miR-146a regulates the crosstalk between intestinal epithelial cells, microbial components and inflammatory stimuli

Regulation of miR-146a abundance and its role in intestinal inflammation and particularly in intestinal epithelial cells (IECs) has been poorly studied. Here we study the relationship between bacterial antigens and inflammatory stimuli, and miR-146a expression using IEC lines and models of colitis (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2018-11, Vol.8 (1), p.17350-12, Article 17350
Hauptverfasser: Anzola, Andrea, González, Raquel, Gámez-Belmonte, Reyes, Ocón, Borja, Aranda, Carlos J., Martínez-Moya, Patricia, López-Posadas, Rocío, Hernández-Chirlaque, Cristina, Sánchez de Medina, Fermín, Martínez-Augustin, Olga
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 1
container_start_page 17350
container_title Scientific reports
container_volume 8
creator Anzola, Andrea
González, Raquel
Gámez-Belmonte, Reyes
Ocón, Borja
Aranda, Carlos J.
Martínez-Moya, Patricia
López-Posadas, Rocío
Hernández-Chirlaque, Cristina
Sánchez de Medina, Fermín
Martínez-Augustin, Olga
description Regulation of miR-146a abundance and its role in intestinal inflammation and particularly in intestinal epithelial cells (IECs) has been poorly studied. Here we study the relationship between bacterial antigens and inflammatory stimuli, and miR-146a expression using IEC lines and models of colitis (trinitrobenzenesulfonic acid (TNBS), dextran sulfate sodium (DSS) and the CD4 + CD62L + T cell transfer model). Specific bacterial antigens and cytokines (LPS, flagelin and IL-1β/TNF) stimulate miR-146a expression, while peptidoglycan, muramyldipeptide and CpG DNA have no effect. Overexpression of miR-146a by LPS depends on the activation of the TLR4/MyD88/NF-kB and Akt pathways. Accordingly, the induction of miR-146a is lower in TLR4, but not in TLR2 knock out mice in both basal and colitic conditions. miR-146a overexpression in IECs induces immune tolerance, inhibiting cytokine production (MCP-1 and GROα/IL-8) in response to LPS (IEC18) or IL-1β (Caco-2). Intestinal inflammation induced by chemical damage to the epithelium (DSS and TNBS models) induces miR-146a, but no effect is observed in the lymphocyte transfer model. Finally, we found that miR-146a expression is upregulated in purified IECs from villi vs. crypts. Our results indicate that miR-146a is a key molecule in the interaction among IECs, inflammatory stimuli and the microbiota.
doi_str_mv 10.1038/s41598-018-35338-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6255912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2138064312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-718ea1a71c765cdabbceeccff34606fc9d9b0bd16ce67110a4663119ebd3eddd3</originalsourceid><addsrcrecordid>eNp9kU9rFjEQxoMottR-AQ8S8OLB1fzb7OYiSLFVKAii55BNZt-mJtnXZLfyfnvT3VqrB3PJkPk9k5l5EHpOyRtKeP-2CNqqviG0b3jLed8cHqFjRkTbMM7Y4wfxETot5ZrU0zIlqHqKjjgRXc8UO0Yl-i8NFdLgDLslmBkKnq8A2zyVMpvwHQ8w_wRI2Keam30yAcPeVyb4GloIobzG0VfBsD5McT8lSHPBJrmqGoOJ0cxTPuAqj0vwz9CT0YQCp3f3Cfp2_uHr2cfm8vPFp7P3l40VnZibjvZgqOmo7WRrnRkGC2DtOHIhiRytcmogg6PSguwoJUZIySlVMDgOzjl-gt5tdffLEMHZ2lQ2Qe-zjyYf9GS8_juT_JXeTTdasrZVlNUCr-4K5OnHUqfX0ZfbiU2CaSmaUd5LodiKvvwHvZ6WXJe1UUQKvlJso9b1Zhjvm6FE39qqN1t1tVWvtupDFb14OMa95LeJFeAbUGoq7SD_-fs_ZX8B2pWyGg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2138064312</pqid></control><display><type>article</type><title>miR-146a regulates the crosstalk between intestinal epithelial cells, microbial components and inflammatory stimuli</title><source>SpringerOpen</source><source>Nature (Open Access)</source><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Anzola, Andrea ; González, Raquel ; Gámez-Belmonte, Reyes ; Ocón, Borja ; Aranda, Carlos J. ; Martínez-Moya, Patricia ; López-Posadas, Rocío ; Hernández-Chirlaque, Cristina ; Sánchez de Medina, Fermín ; Martínez-Augustin, Olga</creator><creatorcontrib>Anzola, Andrea ; González, Raquel ; Gámez-Belmonte, Reyes ; Ocón, Borja ; Aranda, Carlos J. ; Martínez-Moya, Patricia ; López-Posadas, Rocío ; Hernández-Chirlaque, Cristina ; Sánchez de Medina, Fermín ; Martínez-Augustin, Olga</creatorcontrib><description>Regulation of miR-146a abundance and its role in intestinal inflammation and particularly in intestinal epithelial cells (IECs) has been poorly studied. Here we study the relationship between bacterial antigens and inflammatory stimuli, and miR-146a expression using IEC lines and models of colitis (trinitrobenzenesulfonic acid (TNBS), dextran sulfate sodium (DSS) and the CD4 + CD62L + T cell transfer model). Specific bacterial antigens and cytokines (LPS, flagelin and IL-1β/TNF) stimulate miR-146a expression, while peptidoglycan, muramyldipeptide and CpG DNA have no effect. Overexpression of miR-146a by LPS depends on the activation of the TLR4/MyD88/NF-kB and Akt pathways. Accordingly, the induction of miR-146a is lower in TLR4, but not in TLR2 knock out mice in both basal and colitic conditions. miR-146a overexpression in IECs induces immune tolerance, inhibiting cytokine production (MCP-1 and GROα/IL-8) in response to LPS (IEC18) or IL-1β (Caco-2). Intestinal inflammation induced by chemical damage to the epithelium (DSS and TNBS models) induces miR-146a, but no effect is observed in the lymphocyte transfer model. Finally, we found that miR-146a expression is upregulated in purified IECs from villi vs. crypts. Our results indicate that miR-146a is a key molecule in the interaction among IECs, inflammatory stimuli and the microbiota.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-35338-y</identifier><identifier>PMID: 30478292</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 14 ; 38/109 ; 38/77 ; 38/89 ; 38/90 ; 631/250/256/2515 ; 631/250/262/2106/2108 ; 631/337/505 ; 64 ; 64/110 ; 64/60 ; 96 ; AKT protein ; Animal models ; Animals ; Antigens ; CD4 antigen ; Cell Line ; Colitis ; Colitis - chemically induced ; Colitis - genetics ; Colitis - immunology ; Colitis - pathology ; Colon ; CpG islands ; Dextran ; Dextran sulfate ; Epithelial cells ; Epithelial Cells - drug effects ; Epithelial Cells - metabolism ; Epithelium ; Female ; Flagellin - toxicity ; Gastrointestinal Microbiome - genetics ; Homeodomain Proteins - genetics ; Humanities and Social Sciences ; Humans ; Immunological tolerance ; Inflammation ; Interleukin 8 ; Intestine ; Intestines - cytology ; Intestines - microbiology ; L-selectin ; Lipopolysaccharides ; Lipopolysaccharides - toxicity ; Lymphocytes ; Lymphocytes T ; Mice, Inbred C57BL ; Mice, Knockout ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Monocyte chemoattractant protein 1 ; multidisciplinary ; MyD88 protein ; Myeloid Differentiation Factor 88 - genetics ; Myeloid Differentiation Factor 88 - metabolism ; NF-κB protein ; Peptidoglycans ; Rats, Wistar ; Rodents ; Science ; Science (multidisciplinary) ; Sodium ; TLR2 protein ; TLR4 protein ; Toll-Like Receptor 2 - genetics ; Toll-Like Receptor 4 - genetics ; Toll-Like Receptor 4 - metabolism ; Toll-like receptors</subject><ispartof>Scientific reports, 2018-11, Vol.8 (1), p.17350-12, Article 17350</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-718ea1a71c765cdabbceeccff34606fc9d9b0bd16ce67110a4663119ebd3eddd3</citedby><cites>FETCH-LOGICAL-c474t-718ea1a71c765cdabbceeccff34606fc9d9b0bd16ce67110a4663119ebd3eddd3</cites><orcidid>0000-0002-4516-5824 ; 0000-0001-8291-3468 ; 0000-0001-9795-6962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6255912/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6255912/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30478292$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anzola, Andrea</creatorcontrib><creatorcontrib>González, Raquel</creatorcontrib><creatorcontrib>Gámez-Belmonte, Reyes</creatorcontrib><creatorcontrib>Ocón, Borja</creatorcontrib><creatorcontrib>Aranda, Carlos J.</creatorcontrib><creatorcontrib>Martínez-Moya, Patricia</creatorcontrib><creatorcontrib>López-Posadas, Rocío</creatorcontrib><creatorcontrib>Hernández-Chirlaque, Cristina</creatorcontrib><creatorcontrib>Sánchez de Medina, Fermín</creatorcontrib><creatorcontrib>Martínez-Augustin, Olga</creatorcontrib><title>miR-146a regulates the crosstalk between intestinal epithelial cells, microbial components and inflammatory stimuli</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Regulation of miR-146a abundance and its role in intestinal inflammation and particularly in intestinal epithelial cells (IECs) has been poorly studied. Here we study the relationship between bacterial antigens and inflammatory stimuli, and miR-146a expression using IEC lines and models of colitis (trinitrobenzenesulfonic acid (TNBS), dextran sulfate sodium (DSS) and the CD4 + CD62L + T cell transfer model). Specific bacterial antigens and cytokines (LPS, flagelin and IL-1β/TNF) stimulate miR-146a expression, while peptidoglycan, muramyldipeptide and CpG DNA have no effect. Overexpression of miR-146a by LPS depends on the activation of the TLR4/MyD88/NF-kB and Akt pathways. Accordingly, the induction of miR-146a is lower in TLR4, but not in TLR2 knock out mice in both basal and colitic conditions. miR-146a overexpression in IECs induces immune tolerance, inhibiting cytokine production (MCP-1 and GROα/IL-8) in response to LPS (IEC18) or IL-1β (Caco-2). Intestinal inflammation induced by chemical damage to the epithelium (DSS and TNBS models) induces miR-146a, but no effect is observed in the lymphocyte transfer model. Finally, we found that miR-146a expression is upregulated in purified IECs from villi vs. crypts. Our results indicate that miR-146a is a key molecule in the interaction among IECs, inflammatory stimuli and the microbiota.</description><subject>13</subject><subject>14</subject><subject>38/109</subject><subject>38/77</subject><subject>38/89</subject><subject>38/90</subject><subject>631/250/256/2515</subject><subject>631/250/262/2106/2108</subject><subject>631/337/505</subject><subject>64</subject><subject>64/110</subject><subject>64/60</subject><subject>96</subject><subject>AKT protein</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antigens</subject><subject>CD4 antigen</subject><subject>Cell Line</subject><subject>Colitis</subject><subject>Colitis - chemically induced</subject><subject>Colitis - genetics</subject><subject>Colitis - immunology</subject><subject>Colitis - pathology</subject><subject>Colon</subject><subject>CpG islands</subject><subject>Dextran</subject><subject>Dextran sulfate</subject><subject>Epithelial cells</subject><subject>Epithelial Cells - drug effects</subject><subject>Epithelial Cells - metabolism</subject><subject>Epithelium</subject><subject>Female</subject><subject>Flagellin - toxicity</subject><subject>Gastrointestinal Microbiome - genetics</subject><subject>Homeodomain Proteins - genetics</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Immunological tolerance</subject><subject>Inflammation</subject><subject>Interleukin 8</subject><subject>Intestine</subject><subject>Intestines - cytology</subject><subject>Intestines - microbiology</subject><subject>L-selectin</subject><subject>Lipopolysaccharides</subject><subject>Lipopolysaccharides - toxicity</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Monocyte chemoattractant protein 1</subject><subject>multidisciplinary</subject><subject>MyD88 protein</subject><subject>Myeloid Differentiation Factor 88 - genetics</subject><subject>Myeloid Differentiation Factor 88 - metabolism</subject><subject>NF-κB protein</subject><subject>Peptidoglycans</subject><subject>Rats, Wistar</subject><subject>Rodents</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sodium</subject><subject>TLR2 protein</subject><subject>TLR4 protein</subject><subject>Toll-Like Receptor 2 - genetics</subject><subject>Toll-Like Receptor 4 - genetics</subject><subject>Toll-Like Receptor 4 - metabolism</subject><subject>Toll-like receptors</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9rFjEQxoMottR-AQ8S8OLB1fzb7OYiSLFVKAii55BNZt-mJtnXZLfyfnvT3VqrB3PJkPk9k5l5EHpOyRtKeP-2CNqqviG0b3jLed8cHqFjRkTbMM7Y4wfxETot5ZrU0zIlqHqKjjgRXc8UO0Yl-i8NFdLgDLslmBkKnq8A2zyVMpvwHQ8w_wRI2Keam30yAcPeVyb4GloIobzG0VfBsD5McT8lSHPBJrmqGoOJ0cxTPuAqj0vwz9CT0YQCp3f3Cfp2_uHr2cfm8vPFp7P3l40VnZibjvZgqOmo7WRrnRkGC2DtOHIhiRytcmogg6PSguwoJUZIySlVMDgOzjl-gt5tdffLEMHZ2lQ2Qe-zjyYf9GS8_juT_JXeTTdasrZVlNUCr-4K5OnHUqfX0ZfbiU2CaSmaUd5LodiKvvwHvZ6WXJe1UUQKvlJso9b1Zhjvm6FE39qqN1t1tVWvtupDFb14OMa95LeJFeAbUGoq7SD_-fs_ZX8B2pWyGg</recordid><startdate>20181126</startdate><enddate>20181126</enddate><creator>Anzola, Andrea</creator><creator>González, Raquel</creator><creator>Gámez-Belmonte, Reyes</creator><creator>Ocón, Borja</creator><creator>Aranda, Carlos J.</creator><creator>Martínez-Moya, Patricia</creator><creator>López-Posadas, Rocío</creator><creator>Hernández-Chirlaque, Cristina</creator><creator>Sánchez de Medina, Fermín</creator><creator>Martínez-Augustin, Olga</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4516-5824</orcidid><orcidid>https://orcid.org/0000-0001-8291-3468</orcidid><orcidid>https://orcid.org/0000-0001-9795-6962</orcidid></search><sort><creationdate>20181126</creationdate><title>miR-146a regulates the crosstalk between intestinal epithelial cells, microbial components and inflammatory stimuli</title><author>Anzola, Andrea ; González, Raquel ; Gámez-Belmonte, Reyes ; Ocón, Borja ; Aranda, Carlos J. ; Martínez-Moya, Patricia ; López-Posadas, Rocío ; Hernández-Chirlaque, Cristina ; Sánchez de Medina, Fermín ; Martínez-Augustin, Olga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-718ea1a71c765cdabbceeccff34606fc9d9b0bd16ce67110a4663119ebd3eddd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13</topic><topic>14</topic><topic>38/109</topic><topic>38/77</topic><topic>38/89</topic><topic>38/90</topic><topic>631/250/256/2515</topic><topic>631/250/262/2106/2108</topic><topic>631/337/505</topic><topic>64</topic><topic>64/110</topic><topic>64/60</topic><topic>96</topic><topic>AKT protein</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antigens</topic><topic>CD4 antigen</topic><topic>Cell Line</topic><topic>Colitis</topic><topic>Colitis - chemically induced</topic><topic>Colitis - genetics</topic><topic>Colitis - immunology</topic><topic>Colitis - pathology</topic><topic>Colon</topic><topic>CpG islands</topic><topic>Dextran</topic><topic>Dextran sulfate</topic><topic>Epithelial cells</topic><topic>Epithelial Cells - drug effects</topic><topic>Epithelial Cells - metabolism</topic><topic>Epithelium</topic><topic>Female</topic><topic>Flagellin - toxicity</topic><topic>Gastrointestinal Microbiome - genetics</topic><topic>Homeodomain Proteins - genetics</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Immunological tolerance</topic><topic>Inflammation</topic><topic>Interleukin 8</topic><topic>Intestine</topic><topic>Intestines - cytology</topic><topic>Intestines - microbiology</topic><topic>L-selectin</topic><topic>Lipopolysaccharides</topic><topic>Lipopolysaccharides - toxicity</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Monocyte chemoattractant protein 1</topic><topic>multidisciplinary</topic><topic>MyD88 protein</topic><topic>Myeloid Differentiation Factor 88 - genetics</topic><topic>Myeloid Differentiation Factor 88 - metabolism</topic><topic>NF-κB protein</topic><topic>Peptidoglycans</topic><topic>Rats, Wistar</topic><topic>Rodents</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sodium</topic><topic>TLR2 protein</topic><topic>TLR4 protein</topic><topic>Toll-Like Receptor 2 - genetics</topic><topic>Toll-Like Receptor 4 - genetics</topic><topic>Toll-Like Receptor 4 - metabolism</topic><topic>Toll-like receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anzola, Andrea</creatorcontrib><creatorcontrib>González, Raquel</creatorcontrib><creatorcontrib>Gámez-Belmonte, Reyes</creatorcontrib><creatorcontrib>Ocón, Borja</creatorcontrib><creatorcontrib>Aranda, Carlos J.</creatorcontrib><creatorcontrib>Martínez-Moya, Patricia</creatorcontrib><creatorcontrib>López-Posadas, Rocío</creatorcontrib><creatorcontrib>Hernández-Chirlaque, Cristina</creatorcontrib><creatorcontrib>Sánchez de Medina, Fermín</creatorcontrib><creatorcontrib>Martínez-Augustin, Olga</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anzola, Andrea</au><au>González, Raquel</au><au>Gámez-Belmonte, Reyes</au><au>Ocón, Borja</au><au>Aranda, Carlos J.</au><au>Martínez-Moya, Patricia</au><au>López-Posadas, Rocío</au><au>Hernández-Chirlaque, Cristina</au><au>Sánchez de Medina, Fermín</au><au>Martínez-Augustin, Olga</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>miR-146a regulates the crosstalk between intestinal epithelial cells, microbial components and inflammatory stimuli</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-11-26</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>17350</spage><epage>12</epage><pages>17350-12</pages><artnum>17350</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Regulation of miR-146a abundance and its role in intestinal inflammation and particularly in intestinal epithelial cells (IECs) has been poorly studied. Here we study the relationship between bacterial antigens and inflammatory stimuli, and miR-146a expression using IEC lines and models of colitis (trinitrobenzenesulfonic acid (TNBS), dextran sulfate sodium (DSS) and the CD4 + CD62L + T cell transfer model). Specific bacterial antigens and cytokines (LPS, flagelin and IL-1β/TNF) stimulate miR-146a expression, while peptidoglycan, muramyldipeptide and CpG DNA have no effect. Overexpression of miR-146a by LPS depends on the activation of the TLR4/MyD88/NF-kB and Akt pathways. Accordingly, the induction of miR-146a is lower in TLR4, but not in TLR2 knock out mice in both basal and colitic conditions. miR-146a overexpression in IECs induces immune tolerance, inhibiting cytokine production (MCP-1 and GROα/IL-8) in response to LPS (IEC18) or IL-1β (Caco-2). Intestinal inflammation induced by chemical damage to the epithelium (DSS and TNBS models) induces miR-146a, but no effect is observed in the lymphocyte transfer model. Finally, we found that miR-146a expression is upregulated in purified IECs from villi vs. crypts. Our results indicate that miR-146a is a key molecule in the interaction among IECs, inflammatory stimuli and the microbiota.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30478292</pmid><doi>10.1038/s41598-018-35338-y</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4516-5824</orcidid><orcidid>https://orcid.org/0000-0001-8291-3468</orcidid><orcidid>https://orcid.org/0000-0001-9795-6962</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2018-11, Vol.8 (1), p.17350-12, Article 17350
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6255912
source SpringerOpen; Nature (Open Access); MEDLINE; Full-Text Journals in Chemistry (Open access); DOAJ Directory of Open Access Journals; PubMed Central; EZB Electronic Journals Library
subjects 13
14
38/109
38/77
38/89
38/90
631/250/256/2515
631/250/262/2106/2108
631/337/505
64
64/110
64/60
96
AKT protein
Animal models
Animals
Antigens
CD4 antigen
Cell Line
Colitis
Colitis - chemically induced
Colitis - genetics
Colitis - immunology
Colitis - pathology
Colon
CpG islands
Dextran
Dextran sulfate
Epithelial cells
Epithelial Cells - drug effects
Epithelial Cells - metabolism
Epithelium
Female
Flagellin - toxicity
Gastrointestinal Microbiome - genetics
Homeodomain Proteins - genetics
Humanities and Social Sciences
Humans
Immunological tolerance
Inflammation
Interleukin 8
Intestine
Intestines - cytology
Intestines - microbiology
L-selectin
Lipopolysaccharides
Lipopolysaccharides - toxicity
Lymphocytes
Lymphocytes T
Mice, Inbred C57BL
Mice, Knockout
MicroRNAs - genetics
MicroRNAs - metabolism
Monocyte chemoattractant protein 1
multidisciplinary
MyD88 protein
Myeloid Differentiation Factor 88 - genetics
Myeloid Differentiation Factor 88 - metabolism
NF-κB protein
Peptidoglycans
Rats, Wistar
Rodents
Science
Science (multidisciplinary)
Sodium
TLR2 protein
TLR4 protein
Toll-Like Receptor 2 - genetics
Toll-Like Receptor 4 - genetics
Toll-Like Receptor 4 - metabolism
Toll-like receptors
title miR-146a regulates the crosstalk between intestinal epithelial cells, microbial components and inflammatory stimuli
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A41%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=miR-146a%20regulates%20the%20crosstalk%20between%20intestinal%20epithelial%20cells,%20microbial%20components%20and%20inflammatory%20stimuli&rft.jtitle=Scientific%20reports&rft.au=Anzola,%20Andrea&rft.date=2018-11-26&rft.volume=8&rft.issue=1&rft.spage=17350&rft.epage=12&rft.pages=17350-12&rft.artnum=17350&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-35338-y&rft_dat=%3Cproquest_pubme%3E2138064312%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2138064312&rft_id=info:pmid/30478292&rfr_iscdi=true