Additive Nonlinear Functional Concurrent Model

We propose a flexible regression model to study the association between a functional response and multiple functional covariates that are observed on the same domain. Specifically, we relate the mean of the current response to current values of the covariates by a sum of smooth unknown bivariate fun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics and its interface 2018, Vol.11 (4), p.669-685
Hauptverfasser: Kim, Janet S, Maity, Arnab, Staicu, Ana-Maria
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 685
container_issue 4
container_start_page 669
container_title Statistics and its interface
container_volume 11
creator Kim, Janet S
Maity, Arnab
Staicu, Ana-Maria
description We propose a flexible regression model to study the association between a functional response and multiple functional covariates that are observed on the same domain. Specifically, we relate the mean of the current response to current values of the covariates by a sum of smooth unknown bivariate functions, where each of the functions depends on the current value of the covariate and the time point itself. In this framework, we develop estimation methodology that accommodates realistic scenarios where the covariates are sampled with or without error on a sparse and irregular design, and prediction that accounts for unknown model correlation structure. We also discuss the problem of testing the null hypothesis that the covariate has no association with the response. The proposed methods are evaluated numerically through simulations and two real data applications.
doi_str_mv 10.4310/SII.2018.v11.n4.a11
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6269154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2149837824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-88572c57f3f2b0daad1edbf8f8e145fea0b9401c4af3a300089c47d70e3e2ae93</originalsourceid><addsrcrecordid>eNpVkFFLwzAUhYMobk5_gSB99KX1pknb5EUYw-lg6oP6HNI00UiXzKQd-O_t2Bz6dC_cc849fAhdYsgowXDzslhkOWCWbTDOHM0kxkdojDlhacV5dXzYGR-hsxg_AUoCpDxFIwIFhhKTMcqmTWM7u9HJk3etdVqGZN471VnvZJvMvFN9CNp1yaNvdHuOToxso77Yzwl6m9-9zh7S5fP9YjZdpopC0aWMFVWuisoQk9fQSNlg3dSGGaYxLYyWUHMKWFFpiCQAwLiiVVOBJjqXmpMJut3lrvt6pRs1FAiyFetgVzJ8Cy-t-H9x9kO8-40o85Ljgg4B1_uA4L96HTuxslHptpVO-z6KHFPOSMXyrZTspCr4GIM2hzcYxJa0GEiLLWkxkBaOioH04Lr62_Dg-UVLfgDn8Hv0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2149837824</pqid></control><display><type>article</type><title>Additive Nonlinear Functional Concurrent Model</title><source>International Press Journals</source><creator>Kim, Janet S ; Maity, Arnab ; Staicu, Ana-Maria</creator><creatorcontrib>Kim, Janet S ; Maity, Arnab ; Staicu, Ana-Maria</creatorcontrib><description>We propose a flexible regression model to study the association between a functional response and multiple functional covariates that are observed on the same domain. Specifically, we relate the mean of the current response to current values of the covariates by a sum of smooth unknown bivariate functions, where each of the functions depends on the current value of the covariate and the time point itself. In this framework, we develop estimation methodology that accommodates realistic scenarios where the covariates are sampled with or without error on a sparse and irregular design, and prediction that accounts for unknown model correlation structure. We also discuss the problem of testing the null hypothesis that the covariate has no association with the response. The proposed methods are evaluated numerically through simulations and two real data applications.</description><identifier>ISSN: 1938-7989</identifier><identifier>EISSN: 1938-7997</identifier><identifier>DOI: 10.4310/SII.2018.v11.n4.a11</identifier><identifier>PMID: 30510613</identifier><language>eng</language><publisher>United States</publisher><ispartof>Statistics and its interface, 2018, Vol.11 (4), p.669-685</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-88572c57f3f2b0daad1edbf8f8e145fea0b9401c4af3a300089c47d70e3e2ae93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4021,27921,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30510613$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Janet S</creatorcontrib><creatorcontrib>Maity, Arnab</creatorcontrib><creatorcontrib>Staicu, Ana-Maria</creatorcontrib><title>Additive Nonlinear Functional Concurrent Model</title><title>Statistics and its interface</title><addtitle>Stat Interface</addtitle><description>We propose a flexible regression model to study the association between a functional response and multiple functional covariates that are observed on the same domain. Specifically, we relate the mean of the current response to current values of the covariates by a sum of smooth unknown bivariate functions, where each of the functions depends on the current value of the covariate and the time point itself. In this framework, we develop estimation methodology that accommodates realistic scenarios where the covariates are sampled with or without error on a sparse and irregular design, and prediction that accounts for unknown model correlation structure. We also discuss the problem of testing the null hypothesis that the covariate has no association with the response. The proposed methods are evaluated numerically through simulations and two real data applications.</description><issn>1938-7989</issn><issn>1938-7997</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkFFLwzAUhYMobk5_gSB99KX1pknb5EUYw-lg6oP6HNI00UiXzKQd-O_t2Bz6dC_cc849fAhdYsgowXDzslhkOWCWbTDOHM0kxkdojDlhacV5dXzYGR-hsxg_AUoCpDxFIwIFhhKTMcqmTWM7u9HJk3etdVqGZN471VnvZJvMvFN9CNp1yaNvdHuOToxso77Yzwl6m9-9zh7S5fP9YjZdpopC0aWMFVWuisoQk9fQSNlg3dSGGaYxLYyWUHMKWFFpiCQAwLiiVVOBJjqXmpMJut3lrvt6pRs1FAiyFetgVzJ8Cy-t-H9x9kO8-40o85Ljgg4B1_uA4L96HTuxslHptpVO-z6KHFPOSMXyrZTspCr4GIM2hzcYxJa0GEiLLWkxkBaOioH04Lr62_Dg-UVLfgDn8Hv0</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Kim, Janet S</creator><creator>Maity, Arnab</creator><creator>Staicu, Ana-Maria</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2018</creationdate><title>Additive Nonlinear Functional Concurrent Model</title><author>Kim, Janet S ; Maity, Arnab ; Staicu, Ana-Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-88572c57f3f2b0daad1edbf8f8e145fea0b9401c4af3a300089c47d70e3e2ae93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Kim, Janet S</creatorcontrib><creatorcontrib>Maity, Arnab</creatorcontrib><creatorcontrib>Staicu, Ana-Maria</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics and its interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Janet S</au><au>Maity, Arnab</au><au>Staicu, Ana-Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Additive Nonlinear Functional Concurrent Model</atitle><jtitle>Statistics and its interface</jtitle><addtitle>Stat Interface</addtitle><date>2018</date><risdate>2018</risdate><volume>11</volume><issue>4</issue><spage>669</spage><epage>685</epage><pages>669-685</pages><issn>1938-7989</issn><eissn>1938-7997</eissn><abstract>We propose a flexible regression model to study the association between a functional response and multiple functional covariates that are observed on the same domain. Specifically, we relate the mean of the current response to current values of the covariates by a sum of smooth unknown bivariate functions, where each of the functions depends on the current value of the covariate and the time point itself. In this framework, we develop estimation methodology that accommodates realistic scenarios where the covariates are sampled with or without error on a sparse and irregular design, and prediction that accounts for unknown model correlation structure. We also discuss the problem of testing the null hypothesis that the covariate has no association with the response. The proposed methods are evaluated numerically through simulations and two real data applications.</abstract><cop>United States</cop><pmid>30510613</pmid><doi>10.4310/SII.2018.v11.n4.a11</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1938-7989
ispartof Statistics and its interface, 2018, Vol.11 (4), p.669-685
issn 1938-7989
1938-7997
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6269154
source International Press Journals
title Additive Nonlinear Functional Concurrent Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A54%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Additive%20Nonlinear%20Functional%20Concurrent%20Model&rft.jtitle=Statistics%20and%20its%20interface&rft.au=Kim,%20Janet%20S&rft.date=2018&rft.volume=11&rft.issue=4&rft.spage=669&rft.epage=685&rft.pages=669-685&rft.issn=1938-7989&rft.eissn=1938-7997&rft_id=info:doi/10.4310/SII.2018.v11.n4.a11&rft_dat=%3Cproquest_pubme%3E2149837824%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2149837824&rft_id=info:pmid/30510613&rfr_iscdi=true