Functional analysis of Salmonella Typhi adaptation to survival in water

Summary Contaminated water is a major risk factor associated with the transmission of Salmonella enterica serovar Typhi (S. Typhi), the aetiological agent of human typhoid. However, little is known about how this pathogen adapts to living in the aqueous environment. We used transcriptome analysis (R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental microbiology 2018-11, Vol.20 (11), p.4079-4090
Hauptverfasser: Kingsley, Robert A., Langridge, Gemma, Smith, Sarah E., Makendi, Carine, Fookes, Maria, Wileman, Tom M., El Ghany, Moataz Abd, Keith Turner, A., Dyson, Zoe A., Sridhar, Sushmita, Pickard, Derek, Kay, Sally, Feasey, Nicholas, Wong, Vanessa, Barquist, Lars, Dougan, Gordon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4090
container_issue 11
container_start_page 4079
container_title Environmental microbiology
container_volume 20
creator Kingsley, Robert A.
Langridge, Gemma
Smith, Sarah E.
Makendi, Carine
Fookes, Maria
Wileman, Tom M.
El Ghany, Moataz Abd
Keith Turner, A.
Dyson, Zoe A.
Sridhar, Sushmita
Pickard, Derek
Kay, Sally
Feasey, Nicholas
Wong, Vanessa
Barquist, Lars
Dougan, Gordon
description Summary Contaminated water is a major risk factor associated with the transmission of Salmonella enterica serovar Typhi (S. Typhi), the aetiological agent of human typhoid. However, little is known about how this pathogen adapts to living in the aqueous environment. We used transcriptome analysis (RNA‐seq) and transposon mutagenesis (TraDIS) to characterize these adaptive changes and identify multiple genes that contribute to survival. Over half of the genes in the S. Typhi genome altered expression level within the first 24 h following transfer from broth culture to water, although relatively few did so in the first 30 min. Genes linked to central metabolism, stress associated with arrested proton motive force and respiratory chain factors changed expression levels. Additionally, motility and chemotaxis genes increased expression, consistent with a scavenging lifestyle. The viaB‐associated gene tviC encoding a glcNAc epimerase that is required for Vi polysaccharide biosynthesis was, along with several other genes, shown to contribute to survival in water. Thus, we define regulatory adaptation operating in S. Typhi that facilitates survival in water.
doi_str_mv 10.1111/1462-2920.14458
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6282856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2189514542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5008-4f5e733b36168f86cc85ecc7a4372c94e5448a907fc0797dc9d194ab5efba3fb3</originalsourceid><addsrcrecordid>eNqNkb1PAyEYh4nR2Fqd3cwlLi61fB6wmBjTqkmNgzoTjnKKuR4V7mr638vZ2qiLMvD5vE-AHwDHCJ6j1EaI5niIJU5LSpnYAf3tzu52jnAPHMT4CiHihMN90COQMiiw7IPrSVubxvlaV5lO3Sq6mPkye9DV3Ne2qnT2uFq8uEzP9KLRHZk1PottWLplqnF19q4bGw7BXqmraI824wA8TcaPVzfD6f317dXldGgYhGJIS2Y5IQXJUS5KkRsjmDWGa0o4NpJaRqnQEvLSQC75zMgZklQXzJaFJmVBBuBi7V20xdzOjK2boCu1CG6uw0p57dTPk9q9qGe_VDkWWLA8Cc42guDfWhsbNXfRdA-trW-jwkhIhiij-B8oSUKOGU3o6S_01bch_ecnRaVgUKJEjdaUCT7GYMvtvRFUXZ6qS0x16anPPFPFyffnbvmvABPA1sC7q-zqL58a392uxR8pOaoZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2134985091</pqid></control><display><type>article</type><title>Functional analysis of Salmonella Typhi adaptation to survival in water</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kingsley, Robert A. ; Langridge, Gemma ; Smith, Sarah E. ; Makendi, Carine ; Fookes, Maria ; Wileman, Tom M. ; El Ghany, Moataz Abd ; Keith Turner, A. ; Dyson, Zoe A. ; Sridhar, Sushmita ; Pickard, Derek ; Kay, Sally ; Feasey, Nicholas ; Wong, Vanessa ; Barquist, Lars ; Dougan, Gordon</creator><creatorcontrib>Kingsley, Robert A. ; Langridge, Gemma ; Smith, Sarah E. ; Makendi, Carine ; Fookes, Maria ; Wileman, Tom M. ; El Ghany, Moataz Abd ; Keith Turner, A. ; Dyson, Zoe A. ; Sridhar, Sushmita ; Pickard, Derek ; Kay, Sally ; Feasey, Nicholas ; Wong, Vanessa ; Barquist, Lars ; Dougan, Gordon</creatorcontrib><description>Summary Contaminated water is a major risk factor associated with the transmission of Salmonella enterica serovar Typhi (S. Typhi), the aetiological agent of human typhoid. However, little is known about how this pathogen adapts to living in the aqueous environment. We used transcriptome analysis (RNA‐seq) and transposon mutagenesis (TraDIS) to characterize these adaptive changes and identify multiple genes that contribute to survival. Over half of the genes in the S. Typhi genome altered expression level within the first 24 h following transfer from broth culture to water, although relatively few did so in the first 30 min. Genes linked to central metabolism, stress associated with arrested proton motive force and respiratory chain factors changed expression levels. Additionally, motility and chemotaxis genes increased expression, consistent with a scavenging lifestyle. The viaB‐associated gene tviC encoding a glcNAc epimerase that is required for Vi polysaccharide biosynthesis was, along with several other genes, shown to contribute to survival in water. Thus, we define regulatory adaptation operating in S. Typhi that facilitates survival in water.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.14458</identifier><identifier>PMID: 30450829</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Adaptation ; Aqueous environments ; Biosynthesis ; Chemotaxis ; culture media ; Electron transport ; electron transport chain ; enzymes ; Epimerase ; Functional analysis ; Gene expression ; Genes ; Genomes ; humans ; lifestyle ; Metabolism ; Mutagenesis ; Nucleic acids ; Pathogens ; Polysaccharides ; proton-motive force ; Protonmotive force ; Ribonucleic acid ; Risk analysis ; Risk factors ; RNA ; Salmonella ; Salmonella Typhi ; Scavenging ; sequence analysis ; Survival ; transcriptomics ; Transposon mutagenesis ; transposons ; Typhoid ; typhoid fever ; Vaccines ; Water ; Water pollution</subject><ispartof>Environmental microbiology, 2018-11, Vol.20 (11), p.4079-4090</ispartof><rights>2018 The Authors. published by Society for Applied Microbiology and John Wiley &amp; Sons Ltd.</rights><rights>2018 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley &amp; Sons Ltd.</rights><rights>2018 Society for Applied Microbiology and John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5008-4f5e733b36168f86cc85ecc7a4372c94e5448a907fc0797dc9d194ab5efba3fb3</citedby><cites>FETCH-LOGICAL-c5008-4f5e733b36168f86cc85ecc7a4372c94e5448a907fc0797dc9d194ab5efba3fb3</cites><orcidid>0000-0002-0194-6485</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1462-2920.14458$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1462-2920.14458$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30450829$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kingsley, Robert A.</creatorcontrib><creatorcontrib>Langridge, Gemma</creatorcontrib><creatorcontrib>Smith, Sarah E.</creatorcontrib><creatorcontrib>Makendi, Carine</creatorcontrib><creatorcontrib>Fookes, Maria</creatorcontrib><creatorcontrib>Wileman, Tom M.</creatorcontrib><creatorcontrib>El Ghany, Moataz Abd</creatorcontrib><creatorcontrib>Keith Turner, A.</creatorcontrib><creatorcontrib>Dyson, Zoe A.</creatorcontrib><creatorcontrib>Sridhar, Sushmita</creatorcontrib><creatorcontrib>Pickard, Derek</creatorcontrib><creatorcontrib>Kay, Sally</creatorcontrib><creatorcontrib>Feasey, Nicholas</creatorcontrib><creatorcontrib>Wong, Vanessa</creatorcontrib><creatorcontrib>Barquist, Lars</creatorcontrib><creatorcontrib>Dougan, Gordon</creatorcontrib><title>Functional analysis of Salmonella Typhi adaptation to survival in water</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Summary Contaminated water is a major risk factor associated with the transmission of Salmonella enterica serovar Typhi (S. Typhi), the aetiological agent of human typhoid. However, little is known about how this pathogen adapts to living in the aqueous environment. We used transcriptome analysis (RNA‐seq) and transposon mutagenesis (TraDIS) to characterize these adaptive changes and identify multiple genes that contribute to survival. Over half of the genes in the S. Typhi genome altered expression level within the first 24 h following transfer from broth culture to water, although relatively few did so in the first 30 min. Genes linked to central metabolism, stress associated with arrested proton motive force and respiratory chain factors changed expression levels. Additionally, motility and chemotaxis genes increased expression, consistent with a scavenging lifestyle. The viaB‐associated gene tviC encoding a glcNAc epimerase that is required for Vi polysaccharide biosynthesis was, along with several other genes, shown to contribute to survival in water. Thus, we define regulatory adaptation operating in S. Typhi that facilitates survival in water.</description><subject>Adaptation</subject><subject>Aqueous environments</subject><subject>Biosynthesis</subject><subject>Chemotaxis</subject><subject>culture media</subject><subject>Electron transport</subject><subject>electron transport chain</subject><subject>enzymes</subject><subject>Epimerase</subject><subject>Functional analysis</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genomes</subject><subject>humans</subject><subject>lifestyle</subject><subject>Metabolism</subject><subject>Mutagenesis</subject><subject>Nucleic acids</subject><subject>Pathogens</subject><subject>Polysaccharides</subject><subject>proton-motive force</subject><subject>Protonmotive force</subject><subject>Ribonucleic acid</subject><subject>Risk analysis</subject><subject>Risk factors</subject><subject>RNA</subject><subject>Salmonella</subject><subject>Salmonella Typhi</subject><subject>Scavenging</subject><subject>sequence analysis</subject><subject>Survival</subject><subject>transcriptomics</subject><subject>Transposon mutagenesis</subject><subject>transposons</subject><subject>Typhoid</subject><subject>typhoid fever</subject><subject>Vaccines</subject><subject>Water</subject><subject>Water pollution</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqNkb1PAyEYh4nR2Fqd3cwlLi61fB6wmBjTqkmNgzoTjnKKuR4V7mr638vZ2qiLMvD5vE-AHwDHCJ6j1EaI5niIJU5LSpnYAf3tzu52jnAPHMT4CiHihMN90COQMiiw7IPrSVubxvlaV5lO3Sq6mPkye9DV3Ne2qnT2uFq8uEzP9KLRHZk1PottWLplqnF19q4bGw7BXqmraI824wA8TcaPVzfD6f317dXldGgYhGJIS2Y5IQXJUS5KkRsjmDWGa0o4NpJaRqnQEvLSQC75zMgZklQXzJaFJmVBBuBi7V20xdzOjK2boCu1CG6uw0p57dTPk9q9qGe_VDkWWLA8Cc42guDfWhsbNXfRdA-trW-jwkhIhiij-B8oSUKOGU3o6S_01bch_ecnRaVgUKJEjdaUCT7GYMvtvRFUXZ6qS0x16anPPFPFyffnbvmvABPA1sC7q-zqL58a392uxR8pOaoZ</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Kingsley, Robert A.</creator><creator>Langridge, Gemma</creator><creator>Smith, Sarah E.</creator><creator>Makendi, Carine</creator><creator>Fookes, Maria</creator><creator>Wileman, Tom M.</creator><creator>El Ghany, Moataz Abd</creator><creator>Keith Turner, A.</creator><creator>Dyson, Zoe A.</creator><creator>Sridhar, Sushmita</creator><creator>Pickard, Derek</creator><creator>Kay, Sally</creator><creator>Feasey, Nicholas</creator><creator>Wong, Vanessa</creator><creator>Barquist, Lars</creator><creator>Dougan, Gordon</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0194-6485</orcidid></search><sort><creationdate>201811</creationdate><title>Functional analysis of Salmonella Typhi adaptation to survival in water</title><author>Kingsley, Robert A. ; Langridge, Gemma ; Smith, Sarah E. ; Makendi, Carine ; Fookes, Maria ; Wileman, Tom M. ; El Ghany, Moataz Abd ; Keith Turner, A. ; Dyson, Zoe A. ; Sridhar, Sushmita ; Pickard, Derek ; Kay, Sally ; Feasey, Nicholas ; Wong, Vanessa ; Barquist, Lars ; Dougan, Gordon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5008-4f5e733b36168f86cc85ecc7a4372c94e5448a907fc0797dc9d194ab5efba3fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptation</topic><topic>Aqueous environments</topic><topic>Biosynthesis</topic><topic>Chemotaxis</topic><topic>culture media</topic><topic>Electron transport</topic><topic>electron transport chain</topic><topic>enzymes</topic><topic>Epimerase</topic><topic>Functional analysis</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genomes</topic><topic>humans</topic><topic>lifestyle</topic><topic>Metabolism</topic><topic>Mutagenesis</topic><topic>Nucleic acids</topic><topic>Pathogens</topic><topic>Polysaccharides</topic><topic>proton-motive force</topic><topic>Protonmotive force</topic><topic>Ribonucleic acid</topic><topic>Risk analysis</topic><topic>Risk factors</topic><topic>RNA</topic><topic>Salmonella</topic><topic>Salmonella Typhi</topic><topic>Scavenging</topic><topic>sequence analysis</topic><topic>Survival</topic><topic>transcriptomics</topic><topic>Transposon mutagenesis</topic><topic>transposons</topic><topic>Typhoid</topic><topic>typhoid fever</topic><topic>Vaccines</topic><topic>Water</topic><topic>Water pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kingsley, Robert A.</creatorcontrib><creatorcontrib>Langridge, Gemma</creatorcontrib><creatorcontrib>Smith, Sarah E.</creatorcontrib><creatorcontrib>Makendi, Carine</creatorcontrib><creatorcontrib>Fookes, Maria</creatorcontrib><creatorcontrib>Wileman, Tom M.</creatorcontrib><creatorcontrib>El Ghany, Moataz Abd</creatorcontrib><creatorcontrib>Keith Turner, A.</creatorcontrib><creatorcontrib>Dyson, Zoe A.</creatorcontrib><creatorcontrib>Sridhar, Sushmita</creatorcontrib><creatorcontrib>Pickard, Derek</creatorcontrib><creatorcontrib>Kay, Sally</creatorcontrib><creatorcontrib>Feasey, Nicholas</creatorcontrib><creatorcontrib>Wong, Vanessa</creatorcontrib><creatorcontrib>Barquist, Lars</creatorcontrib><creatorcontrib>Dougan, Gordon</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kingsley, Robert A.</au><au>Langridge, Gemma</au><au>Smith, Sarah E.</au><au>Makendi, Carine</au><au>Fookes, Maria</au><au>Wileman, Tom M.</au><au>El Ghany, Moataz Abd</au><au>Keith Turner, A.</au><au>Dyson, Zoe A.</au><au>Sridhar, Sushmita</au><au>Pickard, Derek</au><au>Kay, Sally</au><au>Feasey, Nicholas</au><au>Wong, Vanessa</au><au>Barquist, Lars</au><au>Dougan, Gordon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional analysis of Salmonella Typhi adaptation to survival in water</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2018-11</date><risdate>2018</risdate><volume>20</volume><issue>11</issue><spage>4079</spage><epage>4090</epage><pages>4079-4090</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Summary Contaminated water is a major risk factor associated with the transmission of Salmonella enterica serovar Typhi (S. Typhi), the aetiological agent of human typhoid. However, little is known about how this pathogen adapts to living in the aqueous environment. We used transcriptome analysis (RNA‐seq) and transposon mutagenesis (TraDIS) to characterize these adaptive changes and identify multiple genes that contribute to survival. Over half of the genes in the S. Typhi genome altered expression level within the first 24 h following transfer from broth culture to water, although relatively few did so in the first 30 min. Genes linked to central metabolism, stress associated with arrested proton motive force and respiratory chain factors changed expression levels. Additionally, motility and chemotaxis genes increased expression, consistent with a scavenging lifestyle. The viaB‐associated gene tviC encoding a glcNAc epimerase that is required for Vi polysaccharide biosynthesis was, along with several other genes, shown to contribute to survival in water. Thus, we define regulatory adaptation operating in S. Typhi that facilitates survival in water.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>30450829</pmid><doi>10.1111/1462-2920.14458</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0194-6485</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1462-2912
ispartof Environmental microbiology, 2018-11, Vol.20 (11), p.4079-4090
issn 1462-2912
1462-2920
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6282856
source Wiley Online Library Journals Frontfile Complete
subjects Adaptation
Aqueous environments
Biosynthesis
Chemotaxis
culture media
Electron transport
electron transport chain
enzymes
Epimerase
Functional analysis
Gene expression
Genes
Genomes
humans
lifestyle
Metabolism
Mutagenesis
Nucleic acids
Pathogens
Polysaccharides
proton-motive force
Protonmotive force
Ribonucleic acid
Risk analysis
Risk factors
RNA
Salmonella
Salmonella Typhi
Scavenging
sequence analysis
Survival
transcriptomics
Transposon mutagenesis
transposons
Typhoid
typhoid fever
Vaccines
Water
Water pollution
title Functional analysis of Salmonella Typhi adaptation to survival in water
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A32%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20analysis%20of%20Salmonella%20Typhi%20adaptation%20to%20survival%20in%20water&rft.jtitle=Environmental%20microbiology&rft.au=Kingsley,%20Robert%20A.&rft.date=2018-11&rft.volume=20&rft.issue=11&rft.spage=4079&rft.epage=4090&rft.pages=4079-4090&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.14458&rft_dat=%3Cproquest_pubme%3E2189514542%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2134985091&rft_id=info:pmid/30450829&rfr_iscdi=true