A Two-Step Approach for the Design and Generation of Nanobodies

Nanobodies, the smallest possible antibody format, have become of considerable interest for biotechnological and immunotherapeutic applications. They show excellent robustness, are non-immunogenic in humans, and can easily be engineered and produced in prokaryotic hosts. Traditionally, nanobodies ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2018-11, Vol.19 (11), p.3444
Hauptverfasser: Wagner, Hanna J, Wehrle, Sarah, Weiss, Etienne, Cavallari, Marco, Weber, Wilfried
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 3444
container_title International journal of molecular sciences
container_volume 19
creator Wagner, Hanna J
Wehrle, Sarah
Weiss, Etienne
Cavallari, Marco
Weber, Wilfried
description Nanobodies, the smallest possible antibody format, have become of considerable interest for biotechnological and immunotherapeutic applications. They show excellent robustness, are non-immunogenic in humans, and can easily be engineered and produced in prokaryotic hosts. Traditionally, nanobodies are selected from camelid immune libraries involving the maintenance and treatment of animals. Recent advances have involved the generation of nanobodies from naïve or synthetic libraries. However, such approaches demand large library sizes and sophisticated selection procedures. Here, we propose an alternative, two-step approach for the design and generation of nanobodies. In a first step, complementarity-determining regions (CDRs) are grafted from conventional antibody formats onto nanobody frameworks, generating weak antigen binders. In a second step, the weak binders serve as templates to design focused synthetic phage libraries for affinity maturation. We validated this approach by grafting toxin- and hapten-specific CDRs onto frameworks derived from variable domains of camelid heavy-chain-only antibodies (VHH). We then affinity matured the hapten binder via panning of a synthetic phage library. We suggest that this strategy can complement existing immune, naïve, and synthetic library based methods, requiring neither animal experiments, nor large libraries, nor sophisticated selection protocols.
doi_str_mv 10.3390/ijms19113444
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6274671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582842908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-62480fae6119b6380f252526bc8c905aa021b867ceed80e74d9992a9c4a1af823</originalsourceid><addsrcrecordid>eNpdkctrGzEQxkVJaF699VwEuTSQbUaP1UqXFpM2DzDtoelZaLWz8Rpb2khrl_z3WeMkOGEOGka_-Uaaj5DPDL4JYeCimy8zM4wJKeUHcsgk5wWAqvZ28gNylPMcgAtemo_kQIAEYEYfkh8Tevc_Fn8H7Omk71N0fkbbmOgwQ_oTc3cfqAsNvcaAyQ1dDDS29LcLsY5Nh_mE7LdukfHT83lM_l39uru8KaZ_rm8vJ9PCS22GQnGpoXWoGDO1EmPOyzFU7bU3UDoHnNVaVR6x0YCVbIwx3BkvHXOt5uKYfN_q9qt6iY3HMCS3sH3qli492ug6-_YmdDN7H9dW8Uqqio0CZ1uB2bu2m8nUbmowLoXJUq037NfnYSk-rDAPdtllj4uFCxhX2XImoDKm5Bv09B06j6sUxlVYXmquJTegR-p8S_kUc07Yvr6Agd24aHddHPEvu599hV9sE08KWJWx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582842908</pqid></control><display><type>article</type><title>A Two-Step Approach for the Design and Generation of Nanobodies</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Wagner, Hanna J ; Wehrle, Sarah ; Weiss, Etienne ; Cavallari, Marco ; Weber, Wilfried</creator><creatorcontrib>Wagner, Hanna J ; Wehrle, Sarah ; Weiss, Etienne ; Cavallari, Marco ; Weber, Wilfried</creatorcontrib><description>Nanobodies, the smallest possible antibody format, have become of considerable interest for biotechnological and immunotherapeutic applications. They show excellent robustness, are non-immunogenic in humans, and can easily be engineered and produced in prokaryotic hosts. Traditionally, nanobodies are selected from camelid immune libraries involving the maintenance and treatment of animals. Recent advances have involved the generation of nanobodies from naïve or synthetic libraries. However, such approaches demand large library sizes and sophisticated selection procedures. Here, we propose an alternative, two-step approach for the design and generation of nanobodies. In a first step, complementarity-determining regions (CDRs) are grafted from conventional antibody formats onto nanobody frameworks, generating weak antigen binders. In a second step, the weak binders serve as templates to design focused synthetic phage libraries for affinity maturation. We validated this approach by grafting toxin- and hapten-specific CDRs onto frameworks derived from variable domains of camelid heavy-chain-only antibodies (VHH). We then affinity matured the hapten binder via panning of a synthetic phage library. We suggest that this strategy can complement existing immune, naïve, and synthetic library based methods, requiring neither animal experiments, nor large libraries, nor sophisticated selection protocols.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms19113444</identifier><identifier>PMID: 30400198</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Affinity ; Amino Acid Sequence ; Amino acids ; Animal research ; Animals ; Antibodies ; Antigens ; Antigens - metabolism ; Binding sites ; Biotechnology ; Camelus ; Chromatography ; Complementarity ; Complementarity Determining Regions ; Design ; Drug therapy ; FDA approval ; Fluorescein - metabolism ; Haptens - metabolism ; Immunogenicity ; Immunoglobulin Heavy Chains - chemistry ; Immunoglobulin Heavy Chains - metabolism ; Immunoglobulin Variable Region - chemistry ; Libraries ; Life Sciences ; Nanobodies ; Panning ; Peptide Library ; Phages ; Protein Engineering - methods ; Proteins ; Single-Domain Antibodies - biosynthesis ; Single-Domain Antibodies - chemistry ; Taxonomy ; Toxins, Biological - metabolism</subject><ispartof>International journal of molecular sciences, 2018-11, Vol.19 (11), p.3444</ispartof><rights>2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-62480fae6119b6380f252526bc8c905aa021b867ceed80e74d9992a9c4a1af823</citedby><cites>FETCH-LOGICAL-c489t-62480fae6119b6380f252526bc8c905aa021b867ceed80e74d9992a9c4a1af823</cites><orcidid>0000-0001-6622-6377</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274671/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274671/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30400198$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03041456$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wagner, Hanna J</creatorcontrib><creatorcontrib>Wehrle, Sarah</creatorcontrib><creatorcontrib>Weiss, Etienne</creatorcontrib><creatorcontrib>Cavallari, Marco</creatorcontrib><creatorcontrib>Weber, Wilfried</creatorcontrib><title>A Two-Step Approach for the Design and Generation of Nanobodies</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Nanobodies, the smallest possible antibody format, have become of considerable interest for biotechnological and immunotherapeutic applications. They show excellent robustness, are non-immunogenic in humans, and can easily be engineered and produced in prokaryotic hosts. Traditionally, nanobodies are selected from camelid immune libraries involving the maintenance and treatment of animals. Recent advances have involved the generation of nanobodies from naïve or synthetic libraries. However, such approaches demand large library sizes and sophisticated selection procedures. Here, we propose an alternative, two-step approach for the design and generation of nanobodies. In a first step, complementarity-determining regions (CDRs) are grafted from conventional antibody formats onto nanobody frameworks, generating weak antigen binders. In a second step, the weak binders serve as templates to design focused synthetic phage libraries for affinity maturation. We validated this approach by grafting toxin- and hapten-specific CDRs onto frameworks derived from variable domains of camelid heavy-chain-only antibodies (VHH). We then affinity matured the hapten binder via panning of a synthetic phage library. We suggest that this strategy can complement existing immune, naïve, and synthetic library based methods, requiring neither animal experiments, nor large libraries, nor sophisticated selection protocols.</description><subject>Affinity</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Animal research</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antigens</subject><subject>Antigens - metabolism</subject><subject>Binding sites</subject><subject>Biotechnology</subject><subject>Camelus</subject><subject>Chromatography</subject><subject>Complementarity</subject><subject>Complementarity Determining Regions</subject><subject>Design</subject><subject>Drug therapy</subject><subject>FDA approval</subject><subject>Fluorescein - metabolism</subject><subject>Haptens - metabolism</subject><subject>Immunogenicity</subject><subject>Immunoglobulin Heavy Chains - chemistry</subject><subject>Immunoglobulin Heavy Chains - metabolism</subject><subject>Immunoglobulin Variable Region - chemistry</subject><subject>Libraries</subject><subject>Life Sciences</subject><subject>Nanobodies</subject><subject>Panning</subject><subject>Peptide Library</subject><subject>Phages</subject><subject>Protein Engineering - methods</subject><subject>Proteins</subject><subject>Single-Domain Antibodies - biosynthesis</subject><subject>Single-Domain Antibodies - chemistry</subject><subject>Taxonomy</subject><subject>Toxins, Biological - metabolism</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkctrGzEQxkVJaF699VwEuTSQbUaP1UqXFpM2DzDtoelZaLWz8Rpb2khrl_z3WeMkOGEOGka_-Uaaj5DPDL4JYeCimy8zM4wJKeUHcsgk5wWAqvZ28gNylPMcgAtemo_kQIAEYEYfkh8Tevc_Fn8H7Omk71N0fkbbmOgwQ_oTc3cfqAsNvcaAyQ1dDDS29LcLsY5Nh_mE7LdukfHT83lM_l39uru8KaZ_rm8vJ9PCS22GQnGpoXWoGDO1EmPOyzFU7bU3UDoHnNVaVR6x0YCVbIwx3BkvHXOt5uKYfN_q9qt6iY3HMCS3sH3qli492ug6-_YmdDN7H9dW8Uqqio0CZ1uB2bu2m8nUbmowLoXJUq037NfnYSk-rDAPdtllj4uFCxhX2XImoDKm5Bv09B06j6sUxlVYXmquJTegR-p8S_kUc07Yvr6Agd24aHddHPEvu599hV9sE08KWJWx</recordid><startdate>20181102</startdate><enddate>20181102</enddate><creator>Wagner, Hanna J</creator><creator>Wehrle, Sarah</creator><creator>Weiss, Etienne</creator><creator>Cavallari, Marco</creator><creator>Weber, Wilfried</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6622-6377</orcidid></search><sort><creationdate>20181102</creationdate><title>A Two-Step Approach for the Design and Generation of Nanobodies</title><author>Wagner, Hanna J ; Wehrle, Sarah ; Weiss, Etienne ; Cavallari, Marco ; Weber, Wilfried</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-62480fae6119b6380f252526bc8c905aa021b867ceed80e74d9992a9c4a1af823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Affinity</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Animal research</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antigens</topic><topic>Antigens - metabolism</topic><topic>Binding sites</topic><topic>Biotechnology</topic><topic>Camelus</topic><topic>Chromatography</topic><topic>Complementarity</topic><topic>Complementarity Determining Regions</topic><topic>Design</topic><topic>Drug therapy</topic><topic>FDA approval</topic><topic>Fluorescein - metabolism</topic><topic>Haptens - metabolism</topic><topic>Immunogenicity</topic><topic>Immunoglobulin Heavy Chains - chemistry</topic><topic>Immunoglobulin Heavy Chains - metabolism</topic><topic>Immunoglobulin Variable Region - chemistry</topic><topic>Libraries</topic><topic>Life Sciences</topic><topic>Nanobodies</topic><topic>Panning</topic><topic>Peptide Library</topic><topic>Phages</topic><topic>Protein Engineering - methods</topic><topic>Proteins</topic><topic>Single-Domain Antibodies - biosynthesis</topic><topic>Single-Domain Antibodies - chemistry</topic><topic>Taxonomy</topic><topic>Toxins, Biological - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wagner, Hanna J</creatorcontrib><creatorcontrib>Wehrle, Sarah</creatorcontrib><creatorcontrib>Weiss, Etienne</creatorcontrib><creatorcontrib>Cavallari, Marco</creatorcontrib><creatorcontrib>Weber, Wilfried</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wagner, Hanna J</au><au>Wehrle, Sarah</au><au>Weiss, Etienne</au><au>Cavallari, Marco</au><au>Weber, Wilfried</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Two-Step Approach for the Design and Generation of Nanobodies</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2018-11-02</date><risdate>2018</risdate><volume>19</volume><issue>11</issue><spage>3444</spage><pages>3444-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Nanobodies, the smallest possible antibody format, have become of considerable interest for biotechnological and immunotherapeutic applications. They show excellent robustness, are non-immunogenic in humans, and can easily be engineered and produced in prokaryotic hosts. Traditionally, nanobodies are selected from camelid immune libraries involving the maintenance and treatment of animals. Recent advances have involved the generation of nanobodies from naïve or synthetic libraries. However, such approaches demand large library sizes and sophisticated selection procedures. Here, we propose an alternative, two-step approach for the design and generation of nanobodies. In a first step, complementarity-determining regions (CDRs) are grafted from conventional antibody formats onto nanobody frameworks, generating weak antigen binders. In a second step, the weak binders serve as templates to design focused synthetic phage libraries for affinity maturation. We validated this approach by grafting toxin- and hapten-specific CDRs onto frameworks derived from variable domains of camelid heavy-chain-only antibodies (VHH). We then affinity matured the hapten binder via panning of a synthetic phage library. We suggest that this strategy can complement existing immune, naïve, and synthetic library based methods, requiring neither animal experiments, nor large libraries, nor sophisticated selection protocols.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30400198</pmid><doi>10.3390/ijms19113444</doi><orcidid>https://orcid.org/0000-0001-6622-6377</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2018-11, Vol.19 (11), p.3444
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6274671
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Affinity
Amino Acid Sequence
Amino acids
Animal research
Animals
Antibodies
Antigens
Antigens - metabolism
Binding sites
Biotechnology
Camelus
Chromatography
Complementarity
Complementarity Determining Regions
Design
Drug therapy
FDA approval
Fluorescein - metabolism
Haptens - metabolism
Immunogenicity
Immunoglobulin Heavy Chains - chemistry
Immunoglobulin Heavy Chains - metabolism
Immunoglobulin Variable Region - chemistry
Libraries
Life Sciences
Nanobodies
Panning
Peptide Library
Phages
Protein Engineering - methods
Proteins
Single-Domain Antibodies - biosynthesis
Single-Domain Antibodies - chemistry
Taxonomy
Toxins, Biological - metabolism
title A Two-Step Approach for the Design and Generation of Nanobodies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A51%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Two-Step%20Approach%20for%20the%20Design%20and%20Generation%20of%20Nanobodies&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Wagner,%20Hanna%20J&rft.date=2018-11-02&rft.volume=19&rft.issue=11&rft.spage=3444&rft.pages=3444-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms19113444&rft_dat=%3Cproquest_pubme%3E2582842908%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582842908&rft_id=info:pmid/30400198&rfr_iscdi=true