Inversion and computational maturation of drug response using human stem cell derived cardiomyocytes in microphysiological systems
While cardiomyocytes differentiated from human induced pluripotent stems cells (hiPSCs) hold great promise for drug screening, the electrophysiological properties of these cells can be variable and immature, producing results that are significantly different from their human adult counterparts. Here...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2018-12, Vol.8 (1), p.17626-14, Article 17626 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 1 |
container_start_page | 17626 |
container_title | Scientific reports |
container_volume | 8 |
creator | Tveito, Aslak Jæger, Karoline Horgmo Huebsch, Nathaniel Charrez, Bérénice Edwards, Andrew G. Wall, Samuel Healy, Kevin E. |
description | While cardiomyocytes differentiated from human induced pluripotent stems cells (hiPSCs) hold great promise for drug screening, the electrophysiological properties of these cells can be variable and immature, producing results that are significantly different from their human adult counterparts. Here, we describe a computational framework to address this limitation, and show how
in silico
methods, applied to measurements on immature cardiomyocytes, can be used to both identify drug action and to predict its effect in mature cells. Our synthetic and experimental results indicate that optically obtained waveforms of voltage and calcium from microphysiological systems can be inverted into information on drug ion channel blockage, and then, through assuming functional invariance of proteins during maturation, this data can be used to predict drug induced changes in mature ventricular cells. Together, this pipeline of measurements and computational analysis could significantly improve the ability of hiPSC derived cardiomycocytes to predict dangerous drug side effects. |
doi_str_mv | 10.1038/s41598-018-35858-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6279833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2150525904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-6bab43437b60c75c6ff3ad65f8c0a2f1ebb8afe873808084abc7862dbc910d783</originalsourceid><addsrcrecordid>eNp9kctu1TAQhi1ERau2L8ACWWLDJuBr4myQUMWlUiU27dpyHCfHVWwHT3KkbHlyfHpKKSywF_bI_3zjmR-h15S8p4SrDyCobFVFqKq4VFJVzQt0xoiQFeOMvXx2P0WXAPekLMlaQdtX6JQTSUVb12fo53Xcuww-RWxij20K87qYpcRmwsEsa34IcBpwn9cRZwdziuDwCj6OeLcGEzEsLmDrpgn3Lvu9KxyTe5_Cluy2OMA-4uBtTvNuK6WmNHpb8LAdEuECnQxmAnf5eJ6juy-fb6--VTffv15ffbqprKR0qerOdIIL3nQ1sY209TBw09dyUJYYNlDXdcoMTjVckbKF6WyjatZ3tqWkbxQ_Rx-P3Hntguuti0s2k56zDyZvOhmv_36JfqfHtNc1a1rFeQG8ewTk9GN1sOjg4dC2iS6toBmVZcSyJaJI3_4jvU9rLjM9qESrVCGyomJHVRkNQHbD02co0QeX9dFlXVzWDy7rpiS9ed7GU8pvT4uAHwVQnuLo8p_a_8H-Av6St6U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2149887982</pqid></control><display><type>article</type><title>Inversion and computational maturation of drug response using human stem cell derived cardiomyocytes in microphysiological systems</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Tveito, Aslak ; Jæger, Karoline Horgmo ; Huebsch, Nathaniel ; Charrez, Bérénice ; Edwards, Andrew G. ; Wall, Samuel ; Healy, Kevin E.</creator><creatorcontrib>Tveito, Aslak ; Jæger, Karoline Horgmo ; Huebsch, Nathaniel ; Charrez, Bérénice ; Edwards, Andrew G. ; Wall, Samuel ; Healy, Kevin E.</creatorcontrib><description>While cardiomyocytes differentiated from human induced pluripotent stems cells (hiPSCs) hold great promise for drug screening, the electrophysiological properties of these cells can be variable and immature, producing results that are significantly different from their human adult counterparts. Here, we describe a computational framework to address this limitation, and show how
in silico
methods, applied to measurements on immature cardiomyocytes, can be used to both identify drug action and to predict its effect in mature cells. Our synthetic and experimental results indicate that optically obtained waveforms of voltage and calcium from microphysiological systems can be inverted into information on drug ion channel blockage, and then, through assuming functional invariance of proteins during maturation, this data can be used to predict drug induced changes in mature ventricular cells. Together, this pipeline of measurements and computational analysis could significantly improve the ability of hiPSC derived cardiomycocytes to predict dangerous drug side effects.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-35858-7</identifier><identifier>PMID: 30514966</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 13/106 ; 14/34 ; 14/63 ; 631/114/2397 ; 631/532/2440 ; Calcium ; Calcium channels (voltage-gated) ; Cardiomyocytes ; Computer applications ; Drug screening ; Humanities and Social Sciences ; multidisciplinary ; Pluripotency ; Science ; Science (multidisciplinary) ; Side effects ; Stem cells ; Ventricle</subject><ispartof>Scientific reports, 2018-12, Vol.8 (1), p.17626-14, Article 17626</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-6bab43437b60c75c6ff3ad65f8c0a2f1ebb8afe873808084abc7862dbc910d783</citedby><cites>FETCH-LOGICAL-c511t-6bab43437b60c75c6ff3ad65f8c0a2f1ebb8afe873808084abc7862dbc910d783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279833/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279833/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51555,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30514966$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tveito, Aslak</creatorcontrib><creatorcontrib>Jæger, Karoline Horgmo</creatorcontrib><creatorcontrib>Huebsch, Nathaniel</creatorcontrib><creatorcontrib>Charrez, Bérénice</creatorcontrib><creatorcontrib>Edwards, Andrew G.</creatorcontrib><creatorcontrib>Wall, Samuel</creatorcontrib><creatorcontrib>Healy, Kevin E.</creatorcontrib><title>Inversion and computational maturation of drug response using human stem cell derived cardiomyocytes in microphysiological systems</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>While cardiomyocytes differentiated from human induced pluripotent stems cells (hiPSCs) hold great promise for drug screening, the electrophysiological properties of these cells can be variable and immature, producing results that are significantly different from their human adult counterparts. Here, we describe a computational framework to address this limitation, and show how
in silico
methods, applied to measurements on immature cardiomyocytes, can be used to both identify drug action and to predict its effect in mature cells. Our synthetic and experimental results indicate that optically obtained waveforms of voltage and calcium from microphysiological systems can be inverted into information on drug ion channel blockage, and then, through assuming functional invariance of proteins during maturation, this data can be used to predict drug induced changes in mature ventricular cells. Together, this pipeline of measurements and computational analysis could significantly improve the ability of hiPSC derived cardiomycocytes to predict dangerous drug side effects.</description><subject>119/118</subject><subject>13/106</subject><subject>14/34</subject><subject>14/63</subject><subject>631/114/2397</subject><subject>631/532/2440</subject><subject>Calcium</subject><subject>Calcium channels (voltage-gated)</subject><subject>Cardiomyocytes</subject><subject>Computer applications</subject><subject>Drug screening</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Pluripotency</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Side effects</subject><subject>Stem cells</subject><subject>Ventricle</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctu1TAQhi1ERau2L8ACWWLDJuBr4myQUMWlUiU27dpyHCfHVWwHT3KkbHlyfHpKKSywF_bI_3zjmR-h15S8p4SrDyCobFVFqKq4VFJVzQt0xoiQFeOMvXx2P0WXAPekLMlaQdtX6JQTSUVb12fo53Xcuww-RWxij20K87qYpcRmwsEsa34IcBpwn9cRZwdziuDwCj6OeLcGEzEsLmDrpgn3Lvu9KxyTe5_Cluy2OMA-4uBtTvNuK6WmNHpb8LAdEuECnQxmAnf5eJ6juy-fb6--VTffv15ffbqprKR0qerOdIIL3nQ1sY209TBw09dyUJYYNlDXdcoMTjVckbKF6WyjatZ3tqWkbxQ_Rx-P3Hntguuti0s2k56zDyZvOhmv_36JfqfHtNc1a1rFeQG8ewTk9GN1sOjg4dC2iS6toBmVZcSyJaJI3_4jvU9rLjM9qESrVCGyomJHVRkNQHbD02co0QeX9dFlXVzWDy7rpiS9ed7GU8pvT4uAHwVQnuLo8p_a_8H-Av6St6U</recordid><startdate>20181204</startdate><enddate>20181204</enddate><creator>Tveito, Aslak</creator><creator>Jæger, Karoline Horgmo</creator><creator>Huebsch, Nathaniel</creator><creator>Charrez, Bérénice</creator><creator>Edwards, Andrew G.</creator><creator>Wall, Samuel</creator><creator>Healy, Kevin E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20181204</creationdate><title>Inversion and computational maturation of drug response using human stem cell derived cardiomyocytes in microphysiological systems</title><author>Tveito, Aslak ; Jæger, Karoline Horgmo ; Huebsch, Nathaniel ; Charrez, Bérénice ; Edwards, Andrew G. ; Wall, Samuel ; Healy, Kevin E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-6bab43437b60c75c6ff3ad65f8c0a2f1ebb8afe873808084abc7862dbc910d783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>119/118</topic><topic>13/106</topic><topic>14/34</topic><topic>14/63</topic><topic>631/114/2397</topic><topic>631/532/2440</topic><topic>Calcium</topic><topic>Calcium channels (voltage-gated)</topic><topic>Cardiomyocytes</topic><topic>Computer applications</topic><topic>Drug screening</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Pluripotency</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Side effects</topic><topic>Stem cells</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tveito, Aslak</creatorcontrib><creatorcontrib>Jæger, Karoline Horgmo</creatorcontrib><creatorcontrib>Huebsch, Nathaniel</creatorcontrib><creatorcontrib>Charrez, Bérénice</creatorcontrib><creatorcontrib>Edwards, Andrew G.</creatorcontrib><creatorcontrib>Wall, Samuel</creatorcontrib><creatorcontrib>Healy, Kevin E.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tveito, Aslak</au><au>Jæger, Karoline Horgmo</au><au>Huebsch, Nathaniel</au><au>Charrez, Bérénice</au><au>Edwards, Andrew G.</au><au>Wall, Samuel</au><au>Healy, Kevin E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inversion and computational maturation of drug response using human stem cell derived cardiomyocytes in microphysiological systems</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-12-04</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>17626</spage><epage>14</epage><pages>17626-14</pages><artnum>17626</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>While cardiomyocytes differentiated from human induced pluripotent stems cells (hiPSCs) hold great promise for drug screening, the electrophysiological properties of these cells can be variable and immature, producing results that are significantly different from their human adult counterparts. Here, we describe a computational framework to address this limitation, and show how
in silico
methods, applied to measurements on immature cardiomyocytes, can be used to both identify drug action and to predict its effect in mature cells. Our synthetic and experimental results indicate that optically obtained waveforms of voltage and calcium from microphysiological systems can be inverted into information on drug ion channel blockage, and then, through assuming functional invariance of proteins during maturation, this data can be used to predict drug induced changes in mature ventricular cells. Together, this pipeline of measurements and computational analysis could significantly improve the ability of hiPSC derived cardiomycocytes to predict dangerous drug side effects.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30514966</pmid><doi>10.1038/s41598-018-35858-7</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2018-12, Vol.8 (1), p.17626-14, Article 17626 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6279833 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 119/118 13/106 14/34 14/63 631/114/2397 631/532/2440 Calcium Calcium channels (voltage-gated) Cardiomyocytes Computer applications Drug screening Humanities and Social Sciences multidisciplinary Pluripotency Science Science (multidisciplinary) Side effects Stem cells Ventricle |
title | Inversion and computational maturation of drug response using human stem cell derived cardiomyocytes in microphysiological systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T03%3A14%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inversion%20and%20computational%20maturation%20of%20drug%20response%20using%20human%20stem%20cell%20derived%20cardiomyocytes%20in%20microphysiological%20systems&rft.jtitle=Scientific%20reports&rft.au=Tveito,%20Aslak&rft.date=2018-12-04&rft.volume=8&rft.issue=1&rft.spage=17626&rft.epage=14&rft.pages=17626-14&rft.artnum=17626&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-35858-7&rft_dat=%3Cproquest_pubme%3E2150525904%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2149887982&rft_id=info:pmid/30514966&rfr_iscdi=true |