Effects of antenatal betamethasone on preterm human and mouse ductus arteriosus: comparison with baboon data
Background Although studies involving preterm infants ≤34 weeks gestation report a decreased incidence of patent ductus arteriosus after antenatal betamethasone, studies involving younger gestation infants report conflicting results. Methods We used preterm baboons, mice, and humans (≤27 6/7 weeks g...
Gespeichert in:
Veröffentlicht in: | Pediatric research 2018-09, Vol.84 (3), p.458-465 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 465 |
---|---|
container_issue | 3 |
container_start_page | 458 |
container_title | Pediatric research |
container_volume | 84 |
creator | Shelton, Elaine L. Waleh, Nahid Plosa, Erin J. Benjamin, John T. Milne, Ginger L. Hooper, Christopher W. Ehinger, Noah J. Poole, Stanley Brown, Naoko Seidner, Steven McCurnin, Donald Reese, Jeff Clyman, Ronald I. |
description | Background
Although studies involving preterm infants ≤34 weeks gestation report a decreased incidence of patent ductus arteriosus after antenatal betamethasone, studies involving younger gestation infants report conflicting results.
Methods
We used preterm baboons, mice, and humans (≤27
6/7
weeks gestation) to examine betamethasone’s effects on ductus gene expression and constriction both in vitro and in vivo.
Results
In mice, betamethasone increased the sensitivity of the premature ductus to the contractile effects of oxygen without altering the effects of other contractile or vasodilatory stimuli. Betamethasone’s effects on oxygen sensitivity could be eliminated by inhibiting endogenous prostaglandin/nitric oxide signaling. In mice and baboons, betamethasone increased the expression of several developmentally regulated genes that mediate oxygen-induced constriction (K
+
channels) and inhibit vasodilator signaling (phosphodiesterases). In human infants, betamethasone increased the rate of ductus constriction at all gestational ages. However, in infants born ≤25
6/7
weeks gestation, betamethasone’s contractile effects were only apparent when prostaglandin signaling was inhibited, whereas at 26–27 weeks gestation, betamethasone’s contractile effects were apparent even in the absence of prostaglandin inhibitors.
Conclusions
We speculate that betamethasone’s contractile effects may be mediated through genes that are developmentally regulated. This could explain why betamethasone’s effects vary according to the infant’s developmental age at birth. |
doi_str_mv | 10.1038/s41390-018-0006-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6258329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2138057979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-e1c59a454e239a0fe4ecb6655e5d9f625b2793bc15dc1a44c02b3e94431294e03</originalsourceid><addsrcrecordid>eNp1kUtP3DAUhS1UBMPjB7CpLHUdev1K4i4qVYhCJSQ2sLYc52Ymo4k9tZ1W5dfXowFaFqx85XPOd690CLlgcMlAtJ-TZEJDBaytAKCung7IgilRfqRsPpAFgGCV0Lo9JicprQGYVK08Isdc66bWtV6QzfUwoMuJhoFan9HbbDe0w2wnzCubgkcaPN1GzBgnupon64uxp1OYE9J-dnlO1MaijiHN6Qt1YdraOJYk_T3mFe1sF8rcF_AZORzsJuH583tKHr9fP1zdVnf3Nz-uvt1VTjaQK2ROaSuVRC60hQEluq6ulULV66HmquONFp1jqnfMSumAdwK1lIJxLRHEKfm6527nbsLeoc_Rbsw2jpONf0ywo3mr-HFlluGXKexWcF0An54BMfycMWWzDnP05WbDmWhBNbrZudje5WJIKeLwuoGB2RVk9gWZUpDZFWSeSubj_6e9Jl4aKQa-N6Qi-SXGf6vfp_4FDgye8Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2138057979</pqid></control><display><type>article</type><title>Effects of antenatal betamethasone on preterm human and mouse ductus arteriosus: comparison with baboon data</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Shelton, Elaine L. ; Waleh, Nahid ; Plosa, Erin J. ; Benjamin, John T. ; Milne, Ginger L. ; Hooper, Christopher W. ; Ehinger, Noah J. ; Poole, Stanley ; Brown, Naoko ; Seidner, Steven ; McCurnin, Donald ; Reese, Jeff ; Clyman, Ronald I.</creator><creatorcontrib>Shelton, Elaine L. ; Waleh, Nahid ; Plosa, Erin J. ; Benjamin, John T. ; Milne, Ginger L. ; Hooper, Christopher W. ; Ehinger, Noah J. ; Poole, Stanley ; Brown, Naoko ; Seidner, Steven ; McCurnin, Donald ; Reese, Jeff ; Clyman, Ronald I.</creatorcontrib><description>Background
Although studies involving preterm infants ≤34 weeks gestation report a decreased incidence of patent ductus arteriosus after antenatal betamethasone, studies involving younger gestation infants report conflicting results.
Methods
We used preterm baboons, mice, and humans (≤27
6/7
weeks gestation) to examine betamethasone’s effects on ductus gene expression and constriction both in vitro and in vivo.
Results
In mice, betamethasone increased the sensitivity of the premature ductus to the contractile effects of oxygen without altering the effects of other contractile or vasodilatory stimuli. Betamethasone’s effects on oxygen sensitivity could be eliminated by inhibiting endogenous prostaglandin/nitric oxide signaling. In mice and baboons, betamethasone increased the expression of several developmentally regulated genes that mediate oxygen-induced constriction (K
+
channels) and inhibit vasodilator signaling (phosphodiesterases). In human infants, betamethasone increased the rate of ductus constriction at all gestational ages. However, in infants born ≤25
6/7
weeks gestation, betamethasone’s contractile effects were only apparent when prostaglandin signaling was inhibited, whereas at 26–27 weeks gestation, betamethasone’s contractile effects were apparent even in the absence of prostaglandin inhibitors.
Conclusions
We speculate that betamethasone’s contractile effects may be mediated through genes that are developmentally regulated. This could explain why betamethasone’s effects vary according to the infant’s developmental age at birth.</description><identifier>ISSN: 0031-3998</identifier><identifier>EISSN: 1530-0447</identifier><identifier>DOI: 10.1038/s41390-018-0006-z</identifier><identifier>PMID: 29976969</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Animals ; Betamethasone - therapeutic use ; Ductus Arteriosus - drug effects ; Ductus Arteriosus, Patent - drug therapy ; Echocardiography ; Female ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation ; Humans ; Infant, Premature ; Maternal Exposure ; Medicine ; Medicine & Public Health ; Mice ; Oxygen - metabolism ; Papio ; Pediatric Surgery ; Pediatrics ; Polymerase Chain Reaction ; Prostaglandins - metabolism</subject><ispartof>Pediatric research, 2018-09, Vol.84 (3), p.458-465</ispartof><rights>International Pediatric Research Foundation, Inc 2018</rights><rights>Copyright Nature Publishing Group Sep 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-e1c59a454e239a0fe4ecb6655e5d9f625b2793bc15dc1a44c02b3e94431294e03</citedby><cites>FETCH-LOGICAL-c470t-e1c59a454e239a0fe4ecb6655e5d9f625b2793bc15dc1a44c02b3e94431294e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41390-018-0006-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41390-018-0006-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29976969$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shelton, Elaine L.</creatorcontrib><creatorcontrib>Waleh, Nahid</creatorcontrib><creatorcontrib>Plosa, Erin J.</creatorcontrib><creatorcontrib>Benjamin, John T.</creatorcontrib><creatorcontrib>Milne, Ginger L.</creatorcontrib><creatorcontrib>Hooper, Christopher W.</creatorcontrib><creatorcontrib>Ehinger, Noah J.</creatorcontrib><creatorcontrib>Poole, Stanley</creatorcontrib><creatorcontrib>Brown, Naoko</creatorcontrib><creatorcontrib>Seidner, Steven</creatorcontrib><creatorcontrib>McCurnin, Donald</creatorcontrib><creatorcontrib>Reese, Jeff</creatorcontrib><creatorcontrib>Clyman, Ronald I.</creatorcontrib><title>Effects of antenatal betamethasone on preterm human and mouse ductus arteriosus: comparison with baboon data</title><title>Pediatric research</title><addtitle>Pediatr Res</addtitle><addtitle>Pediatr Res</addtitle><description>Background
Although studies involving preterm infants ≤34 weeks gestation report a decreased incidence of patent ductus arteriosus after antenatal betamethasone, studies involving younger gestation infants report conflicting results.
Methods
We used preterm baboons, mice, and humans (≤27
6/7
weeks gestation) to examine betamethasone’s effects on ductus gene expression and constriction both in vitro and in vivo.
Results
In mice, betamethasone increased the sensitivity of the premature ductus to the contractile effects of oxygen without altering the effects of other contractile or vasodilatory stimuli. Betamethasone’s effects on oxygen sensitivity could be eliminated by inhibiting endogenous prostaglandin/nitric oxide signaling. In mice and baboons, betamethasone increased the expression of several developmentally regulated genes that mediate oxygen-induced constriction (K
+
channels) and inhibit vasodilator signaling (phosphodiesterases). In human infants, betamethasone increased the rate of ductus constriction at all gestational ages. However, in infants born ≤25
6/7
weeks gestation, betamethasone’s contractile effects were only apparent when prostaglandin signaling was inhibited, whereas at 26–27 weeks gestation, betamethasone’s contractile effects were apparent even in the absence of prostaglandin inhibitors.
Conclusions
We speculate that betamethasone’s contractile effects may be mediated through genes that are developmentally regulated. This could explain why betamethasone’s effects vary according to the infant’s developmental age at birth.</description><subject>Animals</subject><subject>Betamethasone - therapeutic use</subject><subject>Ductus Arteriosus - drug effects</subject><subject>Ductus Arteriosus, Patent - drug therapy</subject><subject>Echocardiography</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation</subject><subject>Humans</subject><subject>Infant, Premature</subject><subject>Maternal Exposure</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Mice</subject><subject>Oxygen - metabolism</subject><subject>Papio</subject><subject>Pediatric Surgery</subject><subject>Pediatrics</subject><subject>Polymerase Chain Reaction</subject><subject>Prostaglandins - metabolism</subject><issn>0031-3998</issn><issn>1530-0447</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp1kUtP3DAUhS1UBMPjB7CpLHUdev1K4i4qVYhCJSQ2sLYc52Ymo4k9tZ1W5dfXowFaFqx85XPOd690CLlgcMlAtJ-TZEJDBaytAKCung7IgilRfqRsPpAFgGCV0Lo9JicprQGYVK08Isdc66bWtV6QzfUwoMuJhoFan9HbbDe0w2wnzCubgkcaPN1GzBgnupon64uxp1OYE9J-dnlO1MaijiHN6Qt1YdraOJYk_T3mFe1sF8rcF_AZORzsJuH583tKHr9fP1zdVnf3Nz-uvt1VTjaQK2ROaSuVRC60hQEluq6ulULV66HmquONFp1jqnfMSumAdwK1lIJxLRHEKfm6527nbsLeoc_Rbsw2jpONf0ywo3mr-HFlluGXKexWcF0An54BMfycMWWzDnP05WbDmWhBNbrZudje5WJIKeLwuoGB2RVk9gWZUpDZFWSeSubj_6e9Jl4aKQa-N6Qi-SXGf6vfp_4FDgye8Q</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Shelton, Elaine L.</creator><creator>Waleh, Nahid</creator><creator>Plosa, Erin J.</creator><creator>Benjamin, John T.</creator><creator>Milne, Ginger L.</creator><creator>Hooper, Christopher W.</creator><creator>Ehinger, Noah J.</creator><creator>Poole, Stanley</creator><creator>Brown, Naoko</creator><creator>Seidner, Steven</creator><creator>McCurnin, Donald</creator><creator>Reese, Jeff</creator><creator>Clyman, Ronald I.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope></search><sort><creationdate>20180901</creationdate><title>Effects of antenatal betamethasone on preterm human and mouse ductus arteriosus: comparison with baboon data</title><author>Shelton, Elaine L. ; Waleh, Nahid ; Plosa, Erin J. ; Benjamin, John T. ; Milne, Ginger L. ; Hooper, Christopher W. ; Ehinger, Noah J. ; Poole, Stanley ; Brown, Naoko ; Seidner, Steven ; McCurnin, Donald ; Reese, Jeff ; Clyman, Ronald I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-e1c59a454e239a0fe4ecb6655e5d9f625b2793bc15dc1a44c02b3e94431294e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Betamethasone - therapeutic use</topic><topic>Ductus Arteriosus - drug effects</topic><topic>Ductus Arteriosus, Patent - drug therapy</topic><topic>Echocardiography</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation</topic><topic>Humans</topic><topic>Infant, Premature</topic><topic>Maternal Exposure</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Mice</topic><topic>Oxygen - metabolism</topic><topic>Papio</topic><topic>Pediatric Surgery</topic><topic>Pediatrics</topic><topic>Polymerase Chain Reaction</topic><topic>Prostaglandins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shelton, Elaine L.</creatorcontrib><creatorcontrib>Waleh, Nahid</creatorcontrib><creatorcontrib>Plosa, Erin J.</creatorcontrib><creatorcontrib>Benjamin, John T.</creatorcontrib><creatorcontrib>Milne, Ginger L.</creatorcontrib><creatorcontrib>Hooper, Christopher W.</creatorcontrib><creatorcontrib>Ehinger, Noah J.</creatorcontrib><creatorcontrib>Poole, Stanley</creatorcontrib><creatorcontrib>Brown, Naoko</creatorcontrib><creatorcontrib>Seidner, Steven</creatorcontrib><creatorcontrib>McCurnin, Donald</creatorcontrib><creatorcontrib>Reese, Jeff</creatorcontrib><creatorcontrib>Clyman, Ronald I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Pediatric research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shelton, Elaine L.</au><au>Waleh, Nahid</au><au>Plosa, Erin J.</au><au>Benjamin, John T.</au><au>Milne, Ginger L.</au><au>Hooper, Christopher W.</au><au>Ehinger, Noah J.</au><au>Poole, Stanley</au><au>Brown, Naoko</au><au>Seidner, Steven</au><au>McCurnin, Donald</au><au>Reese, Jeff</au><au>Clyman, Ronald I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of antenatal betamethasone on preterm human and mouse ductus arteriosus: comparison with baboon data</atitle><jtitle>Pediatric research</jtitle><stitle>Pediatr Res</stitle><addtitle>Pediatr Res</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>84</volume><issue>3</issue><spage>458</spage><epage>465</epage><pages>458-465</pages><issn>0031-3998</issn><eissn>1530-0447</eissn><abstract>Background
Although studies involving preterm infants ≤34 weeks gestation report a decreased incidence of patent ductus arteriosus after antenatal betamethasone, studies involving younger gestation infants report conflicting results.
Methods
We used preterm baboons, mice, and humans (≤27
6/7
weeks gestation) to examine betamethasone’s effects on ductus gene expression and constriction both in vitro and in vivo.
Results
In mice, betamethasone increased the sensitivity of the premature ductus to the contractile effects of oxygen without altering the effects of other contractile or vasodilatory stimuli. Betamethasone’s effects on oxygen sensitivity could be eliminated by inhibiting endogenous prostaglandin/nitric oxide signaling. In mice and baboons, betamethasone increased the expression of several developmentally regulated genes that mediate oxygen-induced constriction (K
+
channels) and inhibit vasodilator signaling (phosphodiesterases). In human infants, betamethasone increased the rate of ductus constriction at all gestational ages. However, in infants born ≤25
6/7
weeks gestation, betamethasone’s contractile effects were only apparent when prostaglandin signaling was inhibited, whereas at 26–27 weeks gestation, betamethasone’s contractile effects were apparent even in the absence of prostaglandin inhibitors.
Conclusions
We speculate that betamethasone’s contractile effects may be mediated through genes that are developmentally regulated. This could explain why betamethasone’s effects vary according to the infant’s developmental age at birth.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>29976969</pmid><doi>10.1038/s41390-018-0006-z</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-3998 |
ispartof | Pediatric research, 2018-09, Vol.84 (3), p.458-465 |
issn | 0031-3998 1530-0447 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6258329 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Animals Betamethasone - therapeutic use Ductus Arteriosus - drug effects Ductus Arteriosus, Patent - drug therapy Echocardiography Female Gene expression Gene Expression Profiling Gene Expression Regulation Humans Infant, Premature Maternal Exposure Medicine Medicine & Public Health Mice Oxygen - metabolism Papio Pediatric Surgery Pediatrics Polymerase Chain Reaction Prostaglandins - metabolism |
title | Effects of antenatal betamethasone on preterm human and mouse ductus arteriosus: comparison with baboon data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A40%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20antenatal%20betamethasone%20on%20preterm%20human%20and%20mouse%20ductus%20arteriosus:%20comparison%20with%20baboon%20data&rft.jtitle=Pediatric%20research&rft.au=Shelton,%20Elaine%20L.&rft.date=2018-09-01&rft.volume=84&rft.issue=3&rft.spage=458&rft.epage=465&rft.pages=458-465&rft.issn=0031-3998&rft.eissn=1530-0447&rft_id=info:doi/10.1038/s41390-018-0006-z&rft_dat=%3Cproquest_pubme%3E2138057979%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2138057979&rft_id=info:pmid/29976969&rfr_iscdi=true |