Simulations Reveal Multiple Intermediates in the Unzipping Mechanism of Neuronal SNARE Complex

The assembling of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein complex is a fundamental step in neuronal exocytosis, and it has been extensively studied in the last two decades. Yet, many details of this process remain inaccessible with the current experimental s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2018-10, Vol.115 (8), p.1470-1480
Hauptverfasser: Pinamonti, Giovanni, Campo, Gregory, Chen, Justin, Kluber, Alex, Clementi, Cecilia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1480
container_issue 8
container_start_page 1470
container_title Biophysical journal
container_volume 115
creator Pinamonti, Giovanni
Campo, Gregory
Chen, Justin
Kluber, Alex
Clementi, Cecilia
description The assembling of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein complex is a fundamental step in neuronal exocytosis, and it has been extensively studied in the last two decades. Yet, many details of this process remain inaccessible with the current experimental space and time resolution. Here, we study the zipping mechanism of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex computationally by using a coarse-grained model. We explore the different pathways available and analyze their dependence on the computational model employed. We reveal and characterize multiple intermediate states, in agreement with previous experimental findings. We use our model to analyze the influence of single-residue mutations on the thermodynamics of the folding process.
doi_str_mv 10.1016/j.bpj.2018.08.043
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6260205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000634951831021X</els_id><sourcerecordid>2115281630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-e2455f422aa3b713659962abd82138d5ccfbb69de0d42b62426b1959c0d2a56e3</originalsourceid><addsrcrecordid>eNp9kdFrFDEQxoMo9qz-Ab5IHn3Zc5Js4i6CUI6qhbZCa18N2exsL8dusibZo_rXm3K16IswMA_zfb8Z5iPkNYM1A6be7dbdvFtzYM0aStXiCVkxWfMKoFFPyQoAVCXqVh6RFyntABiXwJ6TIwFcNVK0K_L92k3LaLILPtEr3KMZ6cUyZjePSM98xjhh70zGRJ2neYv0xv9y8-z8Lb1AuzXepYmGgV7iEoMv7uvLk6tTuglTIdy9JM8GMyZ89dCPyc2n02-bL9X5189nm5PzytYgcoW8lnKoOTdGdO-ZULJtFTdd33Amml5aO3SdanuEvuad4jVXHWtla6HnRioUx-TjgTsvXTnYos_RjHqObjLxpw7G6X8n3m31bdhrxRVwkAXw9gEQw48FU9aTSxbH0XgMS9KcMckbpgQUKTtIbQwpRRwe1zDQ97nonS656PtcNJSqRfG8-fu-R8efIIrgw0GA5Ut7h1En69Db8vyINus-uP_gfwNJKp8_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115281630</pqid></control><display><type>article</type><title>Simulations Reveal Multiple Intermediates in the Unzipping Mechanism of Neuronal SNARE Complex</title><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Pinamonti, Giovanni ; Campo, Gregory ; Chen, Justin ; Kluber, Alex ; Clementi, Cecilia</creator><creatorcontrib>Pinamonti, Giovanni ; Campo, Gregory ; Chen, Justin ; Kluber, Alex ; Clementi, Cecilia</creatorcontrib><description>The assembling of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein complex is a fundamental step in neuronal exocytosis, and it has been extensively studied in the last two decades. Yet, many details of this process remain inaccessible with the current experimental space and time resolution. Here, we study the zipping mechanism of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex computationally by using a coarse-grained model. We explore the different pathways available and analyze their dependence on the computational model employed. We reveal and characterize multiple intermediate states, in agreement with previous experimental findings. We use our model to analyze the influence of single-residue mutations on the thermodynamics of the folding process.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2018.08.043</identifier><identifier>PMID: 30268539</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Proteins</subject><ispartof>Biophysical journal, 2018-10, Vol.115 (8), p.1470-1480</ispartof><rights>2018 Biophysical Society</rights><rights>Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2018 Biophysical Society. 2018 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c403t-e2455f422aa3b713659962abd82138d5ccfbb69de0d42b62426b1959c0d2a56e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6260205/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S000634951831021X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30268539$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pinamonti, Giovanni</creatorcontrib><creatorcontrib>Campo, Gregory</creatorcontrib><creatorcontrib>Chen, Justin</creatorcontrib><creatorcontrib>Kluber, Alex</creatorcontrib><creatorcontrib>Clementi, Cecilia</creatorcontrib><title>Simulations Reveal Multiple Intermediates in the Unzipping Mechanism of Neuronal SNARE Complex</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The assembling of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein complex is a fundamental step in neuronal exocytosis, and it has been extensively studied in the last two decades. Yet, many details of this process remain inaccessible with the current experimental space and time resolution. Here, we study the zipping mechanism of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex computationally by using a coarse-grained model. We explore the different pathways available and analyze their dependence on the computational model employed. We reveal and characterize multiple intermediate states, in agreement with previous experimental findings. We use our model to analyze the influence of single-residue mutations on the thermodynamics of the folding process.</description><subject>Proteins</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kdFrFDEQxoMo9qz-Ab5IHn3Zc5Js4i6CUI6qhbZCa18N2exsL8dusibZo_rXm3K16IswMA_zfb8Z5iPkNYM1A6be7dbdvFtzYM0aStXiCVkxWfMKoFFPyQoAVCXqVh6RFyntABiXwJ6TIwFcNVK0K_L92k3LaLILPtEr3KMZ6cUyZjePSM98xjhh70zGRJ2neYv0xv9y8-z8Lb1AuzXepYmGgV7iEoMv7uvLk6tTuglTIdy9JM8GMyZ89dCPyc2n02-bL9X5189nm5PzytYgcoW8lnKoOTdGdO-ZULJtFTdd33Amml5aO3SdanuEvuad4jVXHWtla6HnRioUx-TjgTsvXTnYos_RjHqObjLxpw7G6X8n3m31bdhrxRVwkAXw9gEQw48FU9aTSxbH0XgMS9KcMckbpgQUKTtIbQwpRRwe1zDQ97nonS656PtcNJSqRfG8-fu-R8efIIrgw0GA5Ut7h1En69Db8vyINus-uP_gfwNJKp8_</recordid><startdate>20181016</startdate><enddate>20181016</enddate><creator>Pinamonti, Giovanni</creator><creator>Campo, Gregory</creator><creator>Chen, Justin</creator><creator>Kluber, Alex</creator><creator>Clementi, Cecilia</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20181016</creationdate><title>Simulations Reveal Multiple Intermediates in the Unzipping Mechanism of Neuronal SNARE Complex</title><author>Pinamonti, Giovanni ; Campo, Gregory ; Chen, Justin ; Kluber, Alex ; Clementi, Cecilia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-e2455f422aa3b713659962abd82138d5ccfbb69de0d42b62426b1959c0d2a56e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pinamonti, Giovanni</creatorcontrib><creatorcontrib>Campo, Gregory</creatorcontrib><creatorcontrib>Chen, Justin</creatorcontrib><creatorcontrib>Kluber, Alex</creatorcontrib><creatorcontrib>Clementi, Cecilia</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pinamonti, Giovanni</au><au>Campo, Gregory</au><au>Chen, Justin</au><au>Kluber, Alex</au><au>Clementi, Cecilia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulations Reveal Multiple Intermediates in the Unzipping Mechanism of Neuronal SNARE Complex</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2018-10-16</date><risdate>2018</risdate><volume>115</volume><issue>8</issue><spage>1470</spage><epage>1480</epage><pages>1470-1480</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The assembling of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein complex is a fundamental step in neuronal exocytosis, and it has been extensively studied in the last two decades. Yet, many details of this process remain inaccessible with the current experimental space and time resolution. Here, we study the zipping mechanism of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex computationally by using a coarse-grained model. We explore the different pathways available and analyze their dependence on the computational model employed. We reveal and characterize multiple intermediate states, in agreement with previous experimental findings. We use our model to analyze the influence of single-residue mutations on the thermodynamics of the folding process.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30268539</pmid><doi>10.1016/j.bpj.2018.08.043</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2018-10, Vol.115 (8), p.1470-1480
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6260205
source Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Proteins
title Simulations Reveal Multiple Intermediates in the Unzipping Mechanism of Neuronal SNARE Complex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A12%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulations%20Reveal%20Multiple%20Intermediates%20in%20the%20Unzipping%20Mechanism%20of%20Neuronal%20SNARE%20Complex&rft.jtitle=Biophysical%20journal&rft.au=Pinamonti,%20Giovanni&rft.date=2018-10-16&rft.volume=115&rft.issue=8&rft.spage=1470&rft.epage=1480&rft.pages=1470-1480&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2018.08.043&rft_dat=%3Cproquest_pubme%3E2115281630%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2115281630&rft_id=info:pmid/30268539&rft_els_id=S000634951831021X&rfr_iscdi=true