The impact of immune response on endochondral bone regeneration
Tissue engineered cartilage substitutes, which induce the process of endochondral ossification, represent a regenerative strategy for bone defect healing. Such constructs typically consist of multipotent mesenchymal stromal cells (MSCs) forming a cartilage template in vitro, which can be implanted t...
Gespeichert in:
Veröffentlicht in: | npj Regenerative medicine 2018-11, Vol.3 (1), p.22-11, Article 22 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 1 |
container_start_page | 22 |
container_title | npj Regenerative medicine |
container_volume | 3 |
creator | Longoni, A. Knežević, L. Schepers, K. Weinans, H. Rosenberg, A. J. W. P. Gawlitta, D. |
description | Tissue engineered cartilage substitutes, which induce the process of endochondral ossification, represent a regenerative strategy for bone defect healing. Such constructs typically consist of multipotent mesenchymal stromal cells (MSCs) forming a cartilage template in vitro, which can be implanted to stimulate bone formation in vivo. The use of MSCs of allogeneic origin could potentially improve the clinical utility of the tissue engineered cartilage constructs in three ways. First, ready-to-use construct availability can speed up the treatment process. Second, MSCs derived and expanded from a single donor could be applied to treat several patients and thus the costs of the medical interventions would decrease. Finally, it would allow more control over the quality of the MSC chondrogenic differentiation. However, even though the envisaged clinical use of allogeneic cell sources for bone regeneration is advantageous, their immunogenicity poses a significant obstacle to their clinical application. The aim of this review is to increase the awareness of the role played by immune cells during endochondral ossification, and in particular during regenerative strategies when the immune response is altered by the presence of implanted biomaterials and/or cells. More specifically, we focus on how this balance between immune response and bone regeneration is affected by the implantation of a cartilaginous tissue engineered construct of allogeneic origin. |
doi_str_mv | 10.1038/s41536-018-0060-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6265275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2139581405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-181f4a703e2b92b0b04356a913d3d03c83dbea686132d652c13c0bad3c3fcc6c3</originalsourceid><addsrcrecordid>eNp1kUFP3DAQhS0EArTwA7hUkXrhEjr2xHZyaVWtCq2ExAXOluNMdoM29tZOKvHv62WB0ko9eaT35vMbPcYuOFxxwPpTqrhEVQKvSwAFpTxgpwKkLrFp5OG7-YSdp_QIAFwrlKo5ZicIkoPW4pR9uV9TMYxb66Yi9HkaZ09FpLQNPlERfEG-C24dfBftpmjDs7oiT9FOQ_Bn7Ki3m0TnL--CPVx_u19-L2_vbn4sv96WrtIwlbzmfWU1IIm2ES20UOUotuHYYQfoauxasqpWHEWnpHAcHbS2Q4e9c8rhgn3ec7dzO1LnyE85j9nGYbTxyQQ7mL8VP6zNKvwySmSclhlw-QKI4edMaTLjkBxtNtZTmJMRvGpq1DpHWrCP_1gfwxx9Pi-7sJE1r2AH5HuXiyGlSP1bGA5m15DZN2RyQ2bXkNntfHh_xdvGax_ZIPaGlCW_ovjn6_9TfwPjmJtm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2139581405</pqid></control><display><type>article</type><title>The impact of immune response on endochondral bone regeneration</title><source>Nature Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Longoni, A. ; Knežević, L. ; Schepers, K. ; Weinans, H. ; Rosenberg, A. J. W. P. ; Gawlitta, D.</creator><creatorcontrib>Longoni, A. ; Knežević, L. ; Schepers, K. ; Weinans, H. ; Rosenberg, A. J. W. P. ; Gawlitta, D.</creatorcontrib><description>Tissue engineered cartilage substitutes, which induce the process of endochondral ossification, represent a regenerative strategy for bone defect healing. Such constructs typically consist of multipotent mesenchymal stromal cells (MSCs) forming a cartilage template in vitro, which can be implanted to stimulate bone formation in vivo. The use of MSCs of allogeneic origin could potentially improve the clinical utility of the tissue engineered cartilage constructs in three ways. First, ready-to-use construct availability can speed up the treatment process. Second, MSCs derived and expanded from a single donor could be applied to treat several patients and thus the costs of the medical interventions would decrease. Finally, it would allow more control over the quality of the MSC chondrogenic differentiation. However, even though the envisaged clinical use of allogeneic cell sources for bone regeneration is advantageous, their immunogenicity poses a significant obstacle to their clinical application. The aim of this review is to increase the awareness of the role played by immune cells during endochondral ossification, and in particular during regenerative strategies when the immune response is altered by the presence of implanted biomaterials and/or cells. More specifically, we focus on how this balance between immune response and bone regeneration is affected by the implantation of a cartilaginous tissue engineered construct of allogeneic origin.</description><identifier>ISSN: 2057-3995</identifier><identifier>EISSN: 2057-3995</identifier><identifier>DOI: 10.1038/s41536-018-0060-5</identifier><identifier>PMID: 30510772</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/250/1854/2812 ; 631/532/2074 ; 631/61/54/2295 ; 692/308/2171 ; Biomaterials ; Biomedical and Life Sciences ; Biomedical materials ; Biomedicine ; Bones ; Cartilage ; Cell Biology ; Fractures ; Homeostasis ; Immune system ; Immunology ; Patients ; Regenerative Medicine/Tissue Engineering ; Review ; Review Article ; Stem Cells ; Tissue engineering</subject><ispartof>npj Regenerative medicine, 2018-11, Vol.3 (1), p.22-11, Article 22</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-181f4a703e2b92b0b04356a913d3d03c83dbea686132d652c13c0bad3c3fcc6c3</citedby><cites>FETCH-LOGICAL-c470t-181f4a703e2b92b0b04356a913d3d03c83dbea686132d652c13c0bad3c3fcc6c3</cites><orcidid>0000-0003-2442-242X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6265275/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6265275/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30510772$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Longoni, A.</creatorcontrib><creatorcontrib>Knežević, L.</creatorcontrib><creatorcontrib>Schepers, K.</creatorcontrib><creatorcontrib>Weinans, H.</creatorcontrib><creatorcontrib>Rosenberg, A. J. W. P.</creatorcontrib><creatorcontrib>Gawlitta, D.</creatorcontrib><title>The impact of immune response on endochondral bone regeneration</title><title>npj Regenerative medicine</title><addtitle>npj Regen Med</addtitle><addtitle>NPJ Regen Med</addtitle><description>Tissue engineered cartilage substitutes, which induce the process of endochondral ossification, represent a regenerative strategy for bone defect healing. Such constructs typically consist of multipotent mesenchymal stromal cells (MSCs) forming a cartilage template in vitro, which can be implanted to stimulate bone formation in vivo. The use of MSCs of allogeneic origin could potentially improve the clinical utility of the tissue engineered cartilage constructs in three ways. First, ready-to-use construct availability can speed up the treatment process. Second, MSCs derived and expanded from a single donor could be applied to treat several patients and thus the costs of the medical interventions would decrease. Finally, it would allow more control over the quality of the MSC chondrogenic differentiation. However, even though the envisaged clinical use of allogeneic cell sources for bone regeneration is advantageous, their immunogenicity poses a significant obstacle to their clinical application. The aim of this review is to increase the awareness of the role played by immune cells during endochondral ossification, and in particular during regenerative strategies when the immune response is altered by the presence of implanted biomaterials and/or cells. More specifically, we focus on how this balance between immune response and bone regeneration is affected by the implantation of a cartilaginous tissue engineered construct of allogeneic origin.</description><subject>631/250/1854/2812</subject><subject>631/532/2074</subject><subject>631/61/54/2295</subject><subject>692/308/2171</subject><subject>Biomaterials</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical materials</subject><subject>Biomedicine</subject><subject>Bones</subject><subject>Cartilage</subject><subject>Cell Biology</subject><subject>Fractures</subject><subject>Homeostasis</subject><subject>Immune system</subject><subject>Immunology</subject><subject>Patients</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Review</subject><subject>Review Article</subject><subject>Stem Cells</subject><subject>Tissue engineering</subject><issn>2057-3995</issn><issn>2057-3995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kUFP3DAQhS0EArTwA7hUkXrhEjr2xHZyaVWtCq2ExAXOluNMdoM29tZOKvHv62WB0ko9eaT35vMbPcYuOFxxwPpTqrhEVQKvSwAFpTxgpwKkLrFp5OG7-YSdp_QIAFwrlKo5ZicIkoPW4pR9uV9TMYxb66Yi9HkaZ09FpLQNPlERfEG-C24dfBftpmjDs7oiT9FOQ_Bn7Ki3m0TnL--CPVx_u19-L2_vbn4sv96WrtIwlbzmfWU1IIm2ES20UOUotuHYYQfoauxasqpWHEWnpHAcHbS2Q4e9c8rhgn3ec7dzO1LnyE85j9nGYbTxyQQ7mL8VP6zNKvwySmSclhlw-QKI4edMaTLjkBxtNtZTmJMRvGpq1DpHWrCP_1gfwxx9Pi-7sJE1r2AH5HuXiyGlSP1bGA5m15DZN2RyQ2bXkNntfHh_xdvGax_ZIPaGlCW_ovjn6_9TfwPjmJtm</recordid><startdate>20181129</startdate><enddate>20181129</enddate><creator>Longoni, A.</creator><creator>Knežević, L.</creator><creator>Schepers, K.</creator><creator>Weinans, H.</creator><creator>Rosenberg, A. J. W. P.</creator><creator>Gawlitta, D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2442-242X</orcidid></search><sort><creationdate>20181129</creationdate><title>The impact of immune response on endochondral bone regeneration</title><author>Longoni, A. ; Knežević, L. ; Schepers, K. ; Weinans, H. ; Rosenberg, A. J. W. P. ; Gawlitta, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-181f4a703e2b92b0b04356a913d3d03c83dbea686132d652c13c0bad3c3fcc6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/250/1854/2812</topic><topic>631/532/2074</topic><topic>631/61/54/2295</topic><topic>692/308/2171</topic><topic>Biomaterials</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical materials</topic><topic>Biomedicine</topic><topic>Bones</topic><topic>Cartilage</topic><topic>Cell Biology</topic><topic>Fractures</topic><topic>Homeostasis</topic><topic>Immune system</topic><topic>Immunology</topic><topic>Patients</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Review</topic><topic>Review Article</topic><topic>Stem Cells</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Longoni, A.</creatorcontrib><creatorcontrib>Knežević, L.</creatorcontrib><creatorcontrib>Schepers, K.</creatorcontrib><creatorcontrib>Weinans, H.</creatorcontrib><creatorcontrib>Rosenberg, A. J. W. P.</creatorcontrib><creatorcontrib>Gawlitta, D.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>npj Regenerative medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Longoni, A.</au><au>Knežević, L.</au><au>Schepers, K.</au><au>Weinans, H.</au><au>Rosenberg, A. J. W. P.</au><au>Gawlitta, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The impact of immune response on endochondral bone regeneration</atitle><jtitle>npj Regenerative medicine</jtitle><stitle>npj Regen Med</stitle><addtitle>NPJ Regen Med</addtitle><date>2018-11-29</date><risdate>2018</risdate><volume>3</volume><issue>1</issue><spage>22</spage><epage>11</epage><pages>22-11</pages><artnum>22</artnum><issn>2057-3995</issn><eissn>2057-3995</eissn><abstract>Tissue engineered cartilage substitutes, which induce the process of endochondral ossification, represent a regenerative strategy for bone defect healing. Such constructs typically consist of multipotent mesenchymal stromal cells (MSCs) forming a cartilage template in vitro, which can be implanted to stimulate bone formation in vivo. The use of MSCs of allogeneic origin could potentially improve the clinical utility of the tissue engineered cartilage constructs in three ways. First, ready-to-use construct availability can speed up the treatment process. Second, MSCs derived and expanded from a single donor could be applied to treat several patients and thus the costs of the medical interventions would decrease. Finally, it would allow more control over the quality of the MSC chondrogenic differentiation. However, even though the envisaged clinical use of allogeneic cell sources for bone regeneration is advantageous, their immunogenicity poses a significant obstacle to their clinical application. The aim of this review is to increase the awareness of the role played by immune cells during endochondral ossification, and in particular during regenerative strategies when the immune response is altered by the presence of implanted biomaterials and/or cells. More specifically, we focus on how this balance between immune response and bone regeneration is affected by the implantation of a cartilaginous tissue engineered construct of allogeneic origin.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30510772</pmid><doi>10.1038/s41536-018-0060-5</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2442-242X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2057-3995 |
ispartof | npj Regenerative medicine, 2018-11, Vol.3 (1), p.22-11, Article 22 |
issn | 2057-3995 2057-3995 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6265275 |
source | Nature Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access; Springer Nature OA Free Journals |
subjects | 631/250/1854/2812 631/532/2074 631/61/54/2295 692/308/2171 Biomaterials Biomedical and Life Sciences Biomedical materials Biomedicine Bones Cartilage Cell Biology Fractures Homeostasis Immune system Immunology Patients Regenerative Medicine/Tissue Engineering Review Review Article Stem Cells Tissue engineering |
title | The impact of immune response on endochondral bone regeneration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A35%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20impact%20of%20immune%20response%20on%20endochondral%20bone%20regeneration&rft.jtitle=npj%20Regenerative%20medicine&rft.au=Longoni,%20A.&rft.date=2018-11-29&rft.volume=3&rft.issue=1&rft.spage=22&rft.epage=11&rft.pages=22-11&rft.artnum=22&rft.issn=2057-3995&rft.eissn=2057-3995&rft_id=info:doi/10.1038/s41536-018-0060-5&rft_dat=%3Cproquest_pubme%3E2139581405%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2139581405&rft_id=info:pmid/30510772&rfr_iscdi=true |