Scan‐specific robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction: Database‐free deep learning for fast imaging

Purpose To develop an improved k‐space reconstruction method using scan‐specific deep learning that is trained on autocalibration signal (ACS) data. Theory Robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction trains convolutional neural networks on ACS data. This enables...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2019-01, Vol.81 (1), p.439-453
Hauptverfasser: Akçakaya, Mehmet, Moeller, Steen, Weingärtner, Sebastian, Uğurbil, Kâmil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 453
container_issue 1
container_start_page 439
container_title Magnetic resonance in medicine
container_volume 81
creator Akçakaya, Mehmet
Moeller, Steen
Weingärtner, Sebastian
Uğurbil, Kâmil
description Purpose To develop an improved k‐space reconstruction method using scan‐specific deep learning that is trained on autocalibration signal (ACS) data. Theory Robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction trains convolutional neural networks on ACS data. This enables nonlinear estimation of missing k‐space lines from acquired k‐space data with improved noise resilience, as opposed to conventional linear k‐space interpolation‐based methods, such as GRAPPA, which are based on linear convolutional kernels. Methods The training algorithm is implemented using a mean square error loss function over the target points in the ACS region, using a gradient descent algorithm. The neural network contains 3 layers of convolutional operators, with 2 of these including nonlinear activation functions. The noise performance and reconstruction quality of the RAKI method was compared with GRAPPA in phantom, as well as in neurological and cardiac in vivo data sets. Results Phantom imaging shows that the proposed RAKI method outperforms GRAPPA at high (≥4) acceleration rates, both visually and quantitatively. Quantitative cardiac imaging shows improved noise resilience at high acceleration rates (rate 4:23% and rate 5:48%) over GRAPPA. The same trend of improved noise resilience is also observed in high‐resolution brain imaging at high acceleration rates. Conclusion The RAKI method offers a training database‐free deep learning approach for MRI reconstruction, with the potential to improve many existing reconstruction approaches, and is compatible with conventional data acquisition protocols.
doi_str_mv 10.1002/mrm.27420
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6258345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2115748879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5090-2e88f71e419155ba4e71882ca25b335a34b83f61275091081354fcae261c35453</originalsourceid><addsrcrecordid>eNp1kctu1TAQhi0EoofCghdAlti0i7S-xjGLSlW5VbRCKrC2HHdycJvYwU6ouuMR2PF-PAk-FypAYuXxzDf_zOhH6CklB5QQdjik4YApwcg9tKCSsYpJLe6jBVGCVJxqsYMe5XxFCNFaiYdohxOmFKv1Av344Gz4-e17HsH5zjucYjvnCds0rb7e9qUYYE7bYLqJ6TrjLiZ8vW6zDrAPE6Qx9nbyMeC9i-N3p_s4gYshT2l2q-wL_NJOtrUZSleXAPAlwIh7sCn4sFwLdrYM9oNdlsRj9KCzfYYn23cXfXr96uPJ2-rs_ZvTk-OzykmiScWgaTpFQVBNpWytAEWbhjnLZMu5tFy0De9qylTBKWkol6JzFlhNXQkl30VHG91xbge4dBCmcqoZU9kj3Zpovfm7Evxns4xfTc1kw9cCe1uBFL_MkCcz-Oyg722AOGfDKJVKNI3SBX3-D3oV5xTKeYXiSgktdF2o_Q3lUsw5QXe3DCVmZbcpdpu13YV99uf2d-RvfwtwuAFufA-3_1cy5xfnG8lfDlm7YQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137749496</pqid></control><display><type>article</type><title>Scan‐specific robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction: Database‐free deep learning for fast imaging</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><creator>Akçakaya, Mehmet ; Moeller, Steen ; Weingärtner, Sebastian ; Uğurbil, Kâmil</creator><creatorcontrib>Akçakaya, Mehmet ; Moeller, Steen ; Weingärtner, Sebastian ; Uğurbil, Kâmil</creatorcontrib><description>Purpose To develop an improved k‐space reconstruction method using scan‐specific deep learning that is trained on autocalibration signal (ACS) data. Theory Robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction trains convolutional neural networks on ACS data. This enables nonlinear estimation of missing k‐space lines from acquired k‐space data with improved noise resilience, as opposed to conventional linear k‐space interpolation‐based methods, such as GRAPPA, which are based on linear convolutional kernels. Methods The training algorithm is implemented using a mean square error loss function over the target points in the ACS region, using a gradient descent algorithm. The neural network contains 3 layers of convolutional operators, with 2 of these including nonlinear activation functions. The noise performance and reconstruction quality of the RAKI method was compared with GRAPPA in phantom, as well as in neurological and cardiac in vivo data sets. Results Phantom imaging shows that the proposed RAKI method outperforms GRAPPA at high (≥4) acceleration rates, both visually and quantitatively. Quantitative cardiac imaging shows improved noise resilience at high acceleration rates (rate 4:23% and rate 5:48%) over GRAPPA. The same trend of improved noise resilience is also observed in high‐resolution brain imaging at high acceleration rates. Conclusion The RAKI method offers a training database‐free deep learning approach for MRI reconstruction, with the potential to improve many existing reconstruction approaches, and is compatible with conventional data acquisition protocols.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.27420</identifier><identifier>PMID: 30277269</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>accelerated imaging ; Adult ; Algorithms ; Artificial neural networks ; Brain ; Brain - diagnostic imaging ; Brain Mapping ; convolutional neural networks ; Data acquisition ; Databases, Factual ; Deep Learning ; Female ; Heart - diagnostic imaging ; High acceleration ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image Processing, Computer-Assisted - methods ; Image reconstruction ; In vivo methods and tests ; Interpolation ; k‐space interpolation ; Magnetic Resonance Imaging ; Male ; Medical imaging ; Middle Aged ; Neural networks ; Neural Networks, Computer ; Neuroimaging ; Noise ; nonlinear estimation ; Operators (mathematics) ; parallel imaging ; Phantoms, Imaging ; Protocol (computers) ; Radionuclide Imaging ; Resilience ; Young Adult</subject><ispartof>Magnetic resonance in medicine, 2019-01, Vol.81 (1), p.439-453</ispartof><rights>2018 International Society for Magnetic Resonance in Medicine</rights><rights>2018 International Society for Magnetic Resonance in Medicine.</rights><rights>2019 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5090-2e88f71e419155ba4e71882ca25b335a34b83f61275091081354fcae261c35453</citedby><cites>FETCH-LOGICAL-c5090-2e88f71e419155ba4e71882ca25b335a34b83f61275091081354fcae261c35453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.27420$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.27420$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30277269$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Akçakaya, Mehmet</creatorcontrib><creatorcontrib>Moeller, Steen</creatorcontrib><creatorcontrib>Weingärtner, Sebastian</creatorcontrib><creatorcontrib>Uğurbil, Kâmil</creatorcontrib><title>Scan‐specific robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction: Database‐free deep learning for fast imaging</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose To develop an improved k‐space reconstruction method using scan‐specific deep learning that is trained on autocalibration signal (ACS) data. Theory Robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction trains convolutional neural networks on ACS data. This enables nonlinear estimation of missing k‐space lines from acquired k‐space data with improved noise resilience, as opposed to conventional linear k‐space interpolation‐based methods, such as GRAPPA, which are based on linear convolutional kernels. Methods The training algorithm is implemented using a mean square error loss function over the target points in the ACS region, using a gradient descent algorithm. The neural network contains 3 layers of convolutional operators, with 2 of these including nonlinear activation functions. The noise performance and reconstruction quality of the RAKI method was compared with GRAPPA in phantom, as well as in neurological and cardiac in vivo data sets. Results Phantom imaging shows that the proposed RAKI method outperforms GRAPPA at high (≥4) acceleration rates, both visually and quantitatively. Quantitative cardiac imaging shows improved noise resilience at high acceleration rates (rate 4:23% and rate 5:48%) over GRAPPA. The same trend of improved noise resilience is also observed in high‐resolution brain imaging at high acceleration rates. Conclusion The RAKI method offers a training database‐free deep learning approach for MRI reconstruction, with the potential to improve many existing reconstruction approaches, and is compatible with conventional data acquisition protocols.</description><subject>accelerated imaging</subject><subject>Adult</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain Mapping</subject><subject>convolutional neural networks</subject><subject>Data acquisition</subject><subject>Databases, Factual</subject><subject>Deep Learning</subject><subject>Female</subject><subject>Heart - diagnostic imaging</subject><subject>High acceleration</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image reconstruction</subject><subject>In vivo methods and tests</subject><subject>Interpolation</subject><subject>k‐space interpolation</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Middle Aged</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Neuroimaging</subject><subject>Noise</subject><subject>nonlinear estimation</subject><subject>Operators (mathematics)</subject><subject>parallel imaging</subject><subject>Phantoms, Imaging</subject><subject>Protocol (computers)</subject><subject>Radionuclide Imaging</subject><subject>Resilience</subject><subject>Young Adult</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctu1TAQhi0EoofCghdAlti0i7S-xjGLSlW5VbRCKrC2HHdycJvYwU6ouuMR2PF-PAk-FypAYuXxzDf_zOhH6CklB5QQdjik4YApwcg9tKCSsYpJLe6jBVGCVJxqsYMe5XxFCNFaiYdohxOmFKv1Av344Gz4-e17HsH5zjucYjvnCds0rb7e9qUYYE7bYLqJ6TrjLiZ8vW6zDrAPE6Qx9nbyMeC9i-N3p_s4gYshT2l2q-wL_NJOtrUZSleXAPAlwIh7sCn4sFwLdrYM9oNdlsRj9KCzfYYn23cXfXr96uPJ2-rs_ZvTk-OzykmiScWgaTpFQVBNpWytAEWbhjnLZMu5tFy0De9qylTBKWkol6JzFlhNXQkl30VHG91xbge4dBCmcqoZU9kj3Zpovfm7Evxns4xfTc1kw9cCe1uBFL_MkCcz-Oyg722AOGfDKJVKNI3SBX3-D3oV5xTKeYXiSgktdF2o_Q3lUsw5QXe3DCVmZbcpdpu13YV99uf2d-RvfwtwuAFufA-3_1cy5xfnG8lfDlm7YQ</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Akçakaya, Mehmet</creator><creator>Moeller, Steen</creator><creator>Weingärtner, Sebastian</creator><creator>Uğurbil, Kâmil</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201901</creationdate><title>Scan‐specific robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction: Database‐free deep learning for fast imaging</title><author>Akçakaya, Mehmet ; Moeller, Steen ; Weingärtner, Sebastian ; Uğurbil, Kâmil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5090-2e88f71e419155ba4e71882ca25b335a34b83f61275091081354fcae261c35453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>accelerated imaging</topic><topic>Adult</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain Mapping</topic><topic>convolutional neural networks</topic><topic>Data acquisition</topic><topic>Databases, Factual</topic><topic>Deep Learning</topic><topic>Female</topic><topic>Heart - diagnostic imaging</topic><topic>High acceleration</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image reconstruction</topic><topic>In vivo methods and tests</topic><topic>Interpolation</topic><topic>k‐space interpolation</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Middle Aged</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Neuroimaging</topic><topic>Noise</topic><topic>nonlinear estimation</topic><topic>Operators (mathematics)</topic><topic>parallel imaging</topic><topic>Phantoms, Imaging</topic><topic>Protocol (computers)</topic><topic>Radionuclide Imaging</topic><topic>Resilience</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akçakaya, Mehmet</creatorcontrib><creatorcontrib>Moeller, Steen</creatorcontrib><creatorcontrib>Weingärtner, Sebastian</creatorcontrib><creatorcontrib>Uğurbil, Kâmil</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akçakaya, Mehmet</au><au>Moeller, Steen</au><au>Weingärtner, Sebastian</au><au>Uğurbil, Kâmil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scan‐specific robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction: Database‐free deep learning for fast imaging</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2019-01</date><risdate>2019</risdate><volume>81</volume><issue>1</issue><spage>439</spage><epage>453</epage><pages>439-453</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose To develop an improved k‐space reconstruction method using scan‐specific deep learning that is trained on autocalibration signal (ACS) data. Theory Robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction trains convolutional neural networks on ACS data. This enables nonlinear estimation of missing k‐space lines from acquired k‐space data with improved noise resilience, as opposed to conventional linear k‐space interpolation‐based methods, such as GRAPPA, which are based on linear convolutional kernels. Methods The training algorithm is implemented using a mean square error loss function over the target points in the ACS region, using a gradient descent algorithm. The neural network contains 3 layers of convolutional operators, with 2 of these including nonlinear activation functions. The noise performance and reconstruction quality of the RAKI method was compared with GRAPPA in phantom, as well as in neurological and cardiac in vivo data sets. Results Phantom imaging shows that the proposed RAKI method outperforms GRAPPA at high (≥4) acceleration rates, both visually and quantitatively. Quantitative cardiac imaging shows improved noise resilience at high acceleration rates (rate 4:23% and rate 5:48%) over GRAPPA. The same trend of improved noise resilience is also observed in high‐resolution brain imaging at high acceleration rates. Conclusion The RAKI method offers a training database‐free deep learning approach for MRI reconstruction, with the potential to improve many existing reconstruction approaches, and is compatible with conventional data acquisition protocols.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30277269</pmid><doi>10.1002/mrm.27420</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2019-01, Vol.81 (1), p.439-453
issn 0740-3194
1522-2594
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6258345
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content
subjects accelerated imaging
Adult
Algorithms
Artificial neural networks
Brain
Brain - diagnostic imaging
Brain Mapping
convolutional neural networks
Data acquisition
Databases, Factual
Deep Learning
Female
Heart - diagnostic imaging
High acceleration
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image Processing, Computer-Assisted - methods
Image reconstruction
In vivo methods and tests
Interpolation
k‐space interpolation
Magnetic Resonance Imaging
Male
Medical imaging
Middle Aged
Neural networks
Neural Networks, Computer
Neuroimaging
Noise
nonlinear estimation
Operators (mathematics)
parallel imaging
Phantoms, Imaging
Protocol (computers)
Radionuclide Imaging
Resilience
Young Adult
title Scan‐specific robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction: Database‐free deep learning for fast imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A49%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scan%E2%80%90specific%20robust%20artificial%E2%80%90neural%E2%80%90networks%20for%20k%E2%80%90space%20interpolation%20(RAKI)%20reconstruction:%20Database%E2%80%90free%20deep%20learning%20for%20fast%20imaging&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Ak%C3%A7akaya,%20Mehmet&rft.date=2019-01&rft.volume=81&rft.issue=1&rft.spage=439&rft.epage=453&rft.pages=439-453&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.27420&rft_dat=%3Cproquest_pubme%3E2115748879%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2137749496&rft_id=info:pmid/30277269&rfr_iscdi=true