Sostdc1 Deficiency Accelerates Fracture Healing by Promoting the Expansion of Periosteal Mesenchymal Stem Cells
Abstract Loss of Sostdc1, a growth factor paralogous to Sost, causes the formation of ectopic incisors, fused molars, abnormal hair follicles, and resistance to kidney disease. Sostdc1 is expressed in the periosteum, a source of osteoblasts, fibroblasts and mesenchymal progenitor cells, which are cr...
Gespeichert in:
Veröffentlicht in: | Bone (New York, N.Y.) N.Y.), 2016-07, Vol.88 (C), p.20-30 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30 |
---|---|
container_issue | C |
container_start_page | 20 |
container_title | Bone (New York, N.Y.) |
container_volume | 88 |
creator | Collette, Nicole M Yee, Cristal S Hum, Nicholas R Murugesh, Deepa K Christiansen, Blaine A Xie, LiQin Economides, Aris N Manilay, Jennifer O Robling, Alexander G Loots, Gabriela G |
description | Abstract Loss of Sostdc1, a growth factor paralogous to Sost, causes the formation of ectopic incisors, fused molars, abnormal hair follicles, and resistance to kidney disease. Sostdc1 is expressed in the periosteum, a source of osteoblasts, fibroblasts and mesenchymal progenitor cells, which are critically important for fracture repair. Here, we investigated the role of Sostdc1 in bone metabolism and fracture repair. Mice lacking Sostdc1 ( Sostdc1 - / - ) had a low bone mass phenotype associated with loss of trabecular bone in both lumbar vertebrae and in the appendicular skeleton. In contrast, Sostdc1 - / - cortical bone measurements revealed larger bones with higher BMD, suggesting that Sostdc1 exerts differential effects on cortical and trabecular bone. Mid-diaphyseal femoral fractures induced in Sostdc1 - / - mice showed that the periosteal population normally positive for Sostdc1 rapidly expands during periosteal thickening and these cells migrate into the fracture callus at 3 days post fracture. Quantitative analysis of mesenchymal stem cell (MSC) and osteoblast populations determined that MSCs express Sostdc1 , and that Sostdc1 - / - 5 day calluses harbor > 2-fold more MSCs than fractured wildtype controls. Histologically a fraction of Sostdc1 -positive cells also expressed nestin and α-smooth muscle actin, suggesting that Sostdc1 marks a population of osteochondral progenitor cells that actively participate in callus formation and bone repair. Elevated numbers of MSCs in D5 calluses resulted in a larger, more vascularized cartilage callus at day 7, and a more rapid turnover of cartilage with significantly more remodeled bone and a thicker cortical shell at 21 days post fracture. These data support accelerated or enhanced bone formation/remodeling of the callus in Sostdc1 - / - mice, suggesting that Sostdc1 may promote and maintain mesenchymal stem cell quiescence in the periosteum. |
doi_str_mv | 10.1016/j.bone.2016.04.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6277141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S8756328216300904</els_id><sourcerecordid>1808688002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c570t-72147f657704d30f14e587b9d093c1940de2d7f13263c1edd4bd5bf43ae228f3</originalsourceid><addsrcrecordid>eNqNUk1v1DAQjRCILoU_wAFZnLhkGX8kdiRUqVpailREpe3dcpxJ10sSL7a3Yv89jrZUwAFx8oz85tlv3iuK1xSWFGj9frts_YRLlusliCVA9aRYUCV5yWTNnxYLJau65Eyxk-JFjFsA4I2kz4sTJimwSshF4dc-ps5S8hF7Zx1O9kDOrcUBg0kYyWUwNu0Dkis0g5vuSHsgN8GPPs1N2iC5-LEzU3R-Ir4nNxhcJsxY8gVjZtscxlyvE45khcMQXxbPejNEfPVwnha3lxe3q6vy-uunz6vz69JWElIpGRWyryspQXQceiqwUrJtOmi4pY2ADlkne8pZnXvsOtF2VdsLbpAx1fPT4uxIu9u3I3YWpxTMoHfBjSYctDdO_3kzuY2-8_e6ZlJSQTPB2yNBVuN0tC6h3Vg_TWiTppxWqmIZ9O7hleC_7zEmPbqYdzeYCf0-aqpA1UoB_AdUNpWqKUiVoewItcHHGLB__DYFPRuvt3o2Xs_GaxA6G5-H3vwu-HHkl9MZ8OEIwLz1e4dhFpUNws6FWVPn3b_5z_4atzkOzprhGx4wbv0-TNlPTXVkGvR6jt6cPFpzgAYE_wnxVdSe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1795861078</pqid></control><display><type>article</type><title>Sostdc1 Deficiency Accelerates Fracture Healing by Promoting the Expansion of Periosteal Mesenchymal Stem Cells</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Collette, Nicole M ; Yee, Cristal S ; Hum, Nicholas R ; Murugesh, Deepa K ; Christiansen, Blaine A ; Xie, LiQin ; Economides, Aris N ; Manilay, Jennifer O ; Robling, Alexander G ; Loots, Gabriela G</creator><creatorcontrib>Collette, Nicole M ; Yee, Cristal S ; Hum, Nicholas R ; Murugesh, Deepa K ; Christiansen, Blaine A ; Xie, LiQin ; Economides, Aris N ; Manilay, Jennifer O ; Robling, Alexander G ; Loots, Gabriela G ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>Abstract Loss of Sostdc1, a growth factor paralogous to Sost, causes the formation of ectopic incisors, fused molars, abnormal hair follicles, and resistance to kidney disease. Sostdc1 is expressed in the periosteum, a source of osteoblasts, fibroblasts and mesenchymal progenitor cells, which are critically important for fracture repair. Here, we investigated the role of Sostdc1 in bone metabolism and fracture repair. Mice lacking Sostdc1 ( Sostdc1 - / - ) had a low bone mass phenotype associated with loss of trabecular bone in both lumbar vertebrae and in the appendicular skeleton. In contrast, Sostdc1 - / - cortical bone measurements revealed larger bones with higher BMD, suggesting that Sostdc1 exerts differential effects on cortical and trabecular bone. Mid-diaphyseal femoral fractures induced in Sostdc1 - / - mice showed that the periosteal population normally positive for Sostdc1 rapidly expands during periosteal thickening and these cells migrate into the fracture callus at 3 days post fracture. Quantitative analysis of mesenchymal stem cell (MSC) and osteoblast populations determined that MSCs express Sostdc1 , and that Sostdc1 - / - 5 day calluses harbor > 2-fold more MSCs than fractured wildtype controls. Histologically a fraction of Sostdc1 -positive cells also expressed nestin and α-smooth muscle actin, suggesting that Sostdc1 marks a population of osteochondral progenitor cells that actively participate in callus formation and bone repair. Elevated numbers of MSCs in D5 calluses resulted in a larger, more vascularized cartilage callus at day 7, and a more rapid turnover of cartilage with significantly more remodeled bone and a thicker cortical shell at 21 days post fracture. These data support accelerated or enhanced bone formation/remodeling of the callus in Sostdc1 - / - mice, suggesting that Sostdc1 may promote and maintain mesenchymal stem cell quiescence in the periosteum.</description><identifier>ISSN: 8756-3282</identifier><identifier>EISSN: 1873-2763</identifier><identifier>DOI: 10.1016/j.bone.2016.04.005</identifier><identifier>PMID: 27102547</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Actins - metabolism ; Animals ; BASIC BIOLOGICAL SCIENCES ; Biomechanical Phenomena ; Bone Morphogenetic Proteins - deficiency ; Bone Morphogenetic Proteins - metabolism ; Bone regeneration ; Bony Callus - pathology ; Calcification, Physiologic ; Cancellous Bone - diagnostic imaging ; Cancellous Bone - pathology ; Cell Differentiation ; Cell Proliferation ; Cortical Bone - diagnostic imaging ; Cortical Bone - pathology ; Ectodin ; Femur - pathology ; Fracture Healing ; Fracture repair ; Gene Deletion ; Mesenchymal Stromal Cells - cytology ; Mice, Inbred C57BL ; Nestin - metabolism ; Organ Size ; Orthopedics ; Osteoblasts - metabolism ; Osteogenesis ; Periosteum ; Periosteum - cytology ; Phenotype ; Sost ; Sost-like ; Sostdc1 ; Sp7 Transcription Factor - metabolism ; Stem Cells - metabolism ; Usag-1 ; Wise ; Wnt signaling ; Wnt Signaling Pathway ; X-Ray Microtomography</subject><ispartof>Bone (New York, N.Y.), 2016-07, Vol.88 (C), p.20-30</ispartof><rights>2016 The Authors</rights><rights>Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c570t-72147f657704d30f14e587b9d093c1940de2d7f13263c1edd4bd5bf43ae228f3</citedby><cites>FETCH-LOGICAL-c570t-72147f657704d30f14e587b9d093c1940de2d7f13263c1edd4bd5bf43ae228f3</cites><orcidid>0000-0001-9546-5561 ; 0000000195465561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bone.2016.04.005$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27102547$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1315852$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Collette, Nicole M</creatorcontrib><creatorcontrib>Yee, Cristal S</creatorcontrib><creatorcontrib>Hum, Nicholas R</creatorcontrib><creatorcontrib>Murugesh, Deepa K</creatorcontrib><creatorcontrib>Christiansen, Blaine A</creatorcontrib><creatorcontrib>Xie, LiQin</creatorcontrib><creatorcontrib>Economides, Aris N</creatorcontrib><creatorcontrib>Manilay, Jennifer O</creatorcontrib><creatorcontrib>Robling, Alexander G</creatorcontrib><creatorcontrib>Loots, Gabriela G</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Sostdc1 Deficiency Accelerates Fracture Healing by Promoting the Expansion of Periosteal Mesenchymal Stem Cells</title><title>Bone (New York, N.Y.)</title><addtitle>Bone</addtitle><description>Abstract Loss of Sostdc1, a growth factor paralogous to Sost, causes the formation of ectopic incisors, fused molars, abnormal hair follicles, and resistance to kidney disease. Sostdc1 is expressed in the periosteum, a source of osteoblasts, fibroblasts and mesenchymal progenitor cells, which are critically important for fracture repair. Here, we investigated the role of Sostdc1 in bone metabolism and fracture repair. Mice lacking Sostdc1 ( Sostdc1 - / - ) had a low bone mass phenotype associated with loss of trabecular bone in both lumbar vertebrae and in the appendicular skeleton. In contrast, Sostdc1 - / - cortical bone measurements revealed larger bones with higher BMD, suggesting that Sostdc1 exerts differential effects on cortical and trabecular bone. Mid-diaphyseal femoral fractures induced in Sostdc1 - / - mice showed that the periosteal population normally positive for Sostdc1 rapidly expands during periosteal thickening and these cells migrate into the fracture callus at 3 days post fracture. Quantitative analysis of mesenchymal stem cell (MSC) and osteoblast populations determined that MSCs express Sostdc1 , and that Sostdc1 - / - 5 day calluses harbor > 2-fold more MSCs than fractured wildtype controls. Histologically a fraction of Sostdc1 -positive cells also expressed nestin and α-smooth muscle actin, suggesting that Sostdc1 marks a population of osteochondral progenitor cells that actively participate in callus formation and bone repair. Elevated numbers of MSCs in D5 calluses resulted in a larger, more vascularized cartilage callus at day 7, and a more rapid turnover of cartilage with significantly more remodeled bone and a thicker cortical shell at 21 days post fracture. These data support accelerated or enhanced bone formation/remodeling of the callus in Sostdc1 - / - mice, suggesting that Sostdc1 may promote and maintain mesenchymal stem cell quiescence in the periosteum.</description><subject>Actins - metabolism</subject><subject>Animals</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biomechanical Phenomena</subject><subject>Bone Morphogenetic Proteins - deficiency</subject><subject>Bone Morphogenetic Proteins - metabolism</subject><subject>Bone regeneration</subject><subject>Bony Callus - pathology</subject><subject>Calcification, Physiologic</subject><subject>Cancellous Bone - diagnostic imaging</subject><subject>Cancellous Bone - pathology</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Cortical Bone - diagnostic imaging</subject><subject>Cortical Bone - pathology</subject><subject>Ectodin</subject><subject>Femur - pathology</subject><subject>Fracture Healing</subject><subject>Fracture repair</subject><subject>Gene Deletion</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mice, Inbred C57BL</subject><subject>Nestin - metabolism</subject><subject>Organ Size</subject><subject>Orthopedics</subject><subject>Osteoblasts - metabolism</subject><subject>Osteogenesis</subject><subject>Periosteum</subject><subject>Periosteum - cytology</subject><subject>Phenotype</subject><subject>Sost</subject><subject>Sost-like</subject><subject>Sostdc1</subject><subject>Sp7 Transcription Factor - metabolism</subject><subject>Stem Cells - metabolism</subject><subject>Usag-1</subject><subject>Wise</subject><subject>Wnt signaling</subject><subject>Wnt Signaling Pathway</subject><subject>X-Ray Microtomography</subject><issn>8756-3282</issn><issn>1873-2763</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUk1v1DAQjRCILoU_wAFZnLhkGX8kdiRUqVpailREpe3dcpxJ10sSL7a3Yv89jrZUwAFx8oz85tlv3iuK1xSWFGj9frts_YRLlusliCVA9aRYUCV5yWTNnxYLJau65Eyxk-JFjFsA4I2kz4sTJimwSshF4dc-ps5S8hF7Zx1O9kDOrcUBg0kYyWUwNu0Dkis0g5vuSHsgN8GPPs1N2iC5-LEzU3R-Ir4nNxhcJsxY8gVjZtscxlyvE45khcMQXxbPejNEfPVwnha3lxe3q6vy-uunz6vz69JWElIpGRWyryspQXQceiqwUrJtOmi4pY2ADlkne8pZnXvsOtF2VdsLbpAx1fPT4uxIu9u3I3YWpxTMoHfBjSYctDdO_3kzuY2-8_e6ZlJSQTPB2yNBVuN0tC6h3Vg_TWiTppxWqmIZ9O7hleC_7zEmPbqYdzeYCf0-aqpA1UoB_AdUNpWqKUiVoewItcHHGLB__DYFPRuvt3o2Xs_GaxA6G5-H3vwu-HHkl9MZ8OEIwLz1e4dhFpUNws6FWVPn3b_5z_4atzkOzprhGx4wbv0-TNlPTXVkGvR6jt6cPFpzgAYE_wnxVdSe</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Collette, Nicole M</creator><creator>Yee, Cristal S</creator><creator>Hum, Nicholas R</creator><creator>Murugesh, Deepa K</creator><creator>Christiansen, Blaine A</creator><creator>Xie, LiQin</creator><creator>Economides, Aris N</creator><creator>Manilay, Jennifer O</creator><creator>Robling, Alexander G</creator><creator>Loots, Gabriela G</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QP</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9546-5561</orcidid><orcidid>https://orcid.org/0000000195465561</orcidid></search><sort><creationdate>20160701</creationdate><title>Sostdc1 Deficiency Accelerates Fracture Healing by Promoting the Expansion of Periosteal Mesenchymal Stem Cells</title><author>Collette, Nicole M ; Yee, Cristal S ; Hum, Nicholas R ; Murugesh, Deepa K ; Christiansen, Blaine A ; Xie, LiQin ; Economides, Aris N ; Manilay, Jennifer O ; Robling, Alexander G ; Loots, Gabriela G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c570t-72147f657704d30f14e587b9d093c1940de2d7f13263c1edd4bd5bf43ae228f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Actins - metabolism</topic><topic>Animals</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biomechanical Phenomena</topic><topic>Bone Morphogenetic Proteins - deficiency</topic><topic>Bone Morphogenetic Proteins - metabolism</topic><topic>Bone regeneration</topic><topic>Bony Callus - pathology</topic><topic>Calcification, Physiologic</topic><topic>Cancellous Bone - diagnostic imaging</topic><topic>Cancellous Bone - pathology</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Cortical Bone - diagnostic imaging</topic><topic>Cortical Bone - pathology</topic><topic>Ectodin</topic><topic>Femur - pathology</topic><topic>Fracture Healing</topic><topic>Fracture repair</topic><topic>Gene Deletion</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mice, Inbred C57BL</topic><topic>Nestin - metabolism</topic><topic>Organ Size</topic><topic>Orthopedics</topic><topic>Osteoblasts - metabolism</topic><topic>Osteogenesis</topic><topic>Periosteum</topic><topic>Periosteum - cytology</topic><topic>Phenotype</topic><topic>Sost</topic><topic>Sost-like</topic><topic>Sostdc1</topic><topic>Sp7 Transcription Factor - metabolism</topic><topic>Stem Cells - metabolism</topic><topic>Usag-1</topic><topic>Wise</topic><topic>Wnt signaling</topic><topic>Wnt Signaling Pathway</topic><topic>X-Ray Microtomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Collette, Nicole M</creatorcontrib><creatorcontrib>Yee, Cristal S</creatorcontrib><creatorcontrib>Hum, Nicholas R</creatorcontrib><creatorcontrib>Murugesh, Deepa K</creatorcontrib><creatorcontrib>Christiansen, Blaine A</creatorcontrib><creatorcontrib>Xie, LiQin</creatorcontrib><creatorcontrib>Economides, Aris N</creatorcontrib><creatorcontrib>Manilay, Jennifer O</creatorcontrib><creatorcontrib>Robling, Alexander G</creatorcontrib><creatorcontrib>Loots, Gabriela G</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bone (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collette, Nicole M</au><au>Yee, Cristal S</au><au>Hum, Nicholas R</au><au>Murugesh, Deepa K</au><au>Christiansen, Blaine A</au><au>Xie, LiQin</au><au>Economides, Aris N</au><au>Manilay, Jennifer O</au><au>Robling, Alexander G</au><au>Loots, Gabriela G</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sostdc1 Deficiency Accelerates Fracture Healing by Promoting the Expansion of Periosteal Mesenchymal Stem Cells</atitle><jtitle>Bone (New York, N.Y.)</jtitle><addtitle>Bone</addtitle><date>2016-07-01</date><risdate>2016</risdate><volume>88</volume><issue>C</issue><spage>20</spage><epage>30</epage><pages>20-30</pages><issn>8756-3282</issn><eissn>1873-2763</eissn><abstract>Abstract Loss of Sostdc1, a growth factor paralogous to Sost, causes the formation of ectopic incisors, fused molars, abnormal hair follicles, and resistance to kidney disease. Sostdc1 is expressed in the periosteum, a source of osteoblasts, fibroblasts and mesenchymal progenitor cells, which are critically important for fracture repair. Here, we investigated the role of Sostdc1 in bone metabolism and fracture repair. Mice lacking Sostdc1 ( Sostdc1 - / - ) had a low bone mass phenotype associated with loss of trabecular bone in both lumbar vertebrae and in the appendicular skeleton. In contrast, Sostdc1 - / - cortical bone measurements revealed larger bones with higher BMD, suggesting that Sostdc1 exerts differential effects on cortical and trabecular bone. Mid-diaphyseal femoral fractures induced in Sostdc1 - / - mice showed that the periosteal population normally positive for Sostdc1 rapidly expands during periosteal thickening and these cells migrate into the fracture callus at 3 days post fracture. Quantitative analysis of mesenchymal stem cell (MSC) and osteoblast populations determined that MSCs express Sostdc1 , and that Sostdc1 - / - 5 day calluses harbor > 2-fold more MSCs than fractured wildtype controls. Histologically a fraction of Sostdc1 -positive cells also expressed nestin and α-smooth muscle actin, suggesting that Sostdc1 marks a population of osteochondral progenitor cells that actively participate in callus formation and bone repair. Elevated numbers of MSCs in D5 calluses resulted in a larger, more vascularized cartilage callus at day 7, and a more rapid turnover of cartilage with significantly more remodeled bone and a thicker cortical shell at 21 days post fracture. These data support accelerated or enhanced bone formation/remodeling of the callus in Sostdc1 - / - mice, suggesting that Sostdc1 may promote and maintain mesenchymal stem cell quiescence in the periosteum.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27102547</pmid><doi>10.1016/j.bone.2016.04.005</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9546-5561</orcidid><orcidid>https://orcid.org/0000000195465561</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-3282 |
ispartof | Bone (New York, N.Y.), 2016-07, Vol.88 (C), p.20-30 |
issn | 8756-3282 1873-2763 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6277141 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Actins - metabolism Animals BASIC BIOLOGICAL SCIENCES Biomechanical Phenomena Bone Morphogenetic Proteins - deficiency Bone Morphogenetic Proteins - metabolism Bone regeneration Bony Callus - pathology Calcification, Physiologic Cancellous Bone - diagnostic imaging Cancellous Bone - pathology Cell Differentiation Cell Proliferation Cortical Bone - diagnostic imaging Cortical Bone - pathology Ectodin Femur - pathology Fracture Healing Fracture repair Gene Deletion Mesenchymal Stromal Cells - cytology Mice, Inbred C57BL Nestin - metabolism Organ Size Orthopedics Osteoblasts - metabolism Osteogenesis Periosteum Periosteum - cytology Phenotype Sost Sost-like Sostdc1 Sp7 Transcription Factor - metabolism Stem Cells - metabolism Usag-1 Wise Wnt signaling Wnt Signaling Pathway X-Ray Microtomography |
title | Sostdc1 Deficiency Accelerates Fracture Healing by Promoting the Expansion of Periosteal Mesenchymal Stem Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A33%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sostdc1%20Deficiency%20Accelerates%20Fracture%20Healing%20by%20Promoting%20the%20Expansion%20of%20Periosteal%20Mesenchymal%20Stem%20Cells&rft.jtitle=Bone%20(New%20York,%20N.Y.)&rft.au=Collette,%20Nicole%20M&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2016-07-01&rft.volume=88&rft.issue=C&rft.spage=20&rft.epage=30&rft.pages=20-30&rft.issn=8756-3282&rft.eissn=1873-2763&rft_id=info:doi/10.1016/j.bone.2016.04.005&rft_dat=%3Cproquest_pubme%3E1808688002%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1795861078&rft_id=info:pmid/27102547&rft_els_id=S8756328216300904&rfr_iscdi=true |