Highly Photoconductive InP Quantum Dots Films and Solar Cells
InP and InZnP colloidal quantum dots (QDs) are promising materials for application in light-emitting devices, transistors, photovoltaics, and photocatalytic cells. In addition to possessing an appropriate bandgap, high absorption coefficient, and high bulk carrier mobilities, the intrinsic toxicity...
Gespeichert in:
Veröffentlicht in: | ACS applied energy materials 2018-11, Vol.1 (11), p.6569-6576 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6576 |
---|---|
container_issue | 11 |
container_start_page | 6569 |
container_title | ACS applied energy materials |
container_volume | 1 |
creator | Crisp, Ryan W Kirkwood, Nicholas Grimaldi, Gianluca Kinge, Sachin Siebbeles, Laurens D. A Houtepen, Arjan J |
description | InP and InZnP colloidal quantum dots (QDs) are promising materials for application in light-emitting devices, transistors, photovoltaics, and photocatalytic cells. In addition to possessing an appropriate bandgap, high absorption coefficient, and high bulk carrier mobilities, the intrinsic toxicity of InP and InZnP is much lower than for competing QDs that contain Cd or Pb–providing a potentially safer commercial product. However, compared to other colloidal QDs, InP QDs remain sparsely used in devices and their electronic transport properties are largely unexplored. Here, we use time-resolved microwave conductivity measurements to study charge transport in films of InP and InZnP colloidal quantum dots capped with a variety of short ligands. We find that transport in InP QDs is dominated by trapping effects, which are mitigated in InZnP QDs. We improve charge carrier mobilities with a range of ligand-exchange treatments and for the best treatments reach mobilities and lifetimes on par with those of PbS QD films used in efficient solar cells. To demonstrate the device-grade quality of these films, we construct solar cells based on InP & InZnP QDs with power conversion efficiencies of 0.65 and 1.2%, respectively. This represents a large step forward in developing Cd- and Pb-free next-generation optoelectronic devices. |
doi_str_mv | 10.1021/acsaem.8b01453 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6259048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2149026870</sourcerecordid><originalsourceid>FETCH-LOGICAL-a491t-2c49db69a2e48a01899cd4657f604ff39965e8818ecd18ecb415beb2d23989c73</originalsourceid><addsrcrecordid>eNp1kMFLwzAUh4MobsxdPUqPInQmadomBwWZzg0GTtRzSNN062iTmbSD_fdmdI558JIXyPd-ee8D4BrBEYIY3QvphKpHNIOIxNEZ6OM4JSFkCT4_uffA0Lk1hBAxlGDGLkEvgjFMIIF98DAtl6tqFyxWpjHS6LyVTblVwUwvgvdW6Katg2fTuGBSVrULhM6DD1MJG4xVVbkrcFGIyqnhoQ7A1-TlczwN52-vs_HTPBSEoSbEkrA8S5jAilABEWVM5iSJ08IPURQRY0msKEVUyXx_ZATFmcpwjiNGmUyjAXjscjdtVqtcKt1YUfGNLWthd9yIkv990eWKL82WJzhmkFAfcHsIsOa7Va7hdemkX0FoZVrHMSIM4oSm0KOjDpXWOGdVcfwGQb7Xzjvt_KDdN9ycDnfEfyV74K4DfCNfm9Zq7-q_tB8fmYyw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2149026870</pqid></control><display><type>article</type><title>Highly Photoconductive InP Quantum Dots Films and Solar Cells</title><source>ACS Publications</source><creator>Crisp, Ryan W ; Kirkwood, Nicholas ; Grimaldi, Gianluca ; Kinge, Sachin ; Siebbeles, Laurens D. A ; Houtepen, Arjan J</creator><creatorcontrib>Crisp, Ryan W ; Kirkwood, Nicholas ; Grimaldi, Gianluca ; Kinge, Sachin ; Siebbeles, Laurens D. A ; Houtepen, Arjan J</creatorcontrib><description>InP and InZnP colloidal quantum dots (QDs) are promising materials for application in light-emitting devices, transistors, photovoltaics, and photocatalytic cells. In addition to possessing an appropriate bandgap, high absorption coefficient, and high bulk carrier mobilities, the intrinsic toxicity of InP and InZnP is much lower than for competing QDs that contain Cd or Pb–providing a potentially safer commercial product. However, compared to other colloidal QDs, InP QDs remain sparsely used in devices and their electronic transport properties are largely unexplored. Here, we use time-resolved microwave conductivity measurements to study charge transport in films of InP and InZnP colloidal quantum dots capped with a variety of short ligands. We find that transport in InP QDs is dominated by trapping effects, which are mitigated in InZnP QDs. We improve charge carrier mobilities with a range of ligand-exchange treatments and for the best treatments reach mobilities and lifetimes on par with those of PbS QD films used in efficient solar cells. To demonstrate the device-grade quality of these films, we construct solar cells based on InP & InZnP QDs with power conversion efficiencies of 0.65 and 1.2%, respectively. This represents a large step forward in developing Cd- and Pb-free next-generation optoelectronic devices.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.8b01453</identifier><identifier>PMID: 30506040</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied energy materials, 2018-11, Vol.1 (11), p.6569-6576</ispartof><rights>Copyright © 2018 American Chemical Society 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a491t-2c49db69a2e48a01899cd4657f604ff39965e8818ecd18ecb415beb2d23989c73</citedby><cites>FETCH-LOGICAL-a491t-2c49db69a2e48a01899cd4657f604ff39965e8818ecd18ecb415beb2d23989c73</cites><orcidid>0000-0002-4812-7495 ; 0000-0002-3703-9617 ; 0000-0001-8328-443X ; 0000-0002-7845-7081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.8b01453$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.8b01453$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30506040$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Crisp, Ryan W</creatorcontrib><creatorcontrib>Kirkwood, Nicholas</creatorcontrib><creatorcontrib>Grimaldi, Gianluca</creatorcontrib><creatorcontrib>Kinge, Sachin</creatorcontrib><creatorcontrib>Siebbeles, Laurens D. A</creatorcontrib><creatorcontrib>Houtepen, Arjan J</creatorcontrib><title>Highly Photoconductive InP Quantum Dots Films and Solar Cells</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>InP and InZnP colloidal quantum dots (QDs) are promising materials for application in light-emitting devices, transistors, photovoltaics, and photocatalytic cells. In addition to possessing an appropriate bandgap, high absorption coefficient, and high bulk carrier mobilities, the intrinsic toxicity of InP and InZnP is much lower than for competing QDs that contain Cd or Pb–providing a potentially safer commercial product. However, compared to other colloidal QDs, InP QDs remain sparsely used in devices and their electronic transport properties are largely unexplored. Here, we use time-resolved microwave conductivity measurements to study charge transport in films of InP and InZnP colloidal quantum dots capped with a variety of short ligands. We find that transport in InP QDs is dominated by trapping effects, which are mitigated in InZnP QDs. We improve charge carrier mobilities with a range of ligand-exchange treatments and for the best treatments reach mobilities and lifetimes on par with those of PbS QD films used in efficient solar cells. To demonstrate the device-grade quality of these films, we construct solar cells based on InP & InZnP QDs with power conversion efficiencies of 0.65 and 1.2%, respectively. This represents a large step forward in developing Cd- and Pb-free next-generation optoelectronic devices.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUh4MobsxdPUqPInQmadomBwWZzg0GTtRzSNN062iTmbSD_fdmdI558JIXyPd-ee8D4BrBEYIY3QvphKpHNIOIxNEZ6OM4JSFkCT4_uffA0Lk1hBAxlGDGLkEvgjFMIIF98DAtl6tqFyxWpjHS6LyVTblVwUwvgvdW6Katg2fTuGBSVrULhM6DD1MJG4xVVbkrcFGIyqnhoQ7A1-TlczwN52-vs_HTPBSEoSbEkrA8S5jAilABEWVM5iSJ08IPURQRY0msKEVUyXx_ZATFmcpwjiNGmUyjAXjscjdtVqtcKt1YUfGNLWthd9yIkv990eWKL82WJzhmkFAfcHsIsOa7Va7hdemkX0FoZVrHMSIM4oSm0KOjDpXWOGdVcfwGQb7Xzjvt_KDdN9ycDnfEfyV74K4DfCNfm9Zq7-q_tB8fmYyw</recordid><startdate>20181126</startdate><enddate>20181126</enddate><creator>Crisp, Ryan W</creator><creator>Kirkwood, Nicholas</creator><creator>Grimaldi, Gianluca</creator><creator>Kinge, Sachin</creator><creator>Siebbeles, Laurens D. A</creator><creator>Houtepen, Arjan J</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4812-7495</orcidid><orcidid>https://orcid.org/0000-0002-3703-9617</orcidid><orcidid>https://orcid.org/0000-0001-8328-443X</orcidid><orcidid>https://orcid.org/0000-0002-7845-7081</orcidid></search><sort><creationdate>20181126</creationdate><title>Highly Photoconductive InP Quantum Dots Films and Solar Cells</title><author>Crisp, Ryan W ; Kirkwood, Nicholas ; Grimaldi, Gianluca ; Kinge, Sachin ; Siebbeles, Laurens D. A ; Houtepen, Arjan J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a491t-2c49db69a2e48a01899cd4657f604ff39965e8818ecd18ecb415beb2d23989c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crisp, Ryan W</creatorcontrib><creatorcontrib>Kirkwood, Nicholas</creatorcontrib><creatorcontrib>Grimaldi, Gianluca</creatorcontrib><creatorcontrib>Kinge, Sachin</creatorcontrib><creatorcontrib>Siebbeles, Laurens D. A</creatorcontrib><creatorcontrib>Houtepen, Arjan J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crisp, Ryan W</au><au>Kirkwood, Nicholas</au><au>Grimaldi, Gianluca</au><au>Kinge, Sachin</au><au>Siebbeles, Laurens D. A</au><au>Houtepen, Arjan J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Photoconductive InP Quantum Dots Films and Solar Cells</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2018-11-26</date><risdate>2018</risdate><volume>1</volume><issue>11</issue><spage>6569</spage><epage>6576</epage><pages>6569-6576</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>InP and InZnP colloidal quantum dots (QDs) are promising materials for application in light-emitting devices, transistors, photovoltaics, and photocatalytic cells. In addition to possessing an appropriate bandgap, high absorption coefficient, and high bulk carrier mobilities, the intrinsic toxicity of InP and InZnP is much lower than for competing QDs that contain Cd or Pb–providing a potentially safer commercial product. However, compared to other colloidal QDs, InP QDs remain sparsely used in devices and their electronic transport properties are largely unexplored. Here, we use time-resolved microwave conductivity measurements to study charge transport in films of InP and InZnP colloidal quantum dots capped with a variety of short ligands. We find that transport in InP QDs is dominated by trapping effects, which are mitigated in InZnP QDs. We improve charge carrier mobilities with a range of ligand-exchange treatments and for the best treatments reach mobilities and lifetimes on par with those of PbS QD films used in efficient solar cells. To demonstrate the device-grade quality of these films, we construct solar cells based on InP & InZnP QDs with power conversion efficiencies of 0.65 and 1.2%, respectively. This represents a large step forward in developing Cd- and Pb-free next-generation optoelectronic devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30506040</pmid><doi>10.1021/acsaem.8b01453</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4812-7495</orcidid><orcidid>https://orcid.org/0000-0002-3703-9617</orcidid><orcidid>https://orcid.org/0000-0001-8328-443X</orcidid><orcidid>https://orcid.org/0000-0002-7845-7081</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2574-0962 |
ispartof | ACS applied energy materials, 2018-11, Vol.1 (11), p.6569-6576 |
issn | 2574-0962 2574-0962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6259048 |
source | ACS Publications |
title | Highly Photoconductive InP Quantum Dots Films and Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A18%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Photoconductive%20InP%20Quantum%20Dots%20Films%20and%20Solar%20Cells&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Crisp,%20Ryan%20W&rft.date=2018-11-26&rft.volume=1&rft.issue=11&rft.spage=6569&rft.epage=6576&rft.pages=6569-6576&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.8b01453&rft_dat=%3Cproquest_pubme%3E2149026870%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2149026870&rft_id=info:pmid/30506040&rfr_iscdi=true |