Scan‐specific robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction: Database‐free deep learning for fast imaging
Purpose To develop an improved k‐space reconstruction method using scan‐specific deep learning that is trained on autocalibration signal (ACS) data. Theory Robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction trains convolutional neural networks on ACS data. This enables...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2019-01, Vol.81 (1), p.439-453 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 453 |
---|---|
container_issue | 1 |
container_start_page | 439 |
container_title | Magnetic resonance in medicine |
container_volume | 81 |
creator | Akçakaya, Mehmet Moeller, Steen Weingärtner, Sebastian Uğurbil, Kâmil |
description | Purpose
To develop an improved k‐space reconstruction method using scan‐specific deep learning that is trained on autocalibration signal (ACS) data.
Theory
Robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction trains convolutional neural networks on ACS data. This enables nonlinear estimation of missing k‐space lines from acquired k‐space data with improved noise resilience, as opposed to conventional linear k‐space interpolation‐based methods, such as GRAPPA, which are based on linear convolutional kernels.
Methods
The training algorithm is implemented using a mean square error loss function over the target points in the ACS region, using a gradient descent algorithm. The neural network contains 3 layers of convolutional operators, with 2 of these including nonlinear activation functions. The noise performance and reconstruction quality of the RAKI method was compared with GRAPPA in phantom, as well as in neurological and cardiac in vivo data sets.
Results
Phantom imaging shows that the proposed RAKI method outperforms GRAPPA at high (≥4) acceleration rates, both visually and quantitatively. Quantitative cardiac imaging shows improved noise resilience at high acceleration rates (rate 4:23% and rate 5:48%) over GRAPPA. The same trend of improved noise resilience is also observed in high‐resolution brain imaging at high acceleration rates.
Conclusion
The RAKI method offers a training database‐free deep learning approach for MRI reconstruction, with the potential to improve many existing reconstruction approaches, and is compatible with conventional data acquisition protocols. |
doi_str_mv | 10.1002/mrm.27420 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6258345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2115748879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5090-2e88f71e419155ba4e71882ca25b335a34b83f61275091081354fcae261c35453</originalsourceid><addsrcrecordid>eNp1kctu1TAQhi0EoofCghdAlti0i7S-xjGLSlW5VbRCKrC2HHdycJvYwU6ouuMR2PF-PAk-FypAYuXxzDf_zOhH6CklB5QQdjik4YApwcg9tKCSsYpJLe6jBVGCVJxqsYMe5XxFCNFaiYdohxOmFKv1Av344Gz4-e17HsH5zjucYjvnCds0rb7e9qUYYE7bYLqJ6TrjLiZ8vW6zDrAPE6Qx9nbyMeC9i-N3p_s4gYshT2l2q-wL_NJOtrUZSleXAPAlwIh7sCn4sFwLdrYM9oNdlsRj9KCzfYYn23cXfXr96uPJ2-rs_ZvTk-OzykmiScWgaTpFQVBNpWytAEWbhjnLZMu5tFy0De9qylTBKWkol6JzFlhNXQkl30VHG91xbge4dBCmcqoZU9kj3Zpovfm7Evxns4xfTc1kw9cCe1uBFL_MkCcz-Oyg722AOGfDKJVKNI3SBX3-D3oV5xTKeYXiSgktdF2o_Q3lUsw5QXe3DCVmZbcpdpu13YV99uf2d-RvfwtwuAFufA-3_1cy5xfnG8lfDlm7YQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137749496</pqid></control><display><type>article</type><title>Scan‐specific robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction: Database‐free deep learning for fast imaging</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><creator>Akçakaya, Mehmet ; Moeller, Steen ; Weingärtner, Sebastian ; Uğurbil, Kâmil</creator><creatorcontrib>Akçakaya, Mehmet ; Moeller, Steen ; Weingärtner, Sebastian ; Uğurbil, Kâmil</creatorcontrib><description>Purpose
To develop an improved k‐space reconstruction method using scan‐specific deep learning that is trained on autocalibration signal (ACS) data.
Theory
Robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction trains convolutional neural networks on ACS data. This enables nonlinear estimation of missing k‐space lines from acquired k‐space data with improved noise resilience, as opposed to conventional linear k‐space interpolation‐based methods, such as GRAPPA, which are based on linear convolutional kernels.
Methods
The training algorithm is implemented using a mean square error loss function over the target points in the ACS region, using a gradient descent algorithm. The neural network contains 3 layers of convolutional operators, with 2 of these including nonlinear activation functions. The noise performance and reconstruction quality of the RAKI method was compared with GRAPPA in phantom, as well as in neurological and cardiac in vivo data sets.
Results
Phantom imaging shows that the proposed RAKI method outperforms GRAPPA at high (≥4) acceleration rates, both visually and quantitatively. Quantitative cardiac imaging shows improved noise resilience at high acceleration rates (rate 4:23% and rate 5:48%) over GRAPPA. The same trend of improved noise resilience is also observed in high‐resolution brain imaging at high acceleration rates.
Conclusion
The RAKI method offers a training database‐free deep learning approach for MRI reconstruction, with the potential to improve many existing reconstruction approaches, and is compatible with conventional data acquisition protocols.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.27420</identifier><identifier>PMID: 30277269</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>accelerated imaging ; Adult ; Algorithms ; Artificial neural networks ; Brain ; Brain - diagnostic imaging ; Brain Mapping ; convolutional neural networks ; Data acquisition ; Databases, Factual ; Deep Learning ; Female ; Heart - diagnostic imaging ; High acceleration ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image Processing, Computer-Assisted - methods ; Image reconstruction ; In vivo methods and tests ; Interpolation ; k‐space interpolation ; Magnetic Resonance Imaging ; Male ; Medical imaging ; Middle Aged ; Neural networks ; Neural Networks, Computer ; Neuroimaging ; Noise ; nonlinear estimation ; Operators (mathematics) ; parallel imaging ; Phantoms, Imaging ; Protocol (computers) ; Radionuclide Imaging ; Resilience ; Young Adult</subject><ispartof>Magnetic resonance in medicine, 2019-01, Vol.81 (1), p.439-453</ispartof><rights>2018 International Society for Magnetic Resonance in Medicine</rights><rights>2018 International Society for Magnetic Resonance in Medicine.</rights><rights>2019 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5090-2e88f71e419155ba4e71882ca25b335a34b83f61275091081354fcae261c35453</citedby><cites>FETCH-LOGICAL-c5090-2e88f71e419155ba4e71882ca25b335a34b83f61275091081354fcae261c35453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.27420$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.27420$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30277269$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Akçakaya, Mehmet</creatorcontrib><creatorcontrib>Moeller, Steen</creatorcontrib><creatorcontrib>Weingärtner, Sebastian</creatorcontrib><creatorcontrib>Uğurbil, Kâmil</creatorcontrib><title>Scan‐specific robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction: Database‐free deep learning for fast imaging</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose
To develop an improved k‐space reconstruction method using scan‐specific deep learning that is trained on autocalibration signal (ACS) data.
Theory
Robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction trains convolutional neural networks on ACS data. This enables nonlinear estimation of missing k‐space lines from acquired k‐space data with improved noise resilience, as opposed to conventional linear k‐space interpolation‐based methods, such as GRAPPA, which are based on linear convolutional kernels.
Methods
The training algorithm is implemented using a mean square error loss function over the target points in the ACS region, using a gradient descent algorithm. The neural network contains 3 layers of convolutional operators, with 2 of these including nonlinear activation functions. The noise performance and reconstruction quality of the RAKI method was compared with GRAPPA in phantom, as well as in neurological and cardiac in vivo data sets.
Results
Phantom imaging shows that the proposed RAKI method outperforms GRAPPA at high (≥4) acceleration rates, both visually and quantitatively. Quantitative cardiac imaging shows improved noise resilience at high acceleration rates (rate 4:23% and rate 5:48%) over GRAPPA. The same trend of improved noise resilience is also observed in high‐resolution brain imaging at high acceleration rates.
Conclusion
The RAKI method offers a training database‐free deep learning approach for MRI reconstruction, with the potential to improve many existing reconstruction approaches, and is compatible with conventional data acquisition protocols.</description><subject>accelerated imaging</subject><subject>Adult</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain Mapping</subject><subject>convolutional neural networks</subject><subject>Data acquisition</subject><subject>Databases, Factual</subject><subject>Deep Learning</subject><subject>Female</subject><subject>Heart - diagnostic imaging</subject><subject>High acceleration</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image reconstruction</subject><subject>In vivo methods and tests</subject><subject>Interpolation</subject><subject>k‐space interpolation</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Middle Aged</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Neuroimaging</subject><subject>Noise</subject><subject>nonlinear estimation</subject><subject>Operators (mathematics)</subject><subject>parallel imaging</subject><subject>Phantoms, Imaging</subject><subject>Protocol (computers)</subject><subject>Radionuclide Imaging</subject><subject>Resilience</subject><subject>Young Adult</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctu1TAQhi0EoofCghdAlti0i7S-xjGLSlW5VbRCKrC2HHdycJvYwU6ouuMR2PF-PAk-FypAYuXxzDf_zOhH6CklB5QQdjik4YApwcg9tKCSsYpJLe6jBVGCVJxqsYMe5XxFCNFaiYdohxOmFKv1Av344Gz4-e17HsH5zjucYjvnCds0rb7e9qUYYE7bYLqJ6TrjLiZ8vW6zDrAPE6Qx9nbyMeC9i-N3p_s4gYshT2l2q-wL_NJOtrUZSleXAPAlwIh7sCn4sFwLdrYM9oNdlsRj9KCzfYYn23cXfXr96uPJ2-rs_ZvTk-OzykmiScWgaTpFQVBNpWytAEWbhjnLZMu5tFy0De9qylTBKWkol6JzFlhNXQkl30VHG91xbge4dBCmcqoZU9kj3Zpovfm7Evxns4xfTc1kw9cCe1uBFL_MkCcz-Oyg722AOGfDKJVKNI3SBX3-D3oV5xTKeYXiSgktdF2o_Q3lUsw5QXe3DCVmZbcpdpu13YV99uf2d-RvfwtwuAFufA-3_1cy5xfnG8lfDlm7YQ</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Akçakaya, Mehmet</creator><creator>Moeller, Steen</creator><creator>Weingärtner, Sebastian</creator><creator>Uğurbil, Kâmil</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201901</creationdate><title>Scan‐specific robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction: Database‐free deep learning for fast imaging</title><author>Akçakaya, Mehmet ; Moeller, Steen ; Weingärtner, Sebastian ; Uğurbil, Kâmil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5090-2e88f71e419155ba4e71882ca25b335a34b83f61275091081354fcae261c35453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>accelerated imaging</topic><topic>Adult</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain Mapping</topic><topic>convolutional neural networks</topic><topic>Data acquisition</topic><topic>Databases, Factual</topic><topic>Deep Learning</topic><topic>Female</topic><topic>Heart - diagnostic imaging</topic><topic>High acceleration</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image reconstruction</topic><topic>In vivo methods and tests</topic><topic>Interpolation</topic><topic>k‐space interpolation</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Middle Aged</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Neuroimaging</topic><topic>Noise</topic><topic>nonlinear estimation</topic><topic>Operators (mathematics)</topic><topic>parallel imaging</topic><topic>Phantoms, Imaging</topic><topic>Protocol (computers)</topic><topic>Radionuclide Imaging</topic><topic>Resilience</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akçakaya, Mehmet</creatorcontrib><creatorcontrib>Moeller, Steen</creatorcontrib><creatorcontrib>Weingärtner, Sebastian</creatorcontrib><creatorcontrib>Uğurbil, Kâmil</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akçakaya, Mehmet</au><au>Moeller, Steen</au><au>Weingärtner, Sebastian</au><au>Uğurbil, Kâmil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scan‐specific robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction: Database‐free deep learning for fast imaging</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2019-01</date><risdate>2019</risdate><volume>81</volume><issue>1</issue><spage>439</spage><epage>453</epage><pages>439-453</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose
To develop an improved k‐space reconstruction method using scan‐specific deep learning that is trained on autocalibration signal (ACS) data.
Theory
Robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction trains convolutional neural networks on ACS data. This enables nonlinear estimation of missing k‐space lines from acquired k‐space data with improved noise resilience, as opposed to conventional linear k‐space interpolation‐based methods, such as GRAPPA, which are based on linear convolutional kernels.
Methods
The training algorithm is implemented using a mean square error loss function over the target points in the ACS region, using a gradient descent algorithm. The neural network contains 3 layers of convolutional operators, with 2 of these including nonlinear activation functions. The noise performance and reconstruction quality of the RAKI method was compared with GRAPPA in phantom, as well as in neurological and cardiac in vivo data sets.
Results
Phantom imaging shows that the proposed RAKI method outperforms GRAPPA at high (≥4) acceleration rates, both visually and quantitatively. Quantitative cardiac imaging shows improved noise resilience at high acceleration rates (rate 4:23% and rate 5:48%) over GRAPPA. The same trend of improved noise resilience is also observed in high‐resolution brain imaging at high acceleration rates.
Conclusion
The RAKI method offers a training database‐free deep learning approach for MRI reconstruction, with the potential to improve many existing reconstruction approaches, and is compatible with conventional data acquisition protocols.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30277269</pmid><doi>10.1002/mrm.27420</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2019-01, Vol.81 (1), p.439-453 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6258345 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content |
subjects | accelerated imaging Adult Algorithms Artificial neural networks Brain Brain - diagnostic imaging Brain Mapping convolutional neural networks Data acquisition Databases, Factual Deep Learning Female Heart - diagnostic imaging High acceleration Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image Processing, Computer-Assisted - methods Image reconstruction In vivo methods and tests Interpolation k‐space interpolation Magnetic Resonance Imaging Male Medical imaging Middle Aged Neural networks Neural Networks, Computer Neuroimaging Noise nonlinear estimation Operators (mathematics) parallel imaging Phantoms, Imaging Protocol (computers) Radionuclide Imaging Resilience Young Adult |
title | Scan‐specific robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction: Database‐free deep learning for fast imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A49%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scan%E2%80%90specific%20robust%20artificial%E2%80%90neural%E2%80%90networks%20for%20k%E2%80%90space%20interpolation%20(RAKI)%20reconstruction:%20Database%E2%80%90free%20deep%20learning%20for%20fast%20imaging&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Ak%C3%A7akaya,%20Mehmet&rft.date=2019-01&rft.volume=81&rft.issue=1&rft.spage=439&rft.epage=453&rft.pages=439-453&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.27420&rft_dat=%3Cproquest_pubme%3E2115748879%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2137749496&rft_id=info:pmid/30277269&rfr_iscdi=true |