Excitable RhoA dynamics drive pulsed contractions in the early C. elegans embryo

Pulsed actomyosin contractility underlies diverse modes of tissue morphogenesis, but the underlying mechanisms remain poorly understood. Here, we combined quantitative imaging with genetic perturbations to identify a core mechanism for pulsed contractility in early embryos. We show that pulsed accum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of cell biology 2018-12, Vol.217 (12), p.4230-4252
Hauptverfasser: Michaux, Jonathan B, Robin, François B, McFadden, William M, Munro, Edwin M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4252
container_issue 12
container_start_page 4230
container_title The Journal of cell biology
container_volume 217
creator Michaux, Jonathan B
Robin, François B
McFadden, William M
Munro, Edwin M
description Pulsed actomyosin contractility underlies diverse modes of tissue morphogenesis, but the underlying mechanisms remain poorly understood. Here, we combined quantitative imaging with genetic perturbations to identify a core mechanism for pulsed contractility in early embryos. We show that pulsed accumulation of actomyosin is governed by local control of assembly and disassembly downstream of RhoA. Pulsed activation and inactivation of RhoA precede, respectively, the accumulation and disappearance of actomyosin and persist in the absence of Myosin II. We find that fast (likely indirect) autoactivation of RhoA drives pulse initiation, while delayed, F-actin-dependent accumulation of the RhoA GTPase-activating proteins RGA-3/4 provides negative feedback to terminate each pulse. A mathematical model, constrained by our data, suggests that this combination of feedbacks is tuned to generate locally excitable RhoA dynamics. We propose that excitable RhoA dynamics are a common driver for pulsed contractility that can be tuned or coupled differently to actomyosin dynamics to produce a diversity of morphogenetic outcomes.
doi_str_mv 10.1083/jcb.201806161
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6279378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2115754680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-2dd531f11f046734598bbe6f38a5645d60826cd0406bae063ca327b262011f573</originalsourceid><addsrcrecordid>eNpdkU2P0zAQhi0EYrsLR67IEhf2kDLjz-SCVFULi1QJhOBsOY6zTZXExU4q-u9x1aWCPY0088w7Hy8hbxCWCCX_sHP1kgGWoFDhM7JAKaAoUcBzsgBgWFSSyStyndIOAIQW_CW54sC0RNAL8u3ut-smW_eeft-GFW2Oox06l2gTu4On-7lPvqEujFO0burCmGg30mnrqbexP9L1kvreP9ic90Mdj-EVedHa3PT6Md6Qn5_ufqzvi83Xz1_Wq03hJMqpYE0jObaILQiluZBVWddetby0UgnZKCiZcg0IULX1oLiznOmaqXwrtlLzG_LxrLuf68E3zp827M0-doONRxNsZ_6vjN3WPISDUUxXXJdZ4PYssH3Sdr_amFMOeFVWwNgBM_v-cVgMv2afJjN0yfm-t6MPczIMUWopVAkZffcE3YU5jvkVmVIIUmt5Gl6cKRdDStG3lw0QzMlXk301F18z__bfay_0XyP5H7pWm_Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2161057758</pqid></control><display><type>article</type><title>Excitable RhoA dynamics drive pulsed contractions in the early C. elegans embryo</title><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Michaux, Jonathan B ; Robin, François B ; McFadden, William M ; Munro, Edwin M</creator><creatorcontrib>Michaux, Jonathan B ; Robin, François B ; McFadden, William M ; Munro, Edwin M</creatorcontrib><description>Pulsed actomyosin contractility underlies diverse modes of tissue morphogenesis, but the underlying mechanisms remain poorly understood. Here, we combined quantitative imaging with genetic perturbations to identify a core mechanism for pulsed contractility in early embryos. We show that pulsed accumulation of actomyosin is governed by local control of assembly and disassembly downstream of RhoA. Pulsed activation and inactivation of RhoA precede, respectively, the accumulation and disappearance of actomyosin and persist in the absence of Myosin II. We find that fast (likely indirect) autoactivation of RhoA drives pulse initiation, while delayed, F-actin-dependent accumulation of the RhoA GTPase-activating proteins RGA-3/4 provides negative feedback to terminate each pulse. A mathematical model, constrained by our data, suggests that this combination of feedbacks is tuned to generate locally excitable RhoA dynamics. We propose that excitable RhoA dynamics are a common driver for pulsed contractility that can be tuned or coupled differently to actomyosin dynamics to produce a diversity of morphogenetic outcomes.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.201806161</identifier><identifier>PMID: 30275107</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Accumulation ; Actin ; Actomyosin ; Contractility ; Deactivation ; Dismantling ; Dynamics ; Embryology ; Embryos ; Guanosine triphosphatases ; Inactivation ; Life Sciences ; Mathematical models ; Medical imaging ; Morphogenesis ; Myosin ; Negative feedback ; Proteins ; Quantitative analysis ; RhoA protein</subject><ispartof>The Journal of cell biology, 2018-12, Vol.217 (12), p.4230-4252</ispartof><rights>2018 Michaux et al.</rights><rights>Copyright Rockefeller University Press Dec 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2018 Michaux et al. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-2dd531f11f046734598bbe6f38a5645d60826cd0406bae063ca327b262011f573</citedby><cites>FETCH-LOGICAL-c515t-2dd531f11f046734598bbe6f38a5645d60826cd0406bae063ca327b262011f573</cites><orcidid>0000-0001-5535-5675 ; 0000-0002-2420-2593</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30275107$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03989022$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Michaux, Jonathan B</creatorcontrib><creatorcontrib>Robin, François B</creatorcontrib><creatorcontrib>McFadden, William M</creatorcontrib><creatorcontrib>Munro, Edwin M</creatorcontrib><title>Excitable RhoA dynamics drive pulsed contractions in the early C. elegans embryo</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>Pulsed actomyosin contractility underlies diverse modes of tissue morphogenesis, but the underlying mechanisms remain poorly understood. Here, we combined quantitative imaging with genetic perturbations to identify a core mechanism for pulsed contractility in early embryos. We show that pulsed accumulation of actomyosin is governed by local control of assembly and disassembly downstream of RhoA. Pulsed activation and inactivation of RhoA precede, respectively, the accumulation and disappearance of actomyosin and persist in the absence of Myosin II. We find that fast (likely indirect) autoactivation of RhoA drives pulse initiation, while delayed, F-actin-dependent accumulation of the RhoA GTPase-activating proteins RGA-3/4 provides negative feedback to terminate each pulse. A mathematical model, constrained by our data, suggests that this combination of feedbacks is tuned to generate locally excitable RhoA dynamics. We propose that excitable RhoA dynamics are a common driver for pulsed contractility that can be tuned or coupled differently to actomyosin dynamics to produce a diversity of morphogenetic outcomes.</description><subject>Accumulation</subject><subject>Actin</subject><subject>Actomyosin</subject><subject>Contractility</subject><subject>Deactivation</subject><subject>Dismantling</subject><subject>Dynamics</subject><subject>Embryology</subject><subject>Embryos</subject><subject>Guanosine triphosphatases</subject><subject>Inactivation</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>Morphogenesis</subject><subject>Myosin</subject><subject>Negative feedback</subject><subject>Proteins</subject><subject>Quantitative analysis</subject><subject>RhoA protein</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkU2P0zAQhi0EYrsLR67IEhf2kDLjz-SCVFULi1QJhOBsOY6zTZXExU4q-u9x1aWCPY0088w7Hy8hbxCWCCX_sHP1kgGWoFDhM7JAKaAoUcBzsgBgWFSSyStyndIOAIQW_CW54sC0RNAL8u3ut-smW_eeft-GFW2Oox06l2gTu4On-7lPvqEujFO0burCmGg30mnrqbexP9L1kvreP9ic90Mdj-EVedHa3PT6Md6Qn5_ufqzvi83Xz1_Wq03hJMqpYE0jObaILQiluZBVWddetby0UgnZKCiZcg0IULX1oLiznOmaqXwrtlLzG_LxrLuf68E3zp827M0-doONRxNsZ_6vjN3WPISDUUxXXJdZ4PYssH3Sdr_amFMOeFVWwNgBM_v-cVgMv2afJjN0yfm-t6MPczIMUWopVAkZffcE3YU5jvkVmVIIUmt5Gl6cKRdDStG3lw0QzMlXk301F18z__bfay_0XyP5H7pWm_Q</recordid><startdate>20181203</startdate><enddate>20181203</enddate><creator>Michaux, Jonathan B</creator><creator>Robin, François B</creator><creator>McFadden, William M</creator><creator>Munro, Edwin M</creator><general>Rockefeller University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5535-5675</orcidid><orcidid>https://orcid.org/0000-0002-2420-2593</orcidid></search><sort><creationdate>20181203</creationdate><title>Excitable RhoA dynamics drive pulsed contractions in the early C. elegans embryo</title><author>Michaux, Jonathan B ; Robin, François B ; McFadden, William M ; Munro, Edwin M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-2dd531f11f046734598bbe6f38a5645d60826cd0406bae063ca327b262011f573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accumulation</topic><topic>Actin</topic><topic>Actomyosin</topic><topic>Contractility</topic><topic>Deactivation</topic><topic>Dismantling</topic><topic>Dynamics</topic><topic>Embryology</topic><topic>Embryos</topic><topic>Guanosine triphosphatases</topic><topic>Inactivation</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>Morphogenesis</topic><topic>Myosin</topic><topic>Negative feedback</topic><topic>Proteins</topic><topic>Quantitative analysis</topic><topic>RhoA protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michaux, Jonathan B</creatorcontrib><creatorcontrib>Robin, François B</creatorcontrib><creatorcontrib>McFadden, William M</creatorcontrib><creatorcontrib>Munro, Edwin M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michaux, Jonathan B</au><au>Robin, François B</au><au>McFadden, William M</au><au>Munro, Edwin M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excitable RhoA dynamics drive pulsed contractions in the early C. elegans embryo</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>2018-12-03</date><risdate>2018</risdate><volume>217</volume><issue>12</issue><spage>4230</spage><epage>4252</epage><pages>4230-4252</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><abstract>Pulsed actomyosin contractility underlies diverse modes of tissue morphogenesis, but the underlying mechanisms remain poorly understood. Here, we combined quantitative imaging with genetic perturbations to identify a core mechanism for pulsed contractility in early embryos. We show that pulsed accumulation of actomyosin is governed by local control of assembly and disassembly downstream of RhoA. Pulsed activation and inactivation of RhoA precede, respectively, the accumulation and disappearance of actomyosin and persist in the absence of Myosin II. We find that fast (likely indirect) autoactivation of RhoA drives pulse initiation, while delayed, F-actin-dependent accumulation of the RhoA GTPase-activating proteins RGA-3/4 provides negative feedback to terminate each pulse. A mathematical model, constrained by our data, suggests that this combination of feedbacks is tuned to generate locally excitable RhoA dynamics. We propose that excitable RhoA dynamics are a common driver for pulsed contractility that can be tuned or coupled differently to actomyosin dynamics to produce a diversity of morphogenetic outcomes.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>30275107</pmid><doi>10.1083/jcb.201806161</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-5535-5675</orcidid><orcidid>https://orcid.org/0000-0002-2420-2593</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9525
ispartof The Journal of cell biology, 2018-12, Vol.217 (12), p.4230-4252
issn 0021-9525
1540-8140
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6279378
source Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Accumulation
Actin
Actomyosin
Contractility
Deactivation
Dismantling
Dynamics
Embryology
Embryos
Guanosine triphosphatases
Inactivation
Life Sciences
Mathematical models
Medical imaging
Morphogenesis
Myosin
Negative feedback
Proteins
Quantitative analysis
RhoA protein
title Excitable RhoA dynamics drive pulsed contractions in the early C. elegans embryo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A38%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excitable%20RhoA%20dynamics%20drive%20pulsed%20contractions%20in%20the%20early%20C.%20elegans%20embryo&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Michaux,%20Jonathan%20B&rft.date=2018-12-03&rft.volume=217&rft.issue=12&rft.spage=4230&rft.epage=4252&rft.pages=4230-4252&rft.issn=0021-9525&rft.eissn=1540-8140&rft_id=info:doi/10.1083/jcb.201806161&rft_dat=%3Cproquest_pubme%3E2115754680%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2161057758&rft_id=info:pmid/30275107&rfr_iscdi=true