Review-Mathematical Formulations of Electrochemically Gas-Evolving Systems

Electrochemically gas-evolving systems are utilized in alkaline water electrolysis, hydrogen production, and many other applications. To design and optimize these systems, high-fidelity models must account for electron-transfer, chemical reactions, thermodynamics, electrode porosity, and hydrodynami...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2018, Vol.165 (13), p.E694-E711
Hauptverfasser: Taqieddin, Amir, Allshouse, Michael R, Alshawabkeh, Akram N
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E711
container_issue 13
container_start_page E694
container_title Journal of the Electrochemical Society
container_volume 165
creator Taqieddin, Amir
Allshouse, Michael R
Alshawabkeh, Akram N
description Electrochemically gas-evolving systems are utilized in alkaline water electrolysis, hydrogen production, and many other applications. To design and optimize these systems, high-fidelity models must account for electron-transfer, chemical reactions, thermodynamics, electrode porosity, and hydrodynamics as well as the interconnectedness of these phenomena. Further complicating these models is the production and presence of bubbles. Bubble nucleation naturally occurs due to the chemical reactions and impacts the reaction rate. Modeling bubble growth requires an accurate accounting of interfacial mass transfer. When the bubble becomes large, detachment occurs and the system is modeled as a two-phase flow where the bubbles can then impact material transport in the bulk. In this paper, we review the governing mathematical models of the physicochemical life cycle of a bubble in an electrolytic medium from a multiscale, multiphysics viewpoint. For each phase of the bubble life cycle, the prevailing mathematical formulations are reviewed and compared with particular attention paid to physicochemical processes and the impact the bubble. Through the review of a broad range of models, we provide a compilation of the current state of bubble modeling in electrochemically gas-evolving systems.
doi_str_mv 10.1149/2.0791813jes
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6287757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2155912101</sourcerecordid><originalsourceid>FETCH-LOGICAL-p266t-9347a7d41838435a71d9077869591e2ed9be35f7ca274a0c4603edfcfd58d5673</originalsourceid><addsrcrecordid>eNpVkM1Lw0AUxPeg2Fq9eZYcvaTu9yYXQUpblYrgx3nZbl7alE22ZpOU_vemWEVPj2GG3zwGoSuCx4Tw9JaOsUpJQtgGwgkaYkxYzKUgA3QewqaXJOHqDA0YFpxSIobo6RW6Anbxs2nWUJqmsMZFM1-XreuFr0Lk82jqwDa1t33i4Lt9NDchnnbedUW1it72oYEyXKDT3LgAl8c7Qh-z6fvkIV68zB8n94t4S6Vs4pRxZVTGScISzoRRJEuxUolMRUqAQpYugYlcWUMVN9hyiRlkuc0zkWRCKjZCd9_cbbssIbNQNbVxelsXpan32ptC_3eqYq1XvtOSJkqJA-DmCKj9Zwuh0WURLDhnKvBt0P0w_SuU9OuN0PXfrt-SnwHZF6pmcbM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2155912101</pqid></control><display><type>article</type><title>Review-Mathematical Formulations of Electrochemically Gas-Evolving Systems</title><source>IOP Publishing Journals</source><creator>Taqieddin, Amir ; Allshouse, Michael R ; Alshawabkeh, Akram N</creator><creatorcontrib>Taqieddin, Amir ; Allshouse, Michael R ; Alshawabkeh, Akram N</creatorcontrib><description>Electrochemically gas-evolving systems are utilized in alkaline water electrolysis, hydrogen production, and many other applications. To design and optimize these systems, high-fidelity models must account for electron-transfer, chemical reactions, thermodynamics, electrode porosity, and hydrodynamics as well as the interconnectedness of these phenomena. Further complicating these models is the production and presence of bubbles. Bubble nucleation naturally occurs due to the chemical reactions and impacts the reaction rate. Modeling bubble growth requires an accurate accounting of interfacial mass transfer. When the bubble becomes large, detachment occurs and the system is modeled as a two-phase flow where the bubbles can then impact material transport in the bulk. In this paper, we review the governing mathematical models of the physicochemical life cycle of a bubble in an electrolytic medium from a multiscale, multiphysics viewpoint. For each phase of the bubble life cycle, the prevailing mathematical formulations are reviewed and compared with particular attention paid to physicochemical processes and the impact the bubble. Through the review of a broad range of models, we provide a compilation of the current state of bubble modeling in electrochemically gas-evolving systems.</description><identifier>ISSN: 0013-4651</identifier><identifier>DOI: 10.1149/2.0791813jes</identifier><identifier>PMID: 30542215</identifier><language>eng</language><publisher>England</publisher><ispartof>Journal of the Electrochemical Society, 2018, Vol.165 (13), p.E694-E711</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7656-6746</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30542215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taqieddin, Amir</creatorcontrib><creatorcontrib>Allshouse, Michael R</creatorcontrib><creatorcontrib>Alshawabkeh, Akram N</creatorcontrib><title>Review-Mathematical Formulations of Electrochemically Gas-Evolving Systems</title><title>Journal of the Electrochemical Society</title><addtitle>J Electrochem Soc</addtitle><description>Electrochemically gas-evolving systems are utilized in alkaline water electrolysis, hydrogen production, and many other applications. To design and optimize these systems, high-fidelity models must account for electron-transfer, chemical reactions, thermodynamics, electrode porosity, and hydrodynamics as well as the interconnectedness of these phenomena. Further complicating these models is the production and presence of bubbles. Bubble nucleation naturally occurs due to the chemical reactions and impacts the reaction rate. Modeling bubble growth requires an accurate accounting of interfacial mass transfer. When the bubble becomes large, detachment occurs and the system is modeled as a two-phase flow where the bubbles can then impact material transport in the bulk. In this paper, we review the governing mathematical models of the physicochemical life cycle of a bubble in an electrolytic medium from a multiscale, multiphysics viewpoint. For each phase of the bubble life cycle, the prevailing mathematical formulations are reviewed and compared with particular attention paid to physicochemical processes and the impact the bubble. Through the review of a broad range of models, we provide a compilation of the current state of bubble modeling in electrochemically gas-evolving systems.</description><issn>0013-4651</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkM1Lw0AUxPeg2Fq9eZYcvaTu9yYXQUpblYrgx3nZbl7alE22ZpOU_vemWEVPj2GG3zwGoSuCx4Tw9JaOsUpJQtgGwgkaYkxYzKUgA3QewqaXJOHqDA0YFpxSIobo6RW6Anbxs2nWUJqmsMZFM1-XreuFr0Lk82jqwDa1t33i4Lt9NDchnnbedUW1it72oYEyXKDT3LgAl8c7Qh-z6fvkIV68zB8n94t4S6Vs4pRxZVTGScISzoRRJEuxUolMRUqAQpYugYlcWUMVN9hyiRlkuc0zkWRCKjZCd9_cbbssIbNQNbVxelsXpan32ptC_3eqYq1XvtOSJkqJA-DmCKj9Zwuh0WURLDhnKvBt0P0w_SuU9OuN0PXfrt-SnwHZF6pmcbM</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Taqieddin, Amir</creator><creator>Allshouse, Michael R</creator><creator>Alshawabkeh, Akram N</creator><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7656-6746</orcidid></search><sort><creationdate>2018</creationdate><title>Review-Mathematical Formulations of Electrochemically Gas-Evolving Systems</title><author>Taqieddin, Amir ; Allshouse, Michael R ; Alshawabkeh, Akram N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p266t-9347a7d41838435a71d9077869591e2ed9be35f7ca274a0c4603edfcfd58d5673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taqieddin, Amir</creatorcontrib><creatorcontrib>Allshouse, Michael R</creatorcontrib><creatorcontrib>Alshawabkeh, Akram N</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taqieddin, Amir</au><au>Allshouse, Michael R</au><au>Alshawabkeh, Akram N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review-Mathematical Formulations of Electrochemically Gas-Evolving Systems</atitle><jtitle>Journal of the Electrochemical Society</jtitle><addtitle>J Electrochem Soc</addtitle><date>2018</date><risdate>2018</risdate><volume>165</volume><issue>13</issue><spage>E694</spage><epage>E711</epage><pages>E694-E711</pages><issn>0013-4651</issn><abstract>Electrochemically gas-evolving systems are utilized in alkaline water electrolysis, hydrogen production, and many other applications. To design and optimize these systems, high-fidelity models must account for electron-transfer, chemical reactions, thermodynamics, electrode porosity, and hydrodynamics as well as the interconnectedness of these phenomena. Further complicating these models is the production and presence of bubbles. Bubble nucleation naturally occurs due to the chemical reactions and impacts the reaction rate. Modeling bubble growth requires an accurate accounting of interfacial mass transfer. When the bubble becomes large, detachment occurs and the system is modeled as a two-phase flow where the bubbles can then impact material transport in the bulk. In this paper, we review the governing mathematical models of the physicochemical life cycle of a bubble in an electrolytic medium from a multiscale, multiphysics viewpoint. For each phase of the bubble life cycle, the prevailing mathematical formulations are reviewed and compared with particular attention paid to physicochemical processes and the impact the bubble. Through the review of a broad range of models, we provide a compilation of the current state of bubble modeling in electrochemically gas-evolving systems.</abstract><cop>England</cop><pmid>30542215</pmid><doi>10.1149/2.0791813jes</doi><orcidid>https://orcid.org/0000-0001-7656-6746</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-4651
ispartof Journal of the Electrochemical Society, 2018, Vol.165 (13), p.E694-E711
issn 0013-4651
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6287757
source IOP Publishing Journals
title Review-Mathematical Formulations of Electrochemically Gas-Evolving Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A09%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review-Mathematical%20Formulations%20of%20Electrochemically%20Gas-Evolving%20Systems&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Taqieddin,%20Amir&rft.date=2018&rft.volume=165&rft.issue=13&rft.spage=E694&rft.epage=E711&rft.pages=E694-E711&rft.issn=0013-4651&rft_id=info:doi/10.1149/2.0791813jes&rft_dat=%3Cproquest_pubme%3E2155912101%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2155912101&rft_id=info:pmid/30542215&rfr_iscdi=true