Effects of antenatal betamethasone on preterm human and mouse ductus arteriosus: comparison with baboon data

Background Although studies involving preterm infants ≤34 weeks gestation report a decreased incidence of patent ductus arteriosus after antenatal betamethasone, studies involving younger gestation infants report conflicting results. Methods We used preterm baboons, mice, and humans (≤27 6/7 weeks g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pediatric research 2018-09, Vol.84 (3), p.458-465
Hauptverfasser: Shelton, Elaine L., Waleh, Nahid, Plosa, Erin J., Benjamin, John T., Milne, Ginger L., Hooper, Christopher W., Ehinger, Noah J., Poole, Stanley, Brown, Naoko, Seidner, Steven, McCurnin, Donald, Reese, Jeff, Clyman, Ronald I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 465
container_issue 3
container_start_page 458
container_title Pediatric research
container_volume 84
creator Shelton, Elaine L.
Waleh, Nahid
Plosa, Erin J.
Benjamin, John T.
Milne, Ginger L.
Hooper, Christopher W.
Ehinger, Noah J.
Poole, Stanley
Brown, Naoko
Seidner, Steven
McCurnin, Donald
Reese, Jeff
Clyman, Ronald I.
description Background Although studies involving preterm infants ≤34 weeks gestation report a decreased incidence of patent ductus arteriosus after antenatal betamethasone, studies involving younger gestation infants report conflicting results. Methods We used preterm baboons, mice, and humans (≤27 6/7 weeks gestation) to examine betamethasone’s effects on ductus gene expression and constriction both in vitro and in vivo. Results In mice, betamethasone increased the sensitivity of the premature ductus to the contractile effects of oxygen without altering the effects of other contractile or vasodilatory stimuli. Betamethasone’s effects on oxygen sensitivity could be eliminated by inhibiting endogenous prostaglandin/nitric oxide signaling. In mice and baboons, betamethasone increased the expression of several developmentally regulated genes that mediate oxygen-induced constriction (K + channels) and inhibit vasodilator signaling (phosphodiesterases). In human infants, betamethasone increased the rate of ductus constriction at all gestational ages. However, in infants born ≤25 6/7 weeks gestation, betamethasone’s contractile effects were only apparent when prostaglandin signaling was inhibited, whereas at 26–27 weeks gestation, betamethasone’s contractile effects were apparent even in the absence of prostaglandin inhibitors. Conclusions We speculate that betamethasone’s contractile effects may be mediated through genes that are developmentally regulated. This could explain why betamethasone’s effects vary according to the infant’s developmental age at birth.
doi_str_mv 10.1038/s41390-018-0006-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6258329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2138057979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-e1c59a454e239a0fe4ecb6655e5d9f625b2793bc15dc1a44c02b3e94431294e03</originalsourceid><addsrcrecordid>eNp1kUtP3DAUhS1UBMPjB7CpLHUdev1K4i4qVYhCJSQ2sLYc52Ymo4k9tZ1W5dfXowFaFqx85XPOd690CLlgcMlAtJ-TZEJDBaytAKCung7IgilRfqRsPpAFgGCV0Lo9JicprQGYVK08Isdc66bWtV6QzfUwoMuJhoFan9HbbDe0w2wnzCubgkcaPN1GzBgnupon64uxp1OYE9J-dnlO1MaijiHN6Qt1YdraOJYk_T3mFe1sF8rcF_AZORzsJuH583tKHr9fP1zdVnf3Nz-uvt1VTjaQK2ROaSuVRC60hQEluq6ulULV66HmquONFp1jqnfMSumAdwK1lIJxLRHEKfm6527nbsLeoc_Rbsw2jpONf0ywo3mr-HFlluGXKexWcF0An54BMfycMWWzDnP05WbDmWhBNbrZudje5WJIKeLwuoGB2RVk9gWZUpDZFWSeSubj_6e9Jl4aKQa-N6Qi-SXGf6vfp_4FDgye8Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2138057979</pqid></control><display><type>article</type><title>Effects of antenatal betamethasone on preterm human and mouse ductus arteriosus: comparison with baboon data</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Shelton, Elaine L. ; Waleh, Nahid ; Plosa, Erin J. ; Benjamin, John T. ; Milne, Ginger L. ; Hooper, Christopher W. ; Ehinger, Noah J. ; Poole, Stanley ; Brown, Naoko ; Seidner, Steven ; McCurnin, Donald ; Reese, Jeff ; Clyman, Ronald I.</creator><creatorcontrib>Shelton, Elaine L. ; Waleh, Nahid ; Plosa, Erin J. ; Benjamin, John T. ; Milne, Ginger L. ; Hooper, Christopher W. ; Ehinger, Noah J. ; Poole, Stanley ; Brown, Naoko ; Seidner, Steven ; McCurnin, Donald ; Reese, Jeff ; Clyman, Ronald I.</creatorcontrib><description>Background Although studies involving preterm infants ≤34 weeks gestation report a decreased incidence of patent ductus arteriosus after antenatal betamethasone, studies involving younger gestation infants report conflicting results. Methods We used preterm baboons, mice, and humans (≤27 6/7 weeks gestation) to examine betamethasone’s effects on ductus gene expression and constriction both in vitro and in vivo. Results In mice, betamethasone increased the sensitivity of the premature ductus to the contractile effects of oxygen without altering the effects of other contractile or vasodilatory stimuli. Betamethasone’s effects on oxygen sensitivity could be eliminated by inhibiting endogenous prostaglandin/nitric oxide signaling. In mice and baboons, betamethasone increased the expression of several developmentally regulated genes that mediate oxygen-induced constriction (K + channels) and inhibit vasodilator signaling (phosphodiesterases). In human infants, betamethasone increased the rate of ductus constriction at all gestational ages. However, in infants born ≤25 6/7 weeks gestation, betamethasone’s contractile effects were only apparent when prostaglandin signaling was inhibited, whereas at 26–27 weeks gestation, betamethasone’s contractile effects were apparent even in the absence of prostaglandin inhibitors. Conclusions We speculate that betamethasone’s contractile effects may be mediated through genes that are developmentally regulated. This could explain why betamethasone’s effects vary according to the infant’s developmental age at birth.</description><identifier>ISSN: 0031-3998</identifier><identifier>EISSN: 1530-0447</identifier><identifier>DOI: 10.1038/s41390-018-0006-z</identifier><identifier>PMID: 29976969</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Animals ; Betamethasone - therapeutic use ; Ductus Arteriosus - drug effects ; Ductus Arteriosus, Patent - drug therapy ; Echocardiography ; Female ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation ; Humans ; Infant, Premature ; Maternal Exposure ; Medicine ; Medicine &amp; Public Health ; Mice ; Oxygen - metabolism ; Papio ; Pediatric Surgery ; Pediatrics ; Polymerase Chain Reaction ; Prostaglandins - metabolism</subject><ispartof>Pediatric research, 2018-09, Vol.84 (3), p.458-465</ispartof><rights>International Pediatric Research Foundation, Inc 2018</rights><rights>Copyright Nature Publishing Group Sep 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-e1c59a454e239a0fe4ecb6655e5d9f625b2793bc15dc1a44c02b3e94431294e03</citedby><cites>FETCH-LOGICAL-c470t-e1c59a454e239a0fe4ecb6655e5d9f625b2793bc15dc1a44c02b3e94431294e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41390-018-0006-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41390-018-0006-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29976969$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shelton, Elaine L.</creatorcontrib><creatorcontrib>Waleh, Nahid</creatorcontrib><creatorcontrib>Plosa, Erin J.</creatorcontrib><creatorcontrib>Benjamin, John T.</creatorcontrib><creatorcontrib>Milne, Ginger L.</creatorcontrib><creatorcontrib>Hooper, Christopher W.</creatorcontrib><creatorcontrib>Ehinger, Noah J.</creatorcontrib><creatorcontrib>Poole, Stanley</creatorcontrib><creatorcontrib>Brown, Naoko</creatorcontrib><creatorcontrib>Seidner, Steven</creatorcontrib><creatorcontrib>McCurnin, Donald</creatorcontrib><creatorcontrib>Reese, Jeff</creatorcontrib><creatorcontrib>Clyman, Ronald I.</creatorcontrib><title>Effects of antenatal betamethasone on preterm human and mouse ductus arteriosus: comparison with baboon data</title><title>Pediatric research</title><addtitle>Pediatr Res</addtitle><addtitle>Pediatr Res</addtitle><description>Background Although studies involving preterm infants ≤34 weeks gestation report a decreased incidence of patent ductus arteriosus after antenatal betamethasone, studies involving younger gestation infants report conflicting results. Methods We used preterm baboons, mice, and humans (≤27 6/7 weeks gestation) to examine betamethasone’s effects on ductus gene expression and constriction both in vitro and in vivo. Results In mice, betamethasone increased the sensitivity of the premature ductus to the contractile effects of oxygen without altering the effects of other contractile or vasodilatory stimuli. Betamethasone’s effects on oxygen sensitivity could be eliminated by inhibiting endogenous prostaglandin/nitric oxide signaling. In mice and baboons, betamethasone increased the expression of several developmentally regulated genes that mediate oxygen-induced constriction (K + channels) and inhibit vasodilator signaling (phosphodiesterases). In human infants, betamethasone increased the rate of ductus constriction at all gestational ages. However, in infants born ≤25 6/7 weeks gestation, betamethasone’s contractile effects were only apparent when prostaglandin signaling was inhibited, whereas at 26–27 weeks gestation, betamethasone’s contractile effects were apparent even in the absence of prostaglandin inhibitors. Conclusions We speculate that betamethasone’s contractile effects may be mediated through genes that are developmentally regulated. This could explain why betamethasone’s effects vary according to the infant’s developmental age at birth.</description><subject>Animals</subject><subject>Betamethasone - therapeutic use</subject><subject>Ductus Arteriosus - drug effects</subject><subject>Ductus Arteriosus, Patent - drug therapy</subject><subject>Echocardiography</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation</subject><subject>Humans</subject><subject>Infant, Premature</subject><subject>Maternal Exposure</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mice</subject><subject>Oxygen - metabolism</subject><subject>Papio</subject><subject>Pediatric Surgery</subject><subject>Pediatrics</subject><subject>Polymerase Chain Reaction</subject><subject>Prostaglandins - metabolism</subject><issn>0031-3998</issn><issn>1530-0447</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp1kUtP3DAUhS1UBMPjB7CpLHUdev1K4i4qVYhCJSQ2sLYc52Ymo4k9tZ1W5dfXowFaFqx85XPOd690CLlgcMlAtJ-TZEJDBaytAKCung7IgilRfqRsPpAFgGCV0Lo9JicprQGYVK08Isdc66bWtV6QzfUwoMuJhoFan9HbbDe0w2wnzCubgkcaPN1GzBgnupon64uxp1OYE9J-dnlO1MaijiHN6Qt1YdraOJYk_T3mFe1sF8rcF_AZORzsJuH583tKHr9fP1zdVnf3Nz-uvt1VTjaQK2ROaSuVRC60hQEluq6ulULV66HmquONFp1jqnfMSumAdwK1lIJxLRHEKfm6527nbsLeoc_Rbsw2jpONf0ywo3mr-HFlluGXKexWcF0An54BMfycMWWzDnP05WbDmWhBNbrZudje5WJIKeLwuoGB2RVk9gWZUpDZFWSeSubj_6e9Jl4aKQa-N6Qi-SXGf6vfp_4FDgye8Q</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Shelton, Elaine L.</creator><creator>Waleh, Nahid</creator><creator>Plosa, Erin J.</creator><creator>Benjamin, John T.</creator><creator>Milne, Ginger L.</creator><creator>Hooper, Christopher W.</creator><creator>Ehinger, Noah J.</creator><creator>Poole, Stanley</creator><creator>Brown, Naoko</creator><creator>Seidner, Steven</creator><creator>McCurnin, Donald</creator><creator>Reese, Jeff</creator><creator>Clyman, Ronald I.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope></search><sort><creationdate>20180901</creationdate><title>Effects of antenatal betamethasone on preterm human and mouse ductus arteriosus: comparison with baboon data</title><author>Shelton, Elaine L. ; Waleh, Nahid ; Plosa, Erin J. ; Benjamin, John T. ; Milne, Ginger L. ; Hooper, Christopher W. ; Ehinger, Noah J. ; Poole, Stanley ; Brown, Naoko ; Seidner, Steven ; McCurnin, Donald ; Reese, Jeff ; Clyman, Ronald I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-e1c59a454e239a0fe4ecb6655e5d9f625b2793bc15dc1a44c02b3e94431294e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Betamethasone - therapeutic use</topic><topic>Ductus Arteriosus - drug effects</topic><topic>Ductus Arteriosus, Patent - drug therapy</topic><topic>Echocardiography</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation</topic><topic>Humans</topic><topic>Infant, Premature</topic><topic>Maternal Exposure</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mice</topic><topic>Oxygen - metabolism</topic><topic>Papio</topic><topic>Pediatric Surgery</topic><topic>Pediatrics</topic><topic>Polymerase Chain Reaction</topic><topic>Prostaglandins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shelton, Elaine L.</creatorcontrib><creatorcontrib>Waleh, Nahid</creatorcontrib><creatorcontrib>Plosa, Erin J.</creatorcontrib><creatorcontrib>Benjamin, John T.</creatorcontrib><creatorcontrib>Milne, Ginger L.</creatorcontrib><creatorcontrib>Hooper, Christopher W.</creatorcontrib><creatorcontrib>Ehinger, Noah J.</creatorcontrib><creatorcontrib>Poole, Stanley</creatorcontrib><creatorcontrib>Brown, Naoko</creatorcontrib><creatorcontrib>Seidner, Steven</creatorcontrib><creatorcontrib>McCurnin, Donald</creatorcontrib><creatorcontrib>Reese, Jeff</creatorcontrib><creatorcontrib>Clyman, Ronald I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Pediatric research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shelton, Elaine L.</au><au>Waleh, Nahid</au><au>Plosa, Erin J.</au><au>Benjamin, John T.</au><au>Milne, Ginger L.</au><au>Hooper, Christopher W.</au><au>Ehinger, Noah J.</au><au>Poole, Stanley</au><au>Brown, Naoko</au><au>Seidner, Steven</au><au>McCurnin, Donald</au><au>Reese, Jeff</au><au>Clyman, Ronald I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of antenatal betamethasone on preterm human and mouse ductus arteriosus: comparison with baboon data</atitle><jtitle>Pediatric research</jtitle><stitle>Pediatr Res</stitle><addtitle>Pediatr Res</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>84</volume><issue>3</issue><spage>458</spage><epage>465</epage><pages>458-465</pages><issn>0031-3998</issn><eissn>1530-0447</eissn><abstract>Background Although studies involving preterm infants ≤34 weeks gestation report a decreased incidence of patent ductus arteriosus after antenatal betamethasone, studies involving younger gestation infants report conflicting results. Methods We used preterm baboons, mice, and humans (≤27 6/7 weeks gestation) to examine betamethasone’s effects on ductus gene expression and constriction both in vitro and in vivo. Results In mice, betamethasone increased the sensitivity of the premature ductus to the contractile effects of oxygen without altering the effects of other contractile or vasodilatory stimuli. Betamethasone’s effects on oxygen sensitivity could be eliminated by inhibiting endogenous prostaglandin/nitric oxide signaling. In mice and baboons, betamethasone increased the expression of several developmentally regulated genes that mediate oxygen-induced constriction (K + channels) and inhibit vasodilator signaling (phosphodiesterases). In human infants, betamethasone increased the rate of ductus constriction at all gestational ages. However, in infants born ≤25 6/7 weeks gestation, betamethasone’s contractile effects were only apparent when prostaglandin signaling was inhibited, whereas at 26–27 weeks gestation, betamethasone’s contractile effects were apparent even in the absence of prostaglandin inhibitors. Conclusions We speculate that betamethasone’s contractile effects may be mediated through genes that are developmentally regulated. This could explain why betamethasone’s effects vary according to the infant’s developmental age at birth.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>29976969</pmid><doi>10.1038/s41390-018-0006-z</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-3998
ispartof Pediatric research, 2018-09, Vol.84 (3), p.458-465
issn 0031-3998
1530-0447
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6258329
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Animals
Betamethasone - therapeutic use
Ductus Arteriosus - drug effects
Ductus Arteriosus, Patent - drug therapy
Echocardiography
Female
Gene expression
Gene Expression Profiling
Gene Expression Regulation
Humans
Infant, Premature
Maternal Exposure
Medicine
Medicine & Public Health
Mice
Oxygen - metabolism
Papio
Pediatric Surgery
Pediatrics
Polymerase Chain Reaction
Prostaglandins - metabolism
title Effects of antenatal betamethasone on preterm human and mouse ductus arteriosus: comparison with baboon data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A40%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20antenatal%20betamethasone%20on%20preterm%20human%20and%20mouse%20ductus%20arteriosus:%20comparison%20with%20baboon%20data&rft.jtitle=Pediatric%20research&rft.au=Shelton,%20Elaine%20L.&rft.date=2018-09-01&rft.volume=84&rft.issue=3&rft.spage=458&rft.epage=465&rft.pages=458-465&rft.issn=0031-3998&rft.eissn=1530-0447&rft_id=info:doi/10.1038/s41390-018-0006-z&rft_dat=%3Cproquest_pubme%3E2138057979%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2138057979&rft_id=info:pmid/29976969&rfr_iscdi=true