Immuno-driven and Mechano-mediated Neotissue Formation in Tissue Engineered Vascular Grafts
In vivo development of a neovessel from an implanted biodegradable polymeric scaffold depends on a delicate balance between polymer degradation and native matrix deposition. Studies in mice suggest that this balance is dictated by immuno-driven and mechanotransduction-mediated processes, with neotis...
Gespeichert in:
Veröffentlicht in: | Annals of biomedical engineering 2018-11, Vol.46 (11), p.1938-1950 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1950 |
---|---|
container_issue | 11 |
container_start_page | 1938 |
container_title | Annals of biomedical engineering |
container_volume | 46 |
creator | Szafron, J. M. Khosravi, R. Reinhardt, J. Best, C. A. Bersi, M. R. Yi, Tai Breuer, C. K. Humphrey, J. D. |
description | In vivo
development of a neovessel from an implanted biodegradable polymeric scaffold depends on a delicate balance between polymer degradation and native matrix deposition. Studies in mice suggest that this balance is dictated by immuno-driven and mechanotransduction-mediated processes, with neotissue increasingly balancing the hemodynamically induced loads as the polymer degrades. Computational models of neovessel development can help delineate relative time-dependent contributions of the immunobiological and mechanobiological processes that determine graft success or failure. In this paper, we compare computational results informed by long-term studies of neovessel development in immuno-compromised and immuno-competent mice. Simulations suggest that an early exuberant inflammatory response can limit subsequent mechano-sensing by synthetic intramural cells and thereby attenuate the desired long-term mechano-mediated production of matrix. Simulations also highlight key inflammatory differences in the two mouse models, which allow grafts in the immuno-compromised mouse to better match the biomechanical properties of the native vessel. Finally, the predicted inflammatory time courses revealed critical periods of graft remodeling. We submit that computational modeling can help uncover mechanisms of observed neovessel development and improve the design of the scaffold or its clinical use. |
doi_str_mv | 10.1007/s10439-018-2086-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6279560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2067885152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-9b3f465a9e152bf84373ff745bdbd38a29d46a357398021e15895f19fce3d87a3</originalsourceid><addsrcrecordid>eNp1kU1PFjEUhRujkVf0B7gxk7hhU-zH9GtjYgggCcoG3LhoOjO3LyUzLbYzJP57-2YAkcRVk3ufe3pODkLvKTmkhKhPhZKWG0yoxoxoidULtKFCcWykli_RhhBDsDSy3UNvSrkhhFLNxWu0x4zRSrR0g36eTdMSEx5yuIPYuDg036C_dnU0wRDcDEPzHdIcSlmgOUl5cnNIsQmxuVxnx3EbIkCu4A9X-mV0uTnNzs_lLXrl3Vjg3f27j65Oji-PvuLzi9Ozoy_nuBdEzdh03LdSOANUsM7rlivuvWpFN3QD146ZoZWO11xGE0YrpY3w1Pge-KCV4_vo86p7u3TVdA9xzm60tzlMLv-2yQX77yaGa7tNd1YyZYQkVeDgXiCnXwuU2U6h9DCOLkJaimVEKq1FtVfRj8_Qm7TkWOPtKKkVq-4qRVeqz6mUDP7RDCV2V51dq7O1Orurzqp68-FpiseLh64qwFag1FXcQv779f9V_wDJ-qT7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2066872589</pqid></control><display><type>article</type><title>Immuno-driven and Mechano-mediated Neotissue Formation in Tissue Engineered Vascular Grafts</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Szafron, J. M. ; Khosravi, R. ; Reinhardt, J. ; Best, C. A. ; Bersi, M. R. ; Yi, Tai ; Breuer, C. K. ; Humphrey, J. D.</creator><creatorcontrib>Szafron, J. M. ; Khosravi, R. ; Reinhardt, J. ; Best, C. A. ; Bersi, M. R. ; Yi, Tai ; Breuer, C. K. ; Humphrey, J. D.</creatorcontrib><description>In vivo
development of a neovessel from an implanted biodegradable polymeric scaffold depends on a delicate balance between polymer degradation and native matrix deposition. Studies in mice suggest that this balance is dictated by immuno-driven and mechanotransduction-mediated processes, with neotissue increasingly balancing the hemodynamically induced loads as the polymer degrades. Computational models of neovessel development can help delineate relative time-dependent contributions of the immunobiological and mechanobiological processes that determine graft success or failure. In this paper, we compare computational results informed by long-term studies of neovessel development in immuno-compromised and immuno-competent mice. Simulations suggest that an early exuberant inflammatory response can limit subsequent mechano-sensing by synthetic intramural cells and thereby attenuate the desired long-term mechano-mediated production of matrix. Simulations also highlight key inflammatory differences in the two mouse models, which allow grafts in the immuno-compromised mouse to better match the biomechanical properties of the native vessel. Finally, the predicted inflammatory time courses revealed critical periods of graft remodeling. We submit that computational modeling can help uncover mechanisms of observed neovessel development and improve the design of the scaffold or its clinical use.</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-018-2086-7</identifier><identifier>PMID: 29987541</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animal models ; Animals ; Biochemistry ; Biodegradability ; Biodegradation ; Biological and Medical Physics ; Biomechanics ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Blood Vessel Prosthesis ; Classical Mechanics ; Computation ; Computer applications ; Computer simulation ; Extracellular Matrix - chemistry ; Grafting ; Grafts ; Inflammation ; Inflammatory response ; Mathematical models ; Mechanical properties ; Mechanotransduction ; Mice ; Models, Cardiovascular ; Neovascularization, Physiologic ; Polymers ; Prosthesis Implantation ; Scaffolds ; Surgical implants ; Time dependence ; Tissue Engineering ; Tissue Scaffolds - chemistry</subject><ispartof>Annals of biomedical engineering, 2018-11, Vol.46 (11), p.1938-1950</ispartof><rights>Biomedical Engineering Society 2018</rights><rights>Annals of Biomedical Engineering is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-9b3f465a9e152bf84373ff745bdbd38a29d46a357398021e15895f19fce3d87a3</citedby><cites>FETCH-LOGICAL-c507t-9b3f465a9e152bf84373ff745bdbd38a29d46a357398021e15895f19fce3d87a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10439-018-2086-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10439-018-2086-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29987541$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Szafron, J. M.</creatorcontrib><creatorcontrib>Khosravi, R.</creatorcontrib><creatorcontrib>Reinhardt, J.</creatorcontrib><creatorcontrib>Best, C. A.</creatorcontrib><creatorcontrib>Bersi, M. R.</creatorcontrib><creatorcontrib>Yi, Tai</creatorcontrib><creatorcontrib>Breuer, C. K.</creatorcontrib><creatorcontrib>Humphrey, J. D.</creatorcontrib><title>Immuno-driven and Mechano-mediated Neotissue Formation in Tissue Engineered Vascular Grafts</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><addtitle>Ann Biomed Eng</addtitle><description>In vivo
development of a neovessel from an implanted biodegradable polymeric scaffold depends on a delicate balance between polymer degradation and native matrix deposition. Studies in mice suggest that this balance is dictated by immuno-driven and mechanotransduction-mediated processes, with neotissue increasingly balancing the hemodynamically induced loads as the polymer degrades. Computational models of neovessel development can help delineate relative time-dependent contributions of the immunobiological and mechanobiological processes that determine graft success or failure. In this paper, we compare computational results informed by long-term studies of neovessel development in immuno-compromised and immuno-competent mice. Simulations suggest that an early exuberant inflammatory response can limit subsequent mechano-sensing by synthetic intramural cells and thereby attenuate the desired long-term mechano-mediated production of matrix. Simulations also highlight key inflammatory differences in the two mouse models, which allow grafts in the immuno-compromised mouse to better match the biomechanical properties of the native vessel. Finally, the predicted inflammatory time courses revealed critical periods of graft remodeling. We submit that computational modeling can help uncover mechanisms of observed neovessel development and improve the design of the scaffold or its clinical use.</description><subject>Animal models</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Biological and Medical Physics</subject><subject>Biomechanics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Blood Vessel Prosthesis</subject><subject>Classical Mechanics</subject><subject>Computation</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Extracellular Matrix - chemistry</subject><subject>Grafting</subject><subject>Grafts</subject><subject>Inflammation</subject><subject>Inflammatory response</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Mechanotransduction</subject><subject>Mice</subject><subject>Models, Cardiovascular</subject><subject>Neovascularization, Physiologic</subject><subject>Polymers</subject><subject>Prosthesis Implantation</subject><subject>Scaffolds</subject><subject>Surgical implants</subject><subject>Time dependence</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds - chemistry</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kU1PFjEUhRujkVf0B7gxk7hhU-zH9GtjYgggCcoG3LhoOjO3LyUzLbYzJP57-2YAkcRVk3ufe3pODkLvKTmkhKhPhZKWG0yoxoxoidULtKFCcWykli_RhhBDsDSy3UNvSrkhhFLNxWu0x4zRSrR0g36eTdMSEx5yuIPYuDg036C_dnU0wRDcDEPzHdIcSlmgOUl5cnNIsQmxuVxnx3EbIkCu4A9X-mV0uTnNzs_lLXrl3Vjg3f27j65Oji-PvuLzi9Ozoy_nuBdEzdh03LdSOANUsM7rlivuvWpFN3QD146ZoZWO11xGE0YrpY3w1Pge-KCV4_vo86p7u3TVdA9xzm60tzlMLv-2yQX77yaGa7tNd1YyZYQkVeDgXiCnXwuU2U6h9DCOLkJaimVEKq1FtVfRj8_Qm7TkWOPtKKkVq-4qRVeqz6mUDP7RDCV2V51dq7O1Orurzqp68-FpiseLh64qwFag1FXcQv779f9V_wDJ-qT7</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Szafron, J. M.</creator><creator>Khosravi, R.</creator><creator>Reinhardt, J.</creator><creator>Best, C. A.</creator><creator>Bersi, M. R.</creator><creator>Yi, Tai</creator><creator>Breuer, C. K.</creator><creator>Humphrey, J. D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20181101</creationdate><title>Immuno-driven and Mechano-mediated Neotissue Formation in Tissue Engineered Vascular Grafts</title><author>Szafron, J. M. ; Khosravi, R. ; Reinhardt, J. ; Best, C. A. ; Bersi, M. R. ; Yi, Tai ; Breuer, C. K. ; Humphrey, J. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-9b3f465a9e152bf84373ff745bdbd38a29d46a357398021e15895f19fce3d87a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Biological and Medical Physics</topic><topic>Biomechanics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Blood Vessel Prosthesis</topic><topic>Classical Mechanics</topic><topic>Computation</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Extracellular Matrix - chemistry</topic><topic>Grafting</topic><topic>Grafts</topic><topic>Inflammation</topic><topic>Inflammatory response</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Mechanotransduction</topic><topic>Mice</topic><topic>Models, Cardiovascular</topic><topic>Neovascularization, Physiologic</topic><topic>Polymers</topic><topic>Prosthesis Implantation</topic><topic>Scaffolds</topic><topic>Surgical implants</topic><topic>Time dependence</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szafron, J. M.</creatorcontrib><creatorcontrib>Khosravi, R.</creatorcontrib><creatorcontrib>Reinhardt, J.</creatorcontrib><creatorcontrib>Best, C. A.</creatorcontrib><creatorcontrib>Bersi, M. R.</creatorcontrib><creatorcontrib>Yi, Tai</creatorcontrib><creatorcontrib>Breuer, C. K.</creatorcontrib><creatorcontrib>Humphrey, J. D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szafron, J. M.</au><au>Khosravi, R.</au><au>Reinhardt, J.</au><au>Best, C. A.</au><au>Bersi, M. R.</au><au>Yi, Tai</au><au>Breuer, C. K.</au><au>Humphrey, J. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immuno-driven and Mechano-mediated Neotissue Formation in Tissue Engineered Vascular Grafts</atitle><jtitle>Annals of biomedical engineering</jtitle><stitle>Ann Biomed Eng</stitle><addtitle>Ann Biomed Eng</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>46</volume><issue>11</issue><spage>1938</spage><epage>1950</epage><pages>1938-1950</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><abstract>In vivo
development of a neovessel from an implanted biodegradable polymeric scaffold depends on a delicate balance between polymer degradation and native matrix deposition. Studies in mice suggest that this balance is dictated by immuno-driven and mechanotransduction-mediated processes, with neotissue increasingly balancing the hemodynamically induced loads as the polymer degrades. Computational models of neovessel development can help delineate relative time-dependent contributions of the immunobiological and mechanobiological processes that determine graft success or failure. In this paper, we compare computational results informed by long-term studies of neovessel development in immuno-compromised and immuno-competent mice. Simulations suggest that an early exuberant inflammatory response can limit subsequent mechano-sensing by synthetic intramural cells and thereby attenuate the desired long-term mechano-mediated production of matrix. Simulations also highlight key inflammatory differences in the two mouse models, which allow grafts in the immuno-compromised mouse to better match the biomechanical properties of the native vessel. Finally, the predicted inflammatory time courses revealed critical periods of graft remodeling. We submit that computational modeling can help uncover mechanisms of observed neovessel development and improve the design of the scaffold or its clinical use.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>29987541</pmid><doi>10.1007/s10439-018-2086-7</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-6964 |
ispartof | Annals of biomedical engineering, 2018-11, Vol.46 (11), p.1938-1950 |
issn | 0090-6964 1573-9686 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6279560 |
source | MEDLINE; SpringerLink Journals |
subjects | Animal models Animals Biochemistry Biodegradability Biodegradation Biological and Medical Physics Biomechanics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Blood Vessel Prosthesis Classical Mechanics Computation Computer applications Computer simulation Extracellular Matrix - chemistry Grafting Grafts Inflammation Inflammatory response Mathematical models Mechanical properties Mechanotransduction Mice Models, Cardiovascular Neovascularization, Physiologic Polymers Prosthesis Implantation Scaffolds Surgical implants Time dependence Tissue Engineering Tissue Scaffolds - chemistry |
title | Immuno-driven and Mechano-mediated Neotissue Formation in Tissue Engineered Vascular Grafts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A21%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immuno-driven%20and%20Mechano-mediated%20Neotissue%20Formation%20in%20Tissue%20Engineered%20Vascular%20Grafts&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Szafron,%20J.%20M.&rft.date=2018-11-01&rft.volume=46&rft.issue=11&rft.spage=1938&rft.epage=1950&rft.pages=1938-1950&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-018-2086-7&rft_dat=%3Cproquest_pubme%3E2067885152%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2066872589&rft_id=info:pmid/29987541&rfr_iscdi=true |