brain regions in individuals.•CF uses resting-state functional connectivity to predict task activation patterns.•CF accurately predicts location of sensory modality-selective regions in LFC.•Our findings also present ‘best practice’ recommendations for performing CF.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30092348</pmid><doi>10.1016/j.neuroimage.2018.08.007</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2018-12, Vol.183, p.173-185 |
issn | 1053-8119 1095-9572 1095-9572 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6292512 |
source | MEDLINE; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland |
subjects | Accuracy Adult Algorithms Attention Attention - physiology Attention task Auditory Brain research Cerebral cortex Connectome - methods Cortex (frontal) Cost control Datasets Female Fingerprinting Frontal lobe Functional connectivity Functional MRI Humans Individuality Investigations Laboratories Localization Magnetic Resonance Imaging Male Memory Memory, Short-Term - physiology Nervous system Neural networks Prefrontal Cortex - diagnostic imaging Prefrontal Cortex - physiology R&D Recruitment Research & development Sensory integration Short term memory Somatosensory cortex Visual Visual cortex Visual perception Visual Perception - physiology Working memory Young Adult |
title | Prediction of individualized task activation in sensory modality-selective frontal cortex with ‘connectome fingerprinting’ |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20individualized%20task%20activation%20in%20sensory%20modality-selective%20frontal%20cortex%20with%20%E2%80%98connectome%20fingerprinting%E2%80%99&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Tobyne,%20Sean%20M.&rft.date=2018-12-01&rft.volume=183&rft.spage=173&rft.epage=185&rft.pages=173-185&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2018.08.007&rft_dat=%3Cproquest_pubme%3E2122417143%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2122417143&rft_id=info:pmid/30092348&rft_els_id=S1053811918306931&rfr_iscdi=true |