Design Strategy of Multi‐electron Transfer Catalysts Based on a Bioinformatic Analysis of Oxygen Evolution and Reduction Enzymes

Understanding the design strategy of photosynthetic and respiratory enzymes is important to develop efficient artificial catalysts for oxygen evolution and reduction reactions. Here, based on a bioinformatic analysis of cyanobacterial oxygen evolution and reduction enzymes (photosystem II: PS II and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular informatics 2018-08, Vol.37 (8), p.e1700139-n/a
Hauptverfasser: Ooka, Hideshi, Hashimoto, Kazuhito, Nakamura, Ryuhei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page e1700139
container_title Molecular informatics
container_volume 37
creator Ooka, Hideshi
Hashimoto, Kazuhito
Nakamura, Ryuhei
description Understanding the design strategy of photosynthetic and respiratory enzymes is important to develop efficient artificial catalysts for oxygen evolution and reduction reactions. Here, based on a bioinformatic analysis of cyanobacterial oxygen evolution and reduction enzymes (photosystem II: PS II and cytochrome c oxidase: COX, respectively), the gene encoding the catalytic D1 subunit of PS II was found to be expressed individually across 38 phylogenetically diverse strains, which is in contrast to the operon structure of the genes encoding major COX subunits. Selective synthesis of the D1 subunit minimizes the repair cost of PS II, which allows compensation for its instability by lowering the turnover number required to generate a net positive energy yield. The different bioenergetics observed between PS II and COX suggest that in addition to the catalytic activity rationalized by the Sabatier principle, stability factors have also provided a major influence on the design strategy of biological multi‐electron transfer enzymes.
doi_str_mv 10.1002/minf.201700139
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6282526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2038708444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5719-c9ec5dc82c7e05b20220210659080f9d418c28670bd50f9ddfb8e2738b1bd8cc3</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxi0EolXplSOyxIXLLrYTJ_YFqd1uoVJLJShny7Eni6vELnZSCCfEE_CMPAkOW5Y_F6yR7NH8_GlmPoQeU7KkhLDnvfPtkhFaE0ILeQ_tU1GJBa05vb97l8UeOkzpmuRTsKoW8iHaY7LmVSXYPvp6AsltPH47RD3AZsKhxRdjN7jvX75BB2aIweOrqH1qIeKVHnQ3pSHhY53A4lzT-NiF3EeIvR6cwUd-JlyahS4_TRvweH0bunFwM-wtfgN2ND-ztf889ZAeoQet7hIc3t0H6N3p-mr1anF--fJsdXS-MLymcmEkGG6NYKYGwhtGWA5KKi6JIK20JRWGiaomjeVzbttGAKsL0dDGCmOKA_Riq3szNj1YAz7P3Kmb6HodJxW0U39XvHuvNuFWVUwwzqos8OxOIIYPI6RB9S4Z6DrtIYxJMVKImoiyLDP69B_0Oowxr2amRCkEY5JnarmlTAwpRWh3zVCiZofV7LDaOZw_PPlzhB3-y88MyC3w0XUw_UdOXZy9Pv0t_gNidLXt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084882295</pqid></control><display><type>article</type><title>Design Strategy of Multi‐electron Transfer Catalysts Based on a Bioinformatic Analysis of Oxygen Evolution and Reduction Enzymes</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ooka, Hideshi ; Hashimoto, Kazuhito ; Nakamura, Ryuhei</creator><creatorcontrib>Ooka, Hideshi ; Hashimoto, Kazuhito ; Nakamura, Ryuhei</creatorcontrib><description>Understanding the design strategy of photosynthetic and respiratory enzymes is important to develop efficient artificial catalysts for oxygen evolution and reduction reactions. Here, based on a bioinformatic analysis of cyanobacterial oxygen evolution and reduction enzymes (photosystem II: PS II and cytochrome c oxidase: COX, respectively), the gene encoding the catalytic D1 subunit of PS II was found to be expressed individually across 38 phylogenetically diverse strains, which is in contrast to the operon structure of the genes encoding major COX subunits. Selective synthesis of the D1 subunit minimizes the repair cost of PS II, which allows compensation for its instability by lowering the turnover number required to generate a net positive energy yield. The different bioenergetics observed between PS II and COX suggest that in addition to the catalytic activity rationalized by the Sabatier principle, stability factors have also provided a major influence on the design strategy of biological multi‐electron transfer enzymes.</description><identifier>ISSN: 1868-1743</identifier><identifier>EISSN: 1868-1751</identifier><identifier>DOI: 10.1002/minf.201700139</identifier><identifier>PMID: 29756682</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; Biocatalysis ; Bioenergetics ; Bioinformatics ; Catalysis ; Catalysts ; Catalytic activity ; Chemical evolution ; Chemical reduction ; Communication ; Communications ; Computational Biology - methods ; Cyanobacteria ; Cyanobacteria - enzymology ; Cytochrome ; Cytochrome-c oxidase ; Cytochromes ; Design ; Electron transfer ; Electron Transport Complex IV - chemistry ; Electron Transport Complex IV - metabolism ; Enzymes ; Evolution ; Life-cycle assessment ; Oxidation-Reduction ; Oxygen ; Oxygen evolution ; Photosynthesis ; Photosystem II ; Photosystem II Protein Complex - chemistry ; Photosystem II Protein Complex - metabolism ; Phylogeny ; Protein Engineering - methods ; Respiratory enzymes ; Stability ; Strategy</subject><ispartof>Molecular informatics, 2018-08, Vol.37 (8), p.e1700139-n/a</ispartof><rights>2018 The Authors. Published by Wiley-VCH Verlag GmbH &amp; Co. KGaA.</rights><rights>2018 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2018 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5719-c9ec5dc82c7e05b20220210659080f9d418c28670bd50f9ddfb8e2738b1bd8cc3</citedby><cites>FETCH-LOGICAL-c5719-c9ec5dc82c7e05b20220210659080f9d418c28670bd50f9ddfb8e2738b1bd8cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fminf.201700139$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fminf.201700139$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29756682$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ooka, Hideshi</creatorcontrib><creatorcontrib>Hashimoto, Kazuhito</creatorcontrib><creatorcontrib>Nakamura, Ryuhei</creatorcontrib><title>Design Strategy of Multi‐electron Transfer Catalysts Based on a Bioinformatic Analysis of Oxygen Evolution and Reduction Enzymes</title><title>Molecular informatics</title><addtitle>Mol Inform</addtitle><description>Understanding the design strategy of photosynthetic and respiratory enzymes is important to develop efficient artificial catalysts for oxygen evolution and reduction reactions. Here, based on a bioinformatic analysis of cyanobacterial oxygen evolution and reduction enzymes (photosystem II: PS II and cytochrome c oxidase: COX, respectively), the gene encoding the catalytic D1 subunit of PS II was found to be expressed individually across 38 phylogenetically diverse strains, which is in contrast to the operon structure of the genes encoding major COX subunits. Selective synthesis of the D1 subunit minimizes the repair cost of PS II, which allows compensation for its instability by lowering the turnover number required to generate a net positive energy yield. The different bioenergetics observed between PS II and COX suggest that in addition to the catalytic activity rationalized by the Sabatier principle, stability factors have also provided a major influence on the design strategy of biological multi‐electron transfer enzymes.</description><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biocatalysis</subject><subject>Bioenergetics</subject><subject>Bioinformatics</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical evolution</subject><subject>Chemical reduction</subject><subject>Communication</subject><subject>Communications</subject><subject>Computational Biology - methods</subject><subject>Cyanobacteria</subject><subject>Cyanobacteria - enzymology</subject><subject>Cytochrome</subject><subject>Cytochrome-c oxidase</subject><subject>Cytochromes</subject><subject>Design</subject><subject>Electron transfer</subject><subject>Electron Transport Complex IV - chemistry</subject><subject>Electron Transport Complex IV - metabolism</subject><subject>Enzymes</subject><subject>Evolution</subject><subject>Life-cycle assessment</subject><subject>Oxidation-Reduction</subject><subject>Oxygen</subject><subject>Oxygen evolution</subject><subject>Photosynthesis</subject><subject>Photosystem II</subject><subject>Photosystem II Protein Complex - chemistry</subject><subject>Photosystem II Protein Complex - metabolism</subject><subject>Phylogeny</subject><subject>Protein Engineering - methods</subject><subject>Respiratory enzymes</subject><subject>Stability</subject><subject>Strategy</subject><issn>1868-1743</issn><issn>1868-1751</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc9u1DAQxi0EolXplSOyxIXLLrYTJ_YFqd1uoVJLJShny7Eni6vELnZSCCfEE_CMPAkOW5Y_F6yR7NH8_GlmPoQeU7KkhLDnvfPtkhFaE0ILeQ_tU1GJBa05vb97l8UeOkzpmuRTsKoW8iHaY7LmVSXYPvp6AsltPH47RD3AZsKhxRdjN7jvX75BB2aIweOrqH1qIeKVHnQ3pSHhY53A4lzT-NiF3EeIvR6cwUd-JlyahS4_TRvweH0bunFwM-wtfgN2ND-ztf889ZAeoQet7hIc3t0H6N3p-mr1anF--fJsdXS-MLymcmEkGG6NYKYGwhtGWA5KKi6JIK20JRWGiaomjeVzbttGAKsL0dDGCmOKA_Riq3szNj1YAz7P3Kmb6HodJxW0U39XvHuvNuFWVUwwzqos8OxOIIYPI6RB9S4Z6DrtIYxJMVKImoiyLDP69B_0Oowxr2amRCkEY5JnarmlTAwpRWh3zVCiZofV7LDaOZw_PPlzhB3-y88MyC3w0XUw_UdOXZy9Pv0t_gNidLXt</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Ooka, Hideshi</creator><creator>Hashimoto, Kazuhito</creator><creator>Nakamura, Ryuhei</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201808</creationdate><title>Design Strategy of Multi‐electron Transfer Catalysts Based on a Bioinformatic Analysis of Oxygen Evolution and Reduction Enzymes</title><author>Ooka, Hideshi ; Hashimoto, Kazuhito ; Nakamura, Ryuhei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5719-c9ec5dc82c7e05b20220210659080f9d418c28670bd50f9ddfb8e2738b1bd8cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biocatalysis</topic><topic>Bioenergetics</topic><topic>Bioinformatics</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical evolution</topic><topic>Chemical reduction</topic><topic>Communication</topic><topic>Communications</topic><topic>Computational Biology - methods</topic><topic>Cyanobacteria</topic><topic>Cyanobacteria - enzymology</topic><topic>Cytochrome</topic><topic>Cytochrome-c oxidase</topic><topic>Cytochromes</topic><topic>Design</topic><topic>Electron transfer</topic><topic>Electron Transport Complex IV - chemistry</topic><topic>Electron Transport Complex IV - metabolism</topic><topic>Enzymes</topic><topic>Evolution</topic><topic>Life-cycle assessment</topic><topic>Oxidation-Reduction</topic><topic>Oxygen</topic><topic>Oxygen evolution</topic><topic>Photosynthesis</topic><topic>Photosystem II</topic><topic>Photosystem II Protein Complex - chemistry</topic><topic>Photosystem II Protein Complex - metabolism</topic><topic>Phylogeny</topic><topic>Protein Engineering - methods</topic><topic>Respiratory enzymes</topic><topic>Stability</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ooka, Hideshi</creatorcontrib><creatorcontrib>Hashimoto, Kazuhito</creatorcontrib><creatorcontrib>Nakamura, Ryuhei</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ooka, Hideshi</au><au>Hashimoto, Kazuhito</au><au>Nakamura, Ryuhei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design Strategy of Multi‐electron Transfer Catalysts Based on a Bioinformatic Analysis of Oxygen Evolution and Reduction Enzymes</atitle><jtitle>Molecular informatics</jtitle><addtitle>Mol Inform</addtitle><date>2018-08</date><risdate>2018</risdate><volume>37</volume><issue>8</issue><spage>e1700139</spage><epage>n/a</epage><pages>e1700139-n/a</pages><issn>1868-1743</issn><eissn>1868-1751</eissn><abstract>Understanding the design strategy of photosynthetic and respiratory enzymes is important to develop efficient artificial catalysts for oxygen evolution and reduction reactions. Here, based on a bioinformatic analysis of cyanobacterial oxygen evolution and reduction enzymes (photosystem II: PS II and cytochrome c oxidase: COX, respectively), the gene encoding the catalytic D1 subunit of PS II was found to be expressed individually across 38 phylogenetically diverse strains, which is in contrast to the operon structure of the genes encoding major COX subunits. Selective synthesis of the D1 subunit minimizes the repair cost of PS II, which allows compensation for its instability by lowering the turnover number required to generate a net positive energy yield. The different bioenergetics observed between PS II and COX suggest that in addition to the catalytic activity rationalized by the Sabatier principle, stability factors have also provided a major influence on the design strategy of biological multi‐electron transfer enzymes.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29756682</pmid><doi>10.1002/minf.201700139</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1868-1743
ispartof Molecular informatics, 2018-08, Vol.37 (8), p.e1700139-n/a
issn 1868-1743
1868-1751
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6282526
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Bacterial Proteins - chemistry
Bacterial Proteins - metabolism
Biocatalysis
Bioenergetics
Bioinformatics
Catalysis
Catalysts
Catalytic activity
Chemical evolution
Chemical reduction
Communication
Communications
Computational Biology - methods
Cyanobacteria
Cyanobacteria - enzymology
Cytochrome
Cytochrome-c oxidase
Cytochromes
Design
Electron transfer
Electron Transport Complex IV - chemistry
Electron Transport Complex IV - metabolism
Enzymes
Evolution
Life-cycle assessment
Oxidation-Reduction
Oxygen
Oxygen evolution
Photosynthesis
Photosystem II
Photosystem II Protein Complex - chemistry
Photosystem II Protein Complex - metabolism
Phylogeny
Protein Engineering - methods
Respiratory enzymes
Stability
Strategy
title Design Strategy of Multi‐electron Transfer Catalysts Based on a Bioinformatic Analysis of Oxygen Evolution and Reduction Enzymes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A45%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20Strategy%20of%20Multi%E2%80%90electron%20Transfer%20Catalysts%20Based%20on%20a%20Bioinformatic%20Analysis%20of%20Oxygen%20Evolution%20and%20Reduction%20Enzymes&rft.jtitle=Molecular%20informatics&rft.au=Ooka,%20Hideshi&rft.date=2018-08&rft.volume=37&rft.issue=8&rft.spage=e1700139&rft.epage=n/a&rft.pages=e1700139-n/a&rft.issn=1868-1743&rft.eissn=1868-1751&rft_id=info:doi/10.1002/minf.201700139&rft_dat=%3Cproquest_pubme%3E2038708444%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084882295&rft_id=info:pmid/29756682&rfr_iscdi=true