The role of gene flow in rapid and repeated evolution of cave‐related traits in Mexican tetra, Astyanax mexicanus

Understanding the molecular basis of repeatedly evolved phenotypes can yield key insights into the evolutionary process. Quantifying gene flow between populations is especially important in interpreting mechanisms of repeated phenotypic evolution, and genomic analyses have revealed that admixture oc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular ecology 2018-11, Vol.27 (22), p.4397-4416
Hauptverfasser: Herman, Adam, Brandvain, Yaniv, Weagley, James, Jeffery, William R., Keene, Alex C., Kono, Thomas J. Y., Bilandžija, Helena, Borowsky, Richard, Espinasa, Luis, O'Quin, Kelly, Ornelas‐García, Claudia P., Yoshizawa, Masato, Carlson, Brian, Maldonado, Ernesto, Gross, Joshua B., Cartwright, Reed A., Rohner, Nicolas, Warren, Wesley C., McGaugh, Suzanne E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4416
container_issue 22
container_start_page 4397
container_title Molecular ecology
container_volume 27
creator Herman, Adam
Brandvain, Yaniv
Weagley, James
Jeffery, William R.
Keene, Alex C.
Kono, Thomas J. Y.
Bilandžija, Helena
Borowsky, Richard
Espinasa, Luis
O'Quin, Kelly
Ornelas‐García, Claudia P.
Yoshizawa, Masato
Carlson, Brian
Maldonado, Ernesto
Gross, Joshua B.
Cartwright, Reed A.
Rohner, Nicolas
Warren, Wesley C.
McGaugh, Suzanne E.
description Understanding the molecular basis of repeatedly evolved phenotypes can yield key insights into the evolutionary process. Quantifying gene flow between populations is especially important in interpreting mechanisms of repeated phenotypic evolution, and genomic analyses have revealed that admixture occurs more frequently between diverging lineages than previously thought. In this study, we resequenced 47 whole genomes of the Mexican tetra from three cave populations, two surface populations and outgroup samples. We confirmed that cave populations are polyphyletic and two Astyanax mexicanus lineages are present in our data set. The two lineages likely diverged much more recently than previous mitochondrial estimates of 5–7 mya. Divergence of cave populations from their phylogenetically closest surface population likely occurred between ~161 and 191 k generations ago. The favoured demographic model for most population pairs accounts for divergence with secondary contact and heterogeneous gene flow across the genome, and we rigorously identified gene flow among all lineages sampled. Therefore, the evolution of cave‐related traits occurred more rapidly than previously thought, and trogolomorphic traits are maintained despite gene flow with surface populations. The recency of these estimated divergence events suggests that selection may drive the evolution of cave‐derived traits, as opposed to disuse and drift. Finally, we show that a key trogolomorphic phenotype QTL is enriched for genomic regions with low divergence between caves, suggesting that regions important for cave phenotypes may be transferred between caves via gene flow. Our study shows that gene flow must be considered in studies of independent, repeated trait evolution.
doi_str_mv 10.1111/mec.14877
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6261294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2189562293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4767-30566b1b367f34e60a978f20aa06d489219c1c5a86315825c302aa51a2b5f43d3</originalsourceid><addsrcrecordid>eNqNkd9qFTEQxoNY7LF64QtIwBsFt82fTXb3RiiHqoUWbyp4F-ZkZ9uU3eSY7J723PkIPqNPYk63FhUEczMw88vHfPMR8oKzQ57f0YD2kJd1VT0iCy61KkRTfnlMFqzRouCslvvkaUrXjHEplHpC9iUTSjS1XpB0cYU0hh5p6OgleqRdH26o8zTC2rUUfEsjrhFGbCluQj-NLvgdbGGDP759j9jfzcYIbky7j-d46yx4OmLuvaXHadyCh1s6zP0pPSN7HfQJn9_XA_L5_cnF8mNx9unD6fL4rLBlpatCMqX1iq-krjpZombQVHUnGADTbVk3gjeWWwW1llzVQtnsCkBxECvVlbKVB-TdrLueVgO2Fn1eqDfr6AaIWxPAmT8n3l2Zy7AxWmieT5gFXt8LxPB1wjSawSWLfQ8ew5SM4HWjtBCN_A-UZ9FSCpHRV3-h12GKPl8iU7LKZmStMvVmpmwMKUXsHvbmzOxSNzl1c5d6Zl_-bvSB_BVzBo5m4Mb1uP23kjk_Wc6SPwG9xLcR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137315385</pqid></control><display><type>article</type><title>The role of gene flow in rapid and repeated evolution of cave‐related traits in Mexican tetra, Astyanax mexicanus</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Herman, Adam ; Brandvain, Yaniv ; Weagley, James ; Jeffery, William R. ; Keene, Alex C. ; Kono, Thomas J. Y. ; Bilandžija, Helena ; Borowsky, Richard ; Espinasa, Luis ; O'Quin, Kelly ; Ornelas‐García, Claudia P. ; Yoshizawa, Masato ; Carlson, Brian ; Maldonado, Ernesto ; Gross, Joshua B. ; Cartwright, Reed A. ; Rohner, Nicolas ; Warren, Wesley C. ; McGaugh, Suzanne E.</creator><creatorcontrib>Herman, Adam ; Brandvain, Yaniv ; Weagley, James ; Jeffery, William R. ; Keene, Alex C. ; Kono, Thomas J. Y. ; Bilandžija, Helena ; Borowsky, Richard ; Espinasa, Luis ; O'Quin, Kelly ; Ornelas‐García, Claudia P. ; Yoshizawa, Masato ; Carlson, Brian ; Maldonado, Ernesto ; Gross, Joshua B. ; Cartwright, Reed A. ; Rohner, Nicolas ; Warren, Wesley C. ; McGaugh, Suzanne E.</creatorcontrib><description>Understanding the molecular basis of repeatedly evolved phenotypes can yield key insights into the evolutionary process. Quantifying gene flow between populations is especially important in interpreting mechanisms of repeated phenotypic evolution, and genomic analyses have revealed that admixture occurs more frequently between diverging lineages than previously thought. In this study, we resequenced 47 whole genomes of the Mexican tetra from three cave populations, two surface populations and outgroup samples. We confirmed that cave populations are polyphyletic and two Astyanax mexicanus lineages are present in our data set. The two lineages likely diverged much more recently than previous mitochondrial estimates of 5–7 mya. Divergence of cave populations from their phylogenetically closest surface population likely occurred between ~161 and 191 k generations ago. The favoured demographic model for most population pairs accounts for divergence with secondary contact and heterogeneous gene flow across the genome, and we rigorously identified gene flow among all lineages sampled. Therefore, the evolution of cave‐related traits occurred more rapidly than previously thought, and trogolomorphic traits are maintained despite gene flow with surface populations. The recency of these estimated divergence events suggests that selection may drive the evolution of cave‐derived traits, as opposed to disuse and drift. Finally, we show that a key trogolomorphic phenotype QTL is enriched for genomic regions with low divergence between caves, suggesting that regions important for cave phenotypes may be transferred between caves via gene flow. Our study shows that gene flow must be considered in studies of independent, repeated trait evolution.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.14877</identifier><identifier>PMID: 30252986</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Admixtures ; Animals ; Astyanax mexicanus ; Biological Evolution ; Caves ; Characidae - genetics ; data collection ; Demographics ; Divergence ; Evolution ; Evolution &amp; development ; Gene Flow ; Genetics, Population ; genome ; Genomes ; Genomic analysis ; genomics ; Mexico ; Mitochondria ; Models, Genetic ; Phenotype ; Phenotypes ; Phylogeny ; polyphyly ; Populations ; Quantitative Trait Loci ; secondary contact</subject><ispartof>Molecular ecology, 2018-11, Vol.27 (22), p.4397-4416</ispartof><rights>2018 John Wiley &amp; Sons Ltd</rights><rights>2018 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2018 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4767-30566b1b367f34e60a978f20aa06d489219c1c5a86315825c302aa51a2b5f43d3</citedby><cites>FETCH-LOGICAL-c4767-30566b1b367f34e60a978f20aa06d489219c1c5a86315825c302aa51a2b5f43d3</cites><orcidid>0000-0002-0837-9380 ; 0000-0003-3163-3436 ; 0000-0001-7463-9462</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmec.14877$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmec.14877$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30252986$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Herman, Adam</creatorcontrib><creatorcontrib>Brandvain, Yaniv</creatorcontrib><creatorcontrib>Weagley, James</creatorcontrib><creatorcontrib>Jeffery, William R.</creatorcontrib><creatorcontrib>Keene, Alex C.</creatorcontrib><creatorcontrib>Kono, Thomas J. Y.</creatorcontrib><creatorcontrib>Bilandžija, Helena</creatorcontrib><creatorcontrib>Borowsky, Richard</creatorcontrib><creatorcontrib>Espinasa, Luis</creatorcontrib><creatorcontrib>O'Quin, Kelly</creatorcontrib><creatorcontrib>Ornelas‐García, Claudia P.</creatorcontrib><creatorcontrib>Yoshizawa, Masato</creatorcontrib><creatorcontrib>Carlson, Brian</creatorcontrib><creatorcontrib>Maldonado, Ernesto</creatorcontrib><creatorcontrib>Gross, Joshua B.</creatorcontrib><creatorcontrib>Cartwright, Reed A.</creatorcontrib><creatorcontrib>Rohner, Nicolas</creatorcontrib><creatorcontrib>Warren, Wesley C.</creatorcontrib><creatorcontrib>McGaugh, Suzanne E.</creatorcontrib><title>The role of gene flow in rapid and repeated evolution of cave‐related traits in Mexican tetra, Astyanax mexicanus</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Understanding the molecular basis of repeatedly evolved phenotypes can yield key insights into the evolutionary process. Quantifying gene flow between populations is especially important in interpreting mechanisms of repeated phenotypic evolution, and genomic analyses have revealed that admixture occurs more frequently between diverging lineages than previously thought. In this study, we resequenced 47 whole genomes of the Mexican tetra from three cave populations, two surface populations and outgroup samples. We confirmed that cave populations are polyphyletic and two Astyanax mexicanus lineages are present in our data set. The two lineages likely diverged much more recently than previous mitochondrial estimates of 5–7 mya. Divergence of cave populations from their phylogenetically closest surface population likely occurred between ~161 and 191 k generations ago. The favoured demographic model for most population pairs accounts for divergence with secondary contact and heterogeneous gene flow across the genome, and we rigorously identified gene flow among all lineages sampled. Therefore, the evolution of cave‐related traits occurred more rapidly than previously thought, and trogolomorphic traits are maintained despite gene flow with surface populations. The recency of these estimated divergence events suggests that selection may drive the evolution of cave‐derived traits, as opposed to disuse and drift. Finally, we show that a key trogolomorphic phenotype QTL is enriched for genomic regions with low divergence between caves, suggesting that regions important for cave phenotypes may be transferred between caves via gene flow. Our study shows that gene flow must be considered in studies of independent, repeated trait evolution.</description><subject>Admixtures</subject><subject>Animals</subject><subject>Astyanax mexicanus</subject><subject>Biological Evolution</subject><subject>Caves</subject><subject>Characidae - genetics</subject><subject>data collection</subject><subject>Demographics</subject><subject>Divergence</subject><subject>Evolution</subject><subject>Evolution &amp; development</subject><subject>Gene Flow</subject><subject>Genetics, Population</subject><subject>genome</subject><subject>Genomes</subject><subject>Genomic analysis</subject><subject>genomics</subject><subject>Mexico</subject><subject>Mitochondria</subject><subject>Models, Genetic</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phylogeny</subject><subject>polyphyly</subject><subject>Populations</subject><subject>Quantitative Trait Loci</subject><subject>secondary contact</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkd9qFTEQxoNY7LF64QtIwBsFt82fTXb3RiiHqoUWbyp4F-ZkZ9uU3eSY7J723PkIPqNPYk63FhUEczMw88vHfPMR8oKzQ57f0YD2kJd1VT0iCy61KkRTfnlMFqzRouCslvvkaUrXjHEplHpC9iUTSjS1XpB0cYU0hh5p6OgleqRdH26o8zTC2rUUfEsjrhFGbCluQj-NLvgdbGGDP759j9jfzcYIbky7j-d46yx4OmLuvaXHadyCh1s6zP0pPSN7HfQJn9_XA_L5_cnF8mNx9unD6fL4rLBlpatCMqX1iq-krjpZombQVHUnGADTbVk3gjeWWwW1llzVQtnsCkBxECvVlbKVB-TdrLueVgO2Fn1eqDfr6AaIWxPAmT8n3l2Zy7AxWmieT5gFXt8LxPB1wjSawSWLfQ8ew5SM4HWjtBCN_A-UZ9FSCpHRV3-h12GKPl8iU7LKZmStMvVmpmwMKUXsHvbmzOxSNzl1c5d6Zl_-bvSB_BVzBo5m4Mb1uP23kjk_Wc6SPwG9xLcR</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Herman, Adam</creator><creator>Brandvain, Yaniv</creator><creator>Weagley, James</creator><creator>Jeffery, William R.</creator><creator>Keene, Alex C.</creator><creator>Kono, Thomas J. Y.</creator><creator>Bilandžija, Helena</creator><creator>Borowsky, Richard</creator><creator>Espinasa, Luis</creator><creator>O'Quin, Kelly</creator><creator>Ornelas‐García, Claudia P.</creator><creator>Yoshizawa, Masato</creator><creator>Carlson, Brian</creator><creator>Maldonado, Ernesto</creator><creator>Gross, Joshua B.</creator><creator>Cartwright, Reed A.</creator><creator>Rohner, Nicolas</creator><creator>Warren, Wesley C.</creator><creator>McGaugh, Suzanne E.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0837-9380</orcidid><orcidid>https://orcid.org/0000-0003-3163-3436</orcidid><orcidid>https://orcid.org/0000-0001-7463-9462</orcidid></search><sort><creationdate>201811</creationdate><title>The role of gene flow in rapid and repeated evolution of cave‐related traits in Mexican tetra, Astyanax mexicanus</title><author>Herman, Adam ; Brandvain, Yaniv ; Weagley, James ; Jeffery, William R. ; Keene, Alex C. ; Kono, Thomas J. Y. ; Bilandžija, Helena ; Borowsky, Richard ; Espinasa, Luis ; O'Quin, Kelly ; Ornelas‐García, Claudia P. ; Yoshizawa, Masato ; Carlson, Brian ; Maldonado, Ernesto ; Gross, Joshua B. ; Cartwright, Reed A. ; Rohner, Nicolas ; Warren, Wesley C. ; McGaugh, Suzanne E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4767-30566b1b367f34e60a978f20aa06d489219c1c5a86315825c302aa51a2b5f43d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Admixtures</topic><topic>Animals</topic><topic>Astyanax mexicanus</topic><topic>Biological Evolution</topic><topic>Caves</topic><topic>Characidae - genetics</topic><topic>data collection</topic><topic>Demographics</topic><topic>Divergence</topic><topic>Evolution</topic><topic>Evolution &amp; development</topic><topic>Gene Flow</topic><topic>Genetics, Population</topic><topic>genome</topic><topic>Genomes</topic><topic>Genomic analysis</topic><topic>genomics</topic><topic>Mexico</topic><topic>Mitochondria</topic><topic>Models, Genetic</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phylogeny</topic><topic>polyphyly</topic><topic>Populations</topic><topic>Quantitative Trait Loci</topic><topic>secondary contact</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herman, Adam</creatorcontrib><creatorcontrib>Brandvain, Yaniv</creatorcontrib><creatorcontrib>Weagley, James</creatorcontrib><creatorcontrib>Jeffery, William R.</creatorcontrib><creatorcontrib>Keene, Alex C.</creatorcontrib><creatorcontrib>Kono, Thomas J. Y.</creatorcontrib><creatorcontrib>Bilandžija, Helena</creatorcontrib><creatorcontrib>Borowsky, Richard</creatorcontrib><creatorcontrib>Espinasa, Luis</creatorcontrib><creatorcontrib>O'Quin, Kelly</creatorcontrib><creatorcontrib>Ornelas‐García, Claudia P.</creatorcontrib><creatorcontrib>Yoshizawa, Masato</creatorcontrib><creatorcontrib>Carlson, Brian</creatorcontrib><creatorcontrib>Maldonado, Ernesto</creatorcontrib><creatorcontrib>Gross, Joshua B.</creatorcontrib><creatorcontrib>Cartwright, Reed A.</creatorcontrib><creatorcontrib>Rohner, Nicolas</creatorcontrib><creatorcontrib>Warren, Wesley C.</creatorcontrib><creatorcontrib>McGaugh, Suzanne E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herman, Adam</au><au>Brandvain, Yaniv</au><au>Weagley, James</au><au>Jeffery, William R.</au><au>Keene, Alex C.</au><au>Kono, Thomas J. Y.</au><au>Bilandžija, Helena</au><au>Borowsky, Richard</au><au>Espinasa, Luis</au><au>O'Quin, Kelly</au><au>Ornelas‐García, Claudia P.</au><au>Yoshizawa, Masato</au><au>Carlson, Brian</au><au>Maldonado, Ernesto</au><au>Gross, Joshua B.</au><au>Cartwright, Reed A.</au><au>Rohner, Nicolas</au><au>Warren, Wesley C.</au><au>McGaugh, Suzanne E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of gene flow in rapid and repeated evolution of cave‐related traits in Mexican tetra, Astyanax mexicanus</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2018-11</date><risdate>2018</risdate><volume>27</volume><issue>22</issue><spage>4397</spage><epage>4416</epage><pages>4397-4416</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>Understanding the molecular basis of repeatedly evolved phenotypes can yield key insights into the evolutionary process. Quantifying gene flow between populations is especially important in interpreting mechanisms of repeated phenotypic evolution, and genomic analyses have revealed that admixture occurs more frequently between diverging lineages than previously thought. In this study, we resequenced 47 whole genomes of the Mexican tetra from three cave populations, two surface populations and outgroup samples. We confirmed that cave populations are polyphyletic and two Astyanax mexicanus lineages are present in our data set. The two lineages likely diverged much more recently than previous mitochondrial estimates of 5–7 mya. Divergence of cave populations from their phylogenetically closest surface population likely occurred between ~161 and 191 k generations ago. The favoured demographic model for most population pairs accounts for divergence with secondary contact and heterogeneous gene flow across the genome, and we rigorously identified gene flow among all lineages sampled. Therefore, the evolution of cave‐related traits occurred more rapidly than previously thought, and trogolomorphic traits are maintained despite gene flow with surface populations. The recency of these estimated divergence events suggests that selection may drive the evolution of cave‐derived traits, as opposed to disuse and drift. Finally, we show that a key trogolomorphic phenotype QTL is enriched for genomic regions with low divergence between caves, suggesting that regions important for cave phenotypes may be transferred between caves via gene flow. Our study shows that gene flow must be considered in studies of independent, repeated trait evolution.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>30252986</pmid><doi>10.1111/mec.14877</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-0837-9380</orcidid><orcidid>https://orcid.org/0000-0003-3163-3436</orcidid><orcidid>https://orcid.org/0000-0001-7463-9462</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-1083
ispartof Molecular ecology, 2018-11, Vol.27 (22), p.4397-4416
issn 0962-1083
1365-294X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6261294
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Admixtures
Animals
Astyanax mexicanus
Biological Evolution
Caves
Characidae - genetics
data collection
Demographics
Divergence
Evolution
Evolution & development
Gene Flow
Genetics, Population
genome
Genomes
Genomic analysis
genomics
Mexico
Mitochondria
Models, Genetic
Phenotype
Phenotypes
Phylogeny
polyphyly
Populations
Quantitative Trait Loci
secondary contact
title The role of gene flow in rapid and repeated evolution of cave‐related traits in Mexican tetra, Astyanax mexicanus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A58%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20gene%20flow%20in%20rapid%20and%20repeated%20evolution%20of%20cave%E2%80%90related%20traits%20in%20Mexican%20tetra,%20Astyanax%20mexicanus&rft.jtitle=Molecular%20ecology&rft.au=Herman,%20Adam&rft.date=2018-11&rft.volume=27&rft.issue=22&rft.spage=4397&rft.epage=4416&rft.pages=4397-4416&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.14877&rft_dat=%3Cproquest_pubme%3E2189562293%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2137315385&rft_id=info:pmid/30252986&rfr_iscdi=true