Fine-scale temperature-associated genetic structure between inshore and offshore populations of sea scallop (Placopecten magellanicus)

In the northwest Atlantic Ocean, sea scallop (Placopecten magellanicus) has been characterized by a latitudinal genetic cline with a breakpoint between northern and southern genetic clusters occurring at ~45°N along eastern Nova Scotia, Canada. Using 96 diagnostic single-nucleotide polymorphisms (SN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heredity 2019-01, Vol.122 (1), p.69-80
Hauptverfasser: Lehnert, Sarah J, DiBacco, Claudio, Van Wyngaarden, Mallory, Jeffery, Nicholas W, Ben Lowen, J, Sylvester, Emma V A, Wringe, Brendan F, Stanley, Ryan R E, Hamilton, Lorraine C, Bradbury, Ian R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 80
container_issue 1
container_start_page 69
container_title Heredity
container_volume 122
creator Lehnert, Sarah J
DiBacco, Claudio
Van Wyngaarden, Mallory
Jeffery, Nicholas W
Ben Lowen, J
Sylvester, Emma V A
Wringe, Brendan F
Stanley, Ryan R E
Hamilton, Lorraine C
Bradbury, Ian R
description In the northwest Atlantic Ocean, sea scallop (Placopecten magellanicus) has been characterized by a latitudinal genetic cline with a breakpoint between northern and southern genetic clusters occurring at ~45°N along eastern Nova Scotia, Canada. Using 96 diagnostic single-nucleotide polymorphisms (SNPs) capable of discriminating between northern and southern clusters, we examined fine-scale genetic structure of scallops among 27 sample locations, spanning the largest geographic range evaluated in this species to date (~37-51°N). Here, we confirmed previous observations of northern and southern groups, but we show that the boundary between northern and southern clusters is not a discrete latitudinal break. Instead, at latitudes near the previously described boundary, we found unexpected patterns of fine-scale genetic structure occurring between inshore and offshore sites. Scallops from offshore sites, including St. Pierre Bank and the eastern Scotian Shelf, clustered with southern stocks, whereas inshore sites at similar latitudes clustered with northern stocks. Our analyses revealed significant genetic divergence across small spatial scales (i.e., 129-221 km distances), and that spatial structure over large and fine scales was strongly associated with temperature during seasonal periods of thermal minima. Clear temperature differences between inshore and offshore locations may explain the fine-scale structuring observed, such as why southern lineages of scallop occur at higher latitudes in deeper, warmer offshore waters. Our study supports growing evidence that fine-scale population structure in marine species is common, often environmentally associated, and that consideration of environmental and genomic data can significantly enhance the identification of marine diversity and management units.
doi_str_mv 10.1038/s41437-018-0087-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6288113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2154248039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-c5bd83f70e23fbc19fe62b0ed1fc7828d4c17376822d5665ddc52c1b530e95b43</originalsourceid><addsrcrecordid>eNpdUc1qFjEUDWKxn9UHcCMBN3WRmr-ZZDaCFKtCQRcK7kImufM1ZSYZk4ziC_jczvSrpXV1uff8cA8HoReMnjEq9JsimRSKUKYJpVqR7hHaMdE2hDeSPkY7eoO06vsxelrKNaVUKN49Qce8U0roTu3Qn4sQgRRnR8AVphmyrUsGYktJLtgKHu8hQg0Ol5oXt4G4h_oLIOIQy1Vadxs9TsNwWOY0L6OtIcWyHnEBizf7Mc349MtoXZrB1VU82T2Mo43BLeX1M3Q02LHA89t5gr5dvP96_pFcfv7w6fzdJXGSq0pc03stBkWBi6F3rBug5T0FzwanNNdeOqaEajXnvmnbxnvXcMf6RlDoml6KE_T24Dsv_QTeQazZjmbOYbL5t0k2mIdIDFdmn36almvNmFgNTm8NcvqxQKlmCsXdBIG0FMOpZK1ggquV-uo_6nVaclzjGc4ayaWmoltZ7MByOZWSYbh7hlGztWwOLZu1S7O1bDbNy_sp7hT_ahV_AR71pug</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2154248039</pqid></control><display><type>article</type><title>Fine-scale temperature-associated genetic structure between inshore and offshore populations of sea scallop (Placopecten magellanicus)</title><source>MEDLINE</source><source>Nature</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature - Complete Springer Journals</source><source>PubMed Central</source><creator>Lehnert, Sarah J ; DiBacco, Claudio ; Van Wyngaarden, Mallory ; Jeffery, Nicholas W ; Ben Lowen, J ; Sylvester, Emma V A ; Wringe, Brendan F ; Stanley, Ryan R E ; Hamilton, Lorraine C ; Bradbury, Ian R</creator><creatorcontrib>Lehnert, Sarah J ; DiBacco, Claudio ; Van Wyngaarden, Mallory ; Jeffery, Nicholas W ; Ben Lowen, J ; Sylvester, Emma V A ; Wringe, Brendan F ; Stanley, Ryan R E ; Hamilton, Lorraine C ; Bradbury, Ian R</creatorcontrib><description>In the northwest Atlantic Ocean, sea scallop (Placopecten magellanicus) has been characterized by a latitudinal genetic cline with a breakpoint between northern and southern genetic clusters occurring at ~45°N along eastern Nova Scotia, Canada. Using 96 diagnostic single-nucleotide polymorphisms (SNPs) capable of discriminating between northern and southern clusters, we examined fine-scale genetic structure of scallops among 27 sample locations, spanning the largest geographic range evaluated in this species to date (~37-51°N). Here, we confirmed previous observations of northern and southern groups, but we show that the boundary between northern and southern clusters is not a discrete latitudinal break. Instead, at latitudes near the previously described boundary, we found unexpected patterns of fine-scale genetic structure occurring between inshore and offshore sites. Scallops from offshore sites, including St. Pierre Bank and the eastern Scotian Shelf, clustered with southern stocks, whereas inshore sites at similar latitudes clustered with northern stocks. Our analyses revealed significant genetic divergence across small spatial scales (i.e., 129-221 km distances), and that spatial structure over large and fine scales was strongly associated with temperature during seasonal periods of thermal minima. Clear temperature differences between inshore and offshore locations may explain the fine-scale structuring observed, such as why southern lineages of scallop occur at higher latitudes in deeper, warmer offshore waters. Our study supports growing evidence that fine-scale population structure in marine species is common, often environmentally associated, and that consideration of environmental and genomic data can significantly enhance the identification of marine diversity and management units.</description><identifier>ISSN: 0018-067X</identifier><identifier>EISSN: 1365-2540</identifier><identifier>DOI: 10.1038/s41437-018-0087-9</identifier><identifier>PMID: 29773897</identifier><language>eng</language><publisher>England: Springer Nature B.V</publisher><subject>Animals ; Aquatic Organisms - genetics ; Aquatic Organisms - physiology ; Atlantic Ocean ; Canada ; Clusters ; Diagnostic systems ; Divergence ; Ecosystem ; Genetic analysis ; Genetic structure ; Genetic Variation ; Genetics, Population ; Offshore ; Offshore engineering ; Offshore structures ; Pectinidae - genetics ; Pectinidae - physiology ; Placopecten magellanicus ; Polymorphism, Single Nucleotide - genetics ; Population structure ; Scallops ; Single-nucleotide polymorphism ; Temperature ; Temperature effects ; Temperature gradients</subject><ispartof>Heredity, 2019-01, Vol.122 (1), p.69-80</ispartof><rights>Copyright Nature Publishing Group Jan 2019</rights><rights>The Genetics Society 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-c5bd83f70e23fbc19fe62b0ed1fc7828d4c17376822d5665ddc52c1b530e95b43</citedby><cites>FETCH-LOGICAL-c427t-c5bd83f70e23fbc19fe62b0ed1fc7828d4c17376822d5665ddc52c1b530e95b43</cites><orcidid>0000-0003-4242-5712 ; 0000-0002-3789-2351 ; 0000-0002-3569-8299 ; 0000-0002-9482-5534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288113/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288113/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29773897$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lehnert, Sarah J</creatorcontrib><creatorcontrib>DiBacco, Claudio</creatorcontrib><creatorcontrib>Van Wyngaarden, Mallory</creatorcontrib><creatorcontrib>Jeffery, Nicholas W</creatorcontrib><creatorcontrib>Ben Lowen, J</creatorcontrib><creatorcontrib>Sylvester, Emma V A</creatorcontrib><creatorcontrib>Wringe, Brendan F</creatorcontrib><creatorcontrib>Stanley, Ryan R E</creatorcontrib><creatorcontrib>Hamilton, Lorraine C</creatorcontrib><creatorcontrib>Bradbury, Ian R</creatorcontrib><title>Fine-scale temperature-associated genetic structure between inshore and offshore populations of sea scallop (Placopecten magellanicus)</title><title>Heredity</title><addtitle>Heredity (Edinb)</addtitle><description>In the northwest Atlantic Ocean, sea scallop (Placopecten magellanicus) has been characterized by a latitudinal genetic cline with a breakpoint between northern and southern genetic clusters occurring at ~45°N along eastern Nova Scotia, Canada. Using 96 diagnostic single-nucleotide polymorphisms (SNPs) capable of discriminating between northern and southern clusters, we examined fine-scale genetic structure of scallops among 27 sample locations, spanning the largest geographic range evaluated in this species to date (~37-51°N). Here, we confirmed previous observations of northern and southern groups, but we show that the boundary between northern and southern clusters is not a discrete latitudinal break. Instead, at latitudes near the previously described boundary, we found unexpected patterns of fine-scale genetic structure occurring between inshore and offshore sites. Scallops from offshore sites, including St. Pierre Bank and the eastern Scotian Shelf, clustered with southern stocks, whereas inshore sites at similar latitudes clustered with northern stocks. Our analyses revealed significant genetic divergence across small spatial scales (i.e., 129-221 km distances), and that spatial structure over large and fine scales was strongly associated with temperature during seasonal periods of thermal minima. Clear temperature differences between inshore and offshore locations may explain the fine-scale structuring observed, such as why southern lineages of scallop occur at higher latitudes in deeper, warmer offshore waters. Our study supports growing evidence that fine-scale population structure in marine species is common, often environmentally associated, and that consideration of environmental and genomic data can significantly enhance the identification of marine diversity and management units.</description><subject>Animals</subject><subject>Aquatic Organisms - genetics</subject><subject>Aquatic Organisms - physiology</subject><subject>Atlantic Ocean</subject><subject>Canada</subject><subject>Clusters</subject><subject>Diagnostic systems</subject><subject>Divergence</subject><subject>Ecosystem</subject><subject>Genetic analysis</subject><subject>Genetic structure</subject><subject>Genetic Variation</subject><subject>Genetics, Population</subject><subject>Offshore</subject><subject>Offshore engineering</subject><subject>Offshore structures</subject><subject>Pectinidae - genetics</subject><subject>Pectinidae - physiology</subject><subject>Placopecten magellanicus</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Population structure</subject><subject>Scallops</subject><subject>Single-nucleotide polymorphism</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Temperature gradients</subject><issn>0018-067X</issn><issn>1365-2540</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdUc1qFjEUDWKxn9UHcCMBN3WRmr-ZZDaCFKtCQRcK7kImufM1ZSYZk4ziC_jczvSrpXV1uff8cA8HoReMnjEq9JsimRSKUKYJpVqR7hHaMdE2hDeSPkY7eoO06vsxelrKNaVUKN49Qce8U0roTu3Qn4sQgRRnR8AVphmyrUsGYktJLtgKHu8hQg0Ol5oXt4G4h_oLIOIQy1Vadxs9TsNwWOY0L6OtIcWyHnEBizf7Mc349MtoXZrB1VU82T2Mo43BLeX1M3Q02LHA89t5gr5dvP96_pFcfv7w6fzdJXGSq0pc03stBkWBi6F3rBug5T0FzwanNNdeOqaEajXnvmnbxnvXcMf6RlDoml6KE_T24Dsv_QTeQazZjmbOYbL5t0k2mIdIDFdmn36almvNmFgNTm8NcvqxQKlmCsXdBIG0FMOpZK1ggquV-uo_6nVaclzjGc4ayaWmoltZ7MByOZWSYbh7hlGztWwOLZu1S7O1bDbNy_sp7hT_ahV_AR71pug</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Lehnert, Sarah J</creator><creator>DiBacco, Claudio</creator><creator>Van Wyngaarden, Mallory</creator><creator>Jeffery, Nicholas W</creator><creator>Ben Lowen, J</creator><creator>Sylvester, Emma V A</creator><creator>Wringe, Brendan F</creator><creator>Stanley, Ryan R E</creator><creator>Hamilton, Lorraine C</creator><creator>Bradbury, Ian R</creator><general>Springer Nature B.V</general><general>Springer International Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4242-5712</orcidid><orcidid>https://orcid.org/0000-0002-3789-2351</orcidid><orcidid>https://orcid.org/0000-0002-3569-8299</orcidid><orcidid>https://orcid.org/0000-0002-9482-5534</orcidid></search><sort><creationdate>20190101</creationdate><title>Fine-scale temperature-associated genetic structure between inshore and offshore populations of sea scallop (Placopecten magellanicus)</title><author>Lehnert, Sarah J ; DiBacco, Claudio ; Van Wyngaarden, Mallory ; Jeffery, Nicholas W ; Ben Lowen, J ; Sylvester, Emma V A ; Wringe, Brendan F ; Stanley, Ryan R E ; Hamilton, Lorraine C ; Bradbury, Ian R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-c5bd83f70e23fbc19fe62b0ed1fc7828d4c17376822d5665ddc52c1b530e95b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Aquatic Organisms - genetics</topic><topic>Aquatic Organisms - physiology</topic><topic>Atlantic Ocean</topic><topic>Canada</topic><topic>Clusters</topic><topic>Diagnostic systems</topic><topic>Divergence</topic><topic>Ecosystem</topic><topic>Genetic analysis</topic><topic>Genetic structure</topic><topic>Genetic Variation</topic><topic>Genetics, Population</topic><topic>Offshore</topic><topic>Offshore engineering</topic><topic>Offshore structures</topic><topic>Pectinidae - genetics</topic><topic>Pectinidae - physiology</topic><topic>Placopecten magellanicus</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Population structure</topic><topic>Scallops</topic><topic>Single-nucleotide polymorphism</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Temperature gradients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lehnert, Sarah J</creatorcontrib><creatorcontrib>DiBacco, Claudio</creatorcontrib><creatorcontrib>Van Wyngaarden, Mallory</creatorcontrib><creatorcontrib>Jeffery, Nicholas W</creatorcontrib><creatorcontrib>Ben Lowen, J</creatorcontrib><creatorcontrib>Sylvester, Emma V A</creatorcontrib><creatorcontrib>Wringe, Brendan F</creatorcontrib><creatorcontrib>Stanley, Ryan R E</creatorcontrib><creatorcontrib>Hamilton, Lorraine C</creatorcontrib><creatorcontrib>Bradbury, Ian R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Heredity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lehnert, Sarah J</au><au>DiBacco, Claudio</au><au>Van Wyngaarden, Mallory</au><au>Jeffery, Nicholas W</au><au>Ben Lowen, J</au><au>Sylvester, Emma V A</au><au>Wringe, Brendan F</au><au>Stanley, Ryan R E</au><au>Hamilton, Lorraine C</au><au>Bradbury, Ian R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fine-scale temperature-associated genetic structure between inshore and offshore populations of sea scallop (Placopecten magellanicus)</atitle><jtitle>Heredity</jtitle><addtitle>Heredity (Edinb)</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>122</volume><issue>1</issue><spage>69</spage><epage>80</epage><pages>69-80</pages><issn>0018-067X</issn><eissn>1365-2540</eissn><abstract>In the northwest Atlantic Ocean, sea scallop (Placopecten magellanicus) has been characterized by a latitudinal genetic cline with a breakpoint between northern and southern genetic clusters occurring at ~45°N along eastern Nova Scotia, Canada. Using 96 diagnostic single-nucleotide polymorphisms (SNPs) capable of discriminating between northern and southern clusters, we examined fine-scale genetic structure of scallops among 27 sample locations, spanning the largest geographic range evaluated in this species to date (~37-51°N). Here, we confirmed previous observations of northern and southern groups, but we show that the boundary between northern and southern clusters is not a discrete latitudinal break. Instead, at latitudes near the previously described boundary, we found unexpected patterns of fine-scale genetic structure occurring between inshore and offshore sites. Scallops from offshore sites, including St. Pierre Bank and the eastern Scotian Shelf, clustered with southern stocks, whereas inshore sites at similar latitudes clustered with northern stocks. Our analyses revealed significant genetic divergence across small spatial scales (i.e., 129-221 km distances), and that spatial structure over large and fine scales was strongly associated with temperature during seasonal periods of thermal minima. Clear temperature differences between inshore and offshore locations may explain the fine-scale structuring observed, such as why southern lineages of scallop occur at higher latitudes in deeper, warmer offshore waters. Our study supports growing evidence that fine-scale population structure in marine species is common, often environmentally associated, and that consideration of environmental and genomic data can significantly enhance the identification of marine diversity and management units.</abstract><cop>England</cop><pub>Springer Nature B.V</pub><pmid>29773897</pmid><doi>10.1038/s41437-018-0087-9</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4242-5712</orcidid><orcidid>https://orcid.org/0000-0002-3789-2351</orcidid><orcidid>https://orcid.org/0000-0002-3569-8299</orcidid><orcidid>https://orcid.org/0000-0002-9482-5534</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-067X
ispartof Heredity, 2019-01, Vol.122 (1), p.69-80
issn 0018-067X
1365-2540
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6288113
source MEDLINE; Nature; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature - Complete Springer Journals; PubMed Central
subjects Animals
Aquatic Organisms - genetics
Aquatic Organisms - physiology
Atlantic Ocean
Canada
Clusters
Diagnostic systems
Divergence
Ecosystem
Genetic analysis
Genetic structure
Genetic Variation
Genetics, Population
Offshore
Offshore engineering
Offshore structures
Pectinidae - genetics
Pectinidae - physiology
Placopecten magellanicus
Polymorphism, Single Nucleotide - genetics
Population structure
Scallops
Single-nucleotide polymorphism
Temperature
Temperature effects
Temperature gradients
title Fine-scale temperature-associated genetic structure between inshore and offshore populations of sea scallop (Placopecten magellanicus)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A42%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fine-scale%20temperature-associated%20genetic%20structure%20between%20inshore%20and%20offshore%20populations%20of%20sea%20scallop%20(Placopecten%20magellanicus)&rft.jtitle=Heredity&rft.au=Lehnert,%20Sarah%20J&rft.date=2019-01-01&rft.volume=122&rft.issue=1&rft.spage=69&rft.epage=80&rft.pages=69-80&rft.issn=0018-067X&rft.eissn=1365-2540&rft_id=info:doi/10.1038/s41437-018-0087-9&rft_dat=%3Cproquest_pubme%3E2154248039%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2154248039&rft_id=info:pmid/29773897&rfr_iscdi=true