iTRAQ-Based Quantitative Proteome Revealed Metabolic Changes in Winter Turnip Rape ( Brassica rapa L.) under Cold Stress

Winter turnip rape ( L.) is a large-scale winter-only oil crop cultivated in Northwest China. However, its cold-resistant molecular mechanism remains inadequate. Studying the cold adaptation mechanisms of winter turnip rape based on the proteomic technique of isobaric tags for relative and absolute...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2018-10, Vol.19 (11), p.3346
Hauptverfasser: Xu, Yaozhao, Zeng, Xiucun, Wu, Jian, Zhang, Fenqin, Li, Caixia, Jiang, Jinjin, Wang, Youping, Sun, Wancang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 3346
container_title International journal of molecular sciences
container_volume 19
creator Xu, Yaozhao
Zeng, Xiucun
Wu, Jian
Zhang, Fenqin
Li, Caixia
Jiang, Jinjin
Wang, Youping
Sun, Wancang
description Winter turnip rape ( L.) is a large-scale winter-only oil crop cultivated in Northwest China. However, its cold-resistant molecular mechanism remains inadequate. Studying the cold adaptation mechanisms of winter turnip rape based on the proteomic technique of isobaric tags for relative and absolute quantification (iTRAQ) offers a solution to this problem. Under cold stress (-4 °C for eight hours), 51 and 94 differently accumulated proteins (DAPs) in Longyou 7 (cold-tolerant) and Tianyou 4 (cold-sensitive) were identified, respectively. These DAPs were classified into 38 gene ontology (GO) term categories, such as metabolic process, cellular process, catalytic activity, and binding. The 142 DAPs identified between the two cold-stressed cultivars were classified into 40 GO terms, including cellular process, metabolic process, cell, catalytic activity, and binding. Kyoto Encyclopedia of Genes and Genomes enrichment analysis indicated that the DAPs participated in 10 pathways. The abundance of most protein functions in ribosomes, carbon metabolism, photosynthesis, and energy metabolism including the citrate cycle, pentose phosphate pathway, and glyoxylate and dicarboxylate metabolism decreased, and the proteins that participate in photosynthesis⁻antenna and isoflavonoid biosynthesis increased in cold-stressed Longyou 7 compared with those in cold-stressed Tianyou 4. The expression pattern of genes encoding the 10 significant DAPs was consistent with the iTRAQ data. This study provides new information on the proteomic differences between the leaves of Longyou 7 and Tianyou 4 plants and explains the possible molecular mechanisms of cold-stress adaptation in .
doi_str_mv 10.3390/ijms19113346
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6274765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582832974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-73625d7999c91d699a72a10e023b50835c1c3c5e3ebeed797e6b5a94acb9e2f83</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxSMEoqVw44wscSkSKf5I4vhSqV3xUWkr6LKIozVxZluvEjvYzgr--xq1VFtOM9L76WnevKJ4zeiJEIp-sNsxMsWYEFXzpDhkFeclpY18urcfFC9i3FLKBa_V8-JAUCEFa-hh8duuV2dX5TlE7MnVDC7ZBMnukHwLPqEfkaxwhzBk-RITdH6whixuwF1jJNaRn9YlDGQ9B2cnsoIJyTE5DxCjNUACTECWJ-_I7PpMLfzQk-8pYIwvi2cbGCK-up9HxY9PH9eLL-Xy6-eLxdmyNBXjqZSi4XUvlVJGsb5RCiQHRjFH6WraitowI0yNAjvEzElsuhpUBaZTyDetOCpO73ynuRuxN-hSgEFPwY4Q_mgPVj9WnL3R136nGy4r2dTZ4PjeIPhfM8akRxsNDgM49HPUnHHJVKs4z-jb_9Ctz3_J8TSvW94KrmSVqfd3lAk-xoCbh2MY1X8r1fuVZvzNfoAH-F-H4hZJApy5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582832974</pqid></control><display><type>article</type><title>iTRAQ-Based Quantitative Proteome Revealed Metabolic Changes in Winter Turnip Rape ( Brassica rapa L.) under Cold Stress</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Xu, Yaozhao ; Zeng, Xiucun ; Wu, Jian ; Zhang, Fenqin ; Li, Caixia ; Jiang, Jinjin ; Wang, Youping ; Sun, Wancang</creator><creatorcontrib>Xu, Yaozhao ; Zeng, Xiucun ; Wu, Jian ; Zhang, Fenqin ; Li, Caixia ; Jiang, Jinjin ; Wang, Youping ; Sun, Wancang</creatorcontrib><description>Winter turnip rape ( L.) is a large-scale winter-only oil crop cultivated in Northwest China. However, its cold-resistant molecular mechanism remains inadequate. Studying the cold adaptation mechanisms of winter turnip rape based on the proteomic technique of isobaric tags for relative and absolute quantification (iTRAQ) offers a solution to this problem. Under cold stress (-4 °C for eight hours), 51 and 94 differently accumulated proteins (DAPs) in Longyou 7 (cold-tolerant) and Tianyou 4 (cold-sensitive) were identified, respectively. These DAPs were classified into 38 gene ontology (GO) term categories, such as metabolic process, cellular process, catalytic activity, and binding. The 142 DAPs identified between the two cold-stressed cultivars were classified into 40 GO terms, including cellular process, metabolic process, cell, catalytic activity, and binding. Kyoto Encyclopedia of Genes and Genomes enrichment analysis indicated that the DAPs participated in 10 pathways. The abundance of most protein functions in ribosomes, carbon metabolism, photosynthesis, and energy metabolism including the citrate cycle, pentose phosphate pathway, and glyoxylate and dicarboxylate metabolism decreased, and the proteins that participate in photosynthesis⁻antenna and isoflavonoid biosynthesis increased in cold-stressed Longyou 7 compared with those in cold-stressed Tianyou 4. The expression pattern of genes encoding the 10 significant DAPs was consistent with the iTRAQ data. This study provides new information on the proteomic differences between the leaves of Longyou 7 and Tianyou 4 plants and explains the possible molecular mechanisms of cold-stress adaptation in .</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms19113346</identifier><identifier>PMID: 30373160</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adaptation ; Binding ; Biosynthesis ; Brassica rapa ; Brassica rapa - genetics ; Brassica rapa - physiology ; Carbon ; Catalytic activity ; Cell division ; Citric acid ; Cold ; Cold-Shock Response ; Cultivars ; Encyclopedias ; Energy metabolism ; Gene expression ; Gene Expression Regulation, Plant ; Gene Ontology ; Genes ; Genomes ; Low temperature resistance ; Metabolic Networks and Pathways ; Metabolism ; Molecular modelling ; Oilseeds ; Pentose ; Pentose phosphate pathway ; Photosynthesis ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Principal components analysis ; Protein turnover ; Proteins ; Proteomes ; Proteomics ; Proteomics - methods ; Rape ; Ribosomes ; Turnips</subject><ispartof>International journal of molecular sciences, 2018-10, Vol.19 (11), p.3346</ispartof><rights>2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-73625d7999c91d699a72a10e023b50835c1c3c5e3ebeed797e6b5a94acb9e2f83</citedby><cites>FETCH-LOGICAL-c412t-73625d7999c91d699a72a10e023b50835c1c3c5e3ebeed797e6b5a94acb9e2f83</cites><orcidid>0000-0002-5350-8938 ; 0000-0002-9176-0915 ; 0000-0002-5765-6452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274765/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274765/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30373160$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Yaozhao</creatorcontrib><creatorcontrib>Zeng, Xiucun</creatorcontrib><creatorcontrib>Wu, Jian</creatorcontrib><creatorcontrib>Zhang, Fenqin</creatorcontrib><creatorcontrib>Li, Caixia</creatorcontrib><creatorcontrib>Jiang, Jinjin</creatorcontrib><creatorcontrib>Wang, Youping</creatorcontrib><creatorcontrib>Sun, Wancang</creatorcontrib><title>iTRAQ-Based Quantitative Proteome Revealed Metabolic Changes in Winter Turnip Rape ( Brassica rapa L.) under Cold Stress</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Winter turnip rape ( L.) is a large-scale winter-only oil crop cultivated in Northwest China. However, its cold-resistant molecular mechanism remains inadequate. Studying the cold adaptation mechanisms of winter turnip rape based on the proteomic technique of isobaric tags for relative and absolute quantification (iTRAQ) offers a solution to this problem. Under cold stress (-4 °C for eight hours), 51 and 94 differently accumulated proteins (DAPs) in Longyou 7 (cold-tolerant) and Tianyou 4 (cold-sensitive) were identified, respectively. These DAPs were classified into 38 gene ontology (GO) term categories, such as metabolic process, cellular process, catalytic activity, and binding. The 142 DAPs identified between the two cold-stressed cultivars were classified into 40 GO terms, including cellular process, metabolic process, cell, catalytic activity, and binding. Kyoto Encyclopedia of Genes and Genomes enrichment analysis indicated that the DAPs participated in 10 pathways. The abundance of most protein functions in ribosomes, carbon metabolism, photosynthesis, and energy metabolism including the citrate cycle, pentose phosphate pathway, and glyoxylate and dicarboxylate metabolism decreased, and the proteins that participate in photosynthesis⁻antenna and isoflavonoid biosynthesis increased in cold-stressed Longyou 7 compared with those in cold-stressed Tianyou 4. The expression pattern of genes encoding the 10 significant DAPs was consistent with the iTRAQ data. This study provides new information on the proteomic differences between the leaves of Longyou 7 and Tianyou 4 plants and explains the possible molecular mechanisms of cold-stress adaptation in .</description><subject>Adaptation</subject><subject>Binding</subject><subject>Biosynthesis</subject><subject>Brassica rapa</subject><subject>Brassica rapa - genetics</subject><subject>Brassica rapa - physiology</subject><subject>Carbon</subject><subject>Catalytic activity</subject><subject>Cell division</subject><subject>Citric acid</subject><subject>Cold</subject><subject>Cold-Shock Response</subject><subject>Cultivars</subject><subject>Encyclopedias</subject><subject>Energy metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene Ontology</subject><subject>Genes</subject><subject>Genomes</subject><subject>Low temperature resistance</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolism</subject><subject>Molecular modelling</subject><subject>Oilseeds</subject><subject>Pentose</subject><subject>Pentose phosphate pathway</subject><subject>Photosynthesis</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Principal components analysis</subject><subject>Protein turnover</subject><subject>Proteins</subject><subject>Proteomes</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>Rape</subject><subject>Ribosomes</subject><subject>Turnips</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkc1v1DAQxSMEoqVw44wscSkSKf5I4vhSqV3xUWkr6LKIozVxZluvEjvYzgr--xq1VFtOM9L76WnevKJ4zeiJEIp-sNsxMsWYEFXzpDhkFeclpY18urcfFC9i3FLKBa_V8-JAUCEFa-hh8duuV2dX5TlE7MnVDC7ZBMnukHwLPqEfkaxwhzBk-RITdH6whixuwF1jJNaRn9YlDGQ9B2cnsoIJyTE5DxCjNUACTECWJ-_I7PpMLfzQk-8pYIwvi2cbGCK-up9HxY9PH9eLL-Xy6-eLxdmyNBXjqZSi4XUvlVJGsb5RCiQHRjFH6WraitowI0yNAjvEzElsuhpUBaZTyDetOCpO73ynuRuxN-hSgEFPwY4Q_mgPVj9WnL3R136nGy4r2dTZ4PjeIPhfM8akRxsNDgM49HPUnHHJVKs4z-jb_9Ctz3_J8TSvW94KrmSVqfd3lAk-xoCbh2MY1X8r1fuVZvzNfoAH-F-H4hZJApy5</recordid><startdate>20181026</startdate><enddate>20181026</enddate><creator>Xu, Yaozhao</creator><creator>Zeng, Xiucun</creator><creator>Wu, Jian</creator><creator>Zhang, Fenqin</creator><creator>Li, Caixia</creator><creator>Jiang, Jinjin</creator><creator>Wang, Youping</creator><creator>Sun, Wancang</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5350-8938</orcidid><orcidid>https://orcid.org/0000-0002-9176-0915</orcidid><orcidid>https://orcid.org/0000-0002-5765-6452</orcidid></search><sort><creationdate>20181026</creationdate><title>iTRAQ-Based Quantitative Proteome Revealed Metabolic Changes in Winter Turnip Rape ( Brassica rapa L.) under Cold Stress</title><author>Xu, Yaozhao ; Zeng, Xiucun ; Wu, Jian ; Zhang, Fenqin ; Li, Caixia ; Jiang, Jinjin ; Wang, Youping ; Sun, Wancang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-73625d7999c91d699a72a10e023b50835c1c3c5e3ebeed797e6b5a94acb9e2f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptation</topic><topic>Binding</topic><topic>Biosynthesis</topic><topic>Brassica rapa</topic><topic>Brassica rapa - genetics</topic><topic>Brassica rapa - physiology</topic><topic>Carbon</topic><topic>Catalytic activity</topic><topic>Cell division</topic><topic>Citric acid</topic><topic>Cold</topic><topic>Cold-Shock Response</topic><topic>Cultivars</topic><topic>Encyclopedias</topic><topic>Energy metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene Ontology</topic><topic>Genes</topic><topic>Genomes</topic><topic>Low temperature resistance</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolism</topic><topic>Molecular modelling</topic><topic>Oilseeds</topic><topic>Pentose</topic><topic>Pentose phosphate pathway</topic><topic>Photosynthesis</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Principal components analysis</topic><topic>Protein turnover</topic><topic>Proteins</topic><topic>Proteomes</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>Rape</topic><topic>Ribosomes</topic><topic>Turnips</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yaozhao</creatorcontrib><creatorcontrib>Zeng, Xiucun</creatorcontrib><creatorcontrib>Wu, Jian</creatorcontrib><creatorcontrib>Zhang, Fenqin</creatorcontrib><creatorcontrib>Li, Caixia</creatorcontrib><creatorcontrib>Jiang, Jinjin</creatorcontrib><creatorcontrib>Wang, Youping</creatorcontrib><creatorcontrib>Sun, Wancang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yaozhao</au><au>Zeng, Xiucun</au><au>Wu, Jian</au><au>Zhang, Fenqin</au><au>Li, Caixia</au><au>Jiang, Jinjin</au><au>Wang, Youping</au><au>Sun, Wancang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>iTRAQ-Based Quantitative Proteome Revealed Metabolic Changes in Winter Turnip Rape ( Brassica rapa L.) under Cold Stress</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2018-10-26</date><risdate>2018</risdate><volume>19</volume><issue>11</issue><spage>3346</spage><pages>3346-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Winter turnip rape ( L.) is a large-scale winter-only oil crop cultivated in Northwest China. However, its cold-resistant molecular mechanism remains inadequate. Studying the cold adaptation mechanisms of winter turnip rape based on the proteomic technique of isobaric tags for relative and absolute quantification (iTRAQ) offers a solution to this problem. Under cold stress (-4 °C for eight hours), 51 and 94 differently accumulated proteins (DAPs) in Longyou 7 (cold-tolerant) and Tianyou 4 (cold-sensitive) were identified, respectively. These DAPs were classified into 38 gene ontology (GO) term categories, such as metabolic process, cellular process, catalytic activity, and binding. The 142 DAPs identified between the two cold-stressed cultivars were classified into 40 GO terms, including cellular process, metabolic process, cell, catalytic activity, and binding. Kyoto Encyclopedia of Genes and Genomes enrichment analysis indicated that the DAPs participated in 10 pathways. The abundance of most protein functions in ribosomes, carbon metabolism, photosynthesis, and energy metabolism including the citrate cycle, pentose phosphate pathway, and glyoxylate and dicarboxylate metabolism decreased, and the proteins that participate in photosynthesis⁻antenna and isoflavonoid biosynthesis increased in cold-stressed Longyou 7 compared with those in cold-stressed Tianyou 4. The expression pattern of genes encoding the 10 significant DAPs was consistent with the iTRAQ data. This study provides new information on the proteomic differences between the leaves of Longyou 7 and Tianyou 4 plants and explains the possible molecular mechanisms of cold-stress adaptation in .</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30373160</pmid><doi>10.3390/ijms19113346</doi><orcidid>https://orcid.org/0000-0002-5350-8938</orcidid><orcidid>https://orcid.org/0000-0002-9176-0915</orcidid><orcidid>https://orcid.org/0000-0002-5765-6452</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2018-10, Vol.19 (11), p.3346
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6274765
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Adaptation
Binding
Biosynthesis
Brassica rapa
Brassica rapa - genetics
Brassica rapa - physiology
Carbon
Catalytic activity
Cell division
Citric acid
Cold
Cold-Shock Response
Cultivars
Encyclopedias
Energy metabolism
Gene expression
Gene Expression Regulation, Plant
Gene Ontology
Genes
Genomes
Low temperature resistance
Metabolic Networks and Pathways
Metabolism
Molecular modelling
Oilseeds
Pentose
Pentose phosphate pathway
Photosynthesis
Plant Proteins - genetics
Plant Proteins - metabolism
Principal components analysis
Protein turnover
Proteins
Proteomes
Proteomics
Proteomics - methods
Rape
Ribosomes
Turnips
title iTRAQ-Based Quantitative Proteome Revealed Metabolic Changes in Winter Turnip Rape ( Brassica rapa L.) under Cold Stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A15%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=iTRAQ-Based%20Quantitative%20Proteome%20Revealed%20Metabolic%20Changes%20in%20Winter%20Turnip%20Rape%20(%20Brassica%20rapa%20L.)%20under%20Cold%20Stress&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Xu,%20Yaozhao&rft.date=2018-10-26&rft.volume=19&rft.issue=11&rft.spage=3346&rft.pages=3346-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms19113346&rft_dat=%3Cproquest_pubme%3E2582832974%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582832974&rft_id=info:pmid/30373160&rfr_iscdi=true