An Assessment of Imaging Informatics for Precision Medicine in Cancer

Summary Objectives: Precision medicine requires the measurement, quantification, and cataloging of medical characteristics to identify the most effective medical intervention. However, the amount of available data exceeds our current capacity to extract meaningful information. We examine the informa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Yearbook of medical informatics 2017-08, Vol.26 (1), p.110-119
Hauptverfasser: Chennubhotla, C., Clarke, L. P., Fedorov, A., Foran, D., Harris, G., Helton, E., Nordstrom, R., Prior, F., Rubin, D., Saltz, J. H., Shalley, E., Sharma, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119
container_issue 1
container_start_page 110
container_title Yearbook of medical informatics
container_volume 26
creator Chennubhotla, C.
Clarke, L. P.
Fedorov, A.
Foran, D.
Harris, G.
Helton, E.
Nordstrom, R.
Prior, F.
Rubin, D.
Saltz, J. H.
Shalley, E.
Sharma, A.
description Summary Objectives: Precision medicine requires the measurement, quantification, and cataloging of medical characteristics to identify the most effective medical intervention. However, the amount of available data exceeds our current capacity to extract meaningful information. We examine the informatics needs to achieve precision medicine from the perspective of quantitative imaging and oncology. Methods: The National Cancer Institute (NCI) organized several workshops on the topic of medical imaging and precision medicine. The observations and recommendations are summarized herein. Results: Recommendations include: use of standards in data collection and clinical correlates to promote interoperability; data sharing and validation of imaging tools; clinician’s feedback in all phases of research and development; use of open-source architecture to encourage reproducibility and reusability; use of challenges which simulate real-world situations to incentivize innovation; partnership with industry to facilitate commercialization; and education in academic communities regarding the challenges involved with translation of technology from the research domain to clinical utility and the benefits of doing so. Conclusions: This article provides a survey of the role and priorities for imaging informatics to help advance quantitative imaging in the era of precision medicine. While these recommendations were drawn from oncology, they are relevant and applicable to other clinical domains where imaging aids precision medicine.
doi_str_mv 10.15265/IY-2017-041
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6250996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29063549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3351-b19695dbbf25d568b2ac859c6b31770dd1606476999768101c40c855ccd988123</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMottTePEvuuppk87G5CGWpulDRgx56Ctlstk3pZkvSCv57o9WiYC4TmGfeGR4AzjG6xoxwdlPNM4KwyBDFR2BIck4zxBA5BkMkaZ5RQcUAjGNcofQ4xpSIUzAgEvGcUTkE04mHkxhtjJ31W9i3sOr0wvkFrHzbh05vnYkw_eBzsMZF13v4aBtnnLfQeVhqb2w4AyetXkc7_q4j8Ho3fSkfstnTfVVOZpnJc4azGksuWVPXLWEN40VNtCmYNLzOsRCoaTBHnAoupRS8wAgbihLAjGlkUWCSj8DtPnezqzvbmHRy0Gu1Ca7T4V312qm_He-WatG_KU4YkpKngKt9gAl9jMG2h1mM1JdRVc3Vp1GVjCb84ve-A_zjLwGXe2C7dLazatXvgk8G_o_7AFXGfZ8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Assessment of Imaging Informatics for Precision Medicine in Cancer</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Thieme Connect Journals Open Access</source><source>PubMed Central</source><creator>Chennubhotla, C. ; Clarke, L. P. ; Fedorov, A. ; Foran, D. ; Harris, G. ; Helton, E. ; Nordstrom, R. ; Prior, F. ; Rubin, D. ; Saltz, J. H. ; Shalley, E. ; Sharma, A.</creator><creatorcontrib>Chennubhotla, C. ; Clarke, L. P. ; Fedorov, A. ; Foran, D. ; Harris, G. ; Helton, E. ; Nordstrom, R. ; Prior, F. ; Rubin, D. ; Saltz, J. H. ; Shalley, E. ; Sharma, A.</creatorcontrib><description>Summary Objectives: Precision medicine requires the measurement, quantification, and cataloging of medical characteristics to identify the most effective medical intervention. However, the amount of available data exceeds our current capacity to extract meaningful information. We examine the informatics needs to achieve precision medicine from the perspective of quantitative imaging and oncology. Methods: The National Cancer Institute (NCI) organized several workshops on the topic of medical imaging and precision medicine. The observations and recommendations are summarized herein. Results: Recommendations include: use of standards in data collection and clinical correlates to promote interoperability; data sharing and validation of imaging tools; clinician’s feedback in all phases of research and development; use of open-source architecture to encourage reproducibility and reusability; use of challenges which simulate real-world situations to incentivize innovation; partnership with industry to facilitate commercialization; and education in academic communities regarding the challenges involved with translation of technology from the research domain to clinical utility and the benefits of doing so. Conclusions: This article provides a survey of the role and priorities for imaging informatics to help advance quantitative imaging in the era of precision medicine. While these recommendations were drawn from oncology, they are relevant and applicable to other clinical domains where imaging aids precision medicine.</description><identifier>ISSN: 0943-4747</identifier><identifier>EISSN: 2364-0502</identifier><identifier>DOI: 10.15265/IY-2017-041</identifier><identifier>PMID: 29063549</identifier><language>eng</language><publisher>Stuttgart: Georg Thieme Verlag KG</publisher><subject>Algorithms ; Humans ; Machine Learning ; Medical Informatics ; Neoplasms - diagnostic imaging ; Precision Medicine ; Section 4: Sensor, Signal and Imaging Informatics</subject><ispartof>Yearbook of medical informatics, 2017-08, Vol.26 (1), p.110-119</ispartof><rights>Georg Thieme Verlag KG Stuttgart.</rights><rights>Thieme Medical Publishers</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3351-b19695dbbf25d568b2ac859c6b31770dd1606476999768101c40c855ccd988123</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6250996/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6250996/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,20896,27929,27930,53796,53798,54592,54620</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29063549$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chennubhotla, C.</creatorcontrib><creatorcontrib>Clarke, L. P.</creatorcontrib><creatorcontrib>Fedorov, A.</creatorcontrib><creatorcontrib>Foran, D.</creatorcontrib><creatorcontrib>Harris, G.</creatorcontrib><creatorcontrib>Helton, E.</creatorcontrib><creatorcontrib>Nordstrom, R.</creatorcontrib><creatorcontrib>Prior, F.</creatorcontrib><creatorcontrib>Rubin, D.</creatorcontrib><creatorcontrib>Saltz, J. H.</creatorcontrib><creatorcontrib>Shalley, E.</creatorcontrib><creatorcontrib>Sharma, A.</creatorcontrib><title>An Assessment of Imaging Informatics for Precision Medicine in Cancer</title><title>Yearbook of medical informatics</title><addtitle>Yearb Med Inform</addtitle><description>Summary Objectives: Precision medicine requires the measurement, quantification, and cataloging of medical characteristics to identify the most effective medical intervention. However, the amount of available data exceeds our current capacity to extract meaningful information. We examine the informatics needs to achieve precision medicine from the perspective of quantitative imaging and oncology. Methods: The National Cancer Institute (NCI) organized several workshops on the topic of medical imaging and precision medicine. The observations and recommendations are summarized herein. Results: Recommendations include: use of standards in data collection and clinical correlates to promote interoperability; data sharing and validation of imaging tools; clinician’s feedback in all phases of research and development; use of open-source architecture to encourage reproducibility and reusability; use of challenges which simulate real-world situations to incentivize innovation; partnership with industry to facilitate commercialization; and education in academic communities regarding the challenges involved with translation of technology from the research domain to clinical utility and the benefits of doing so. Conclusions: This article provides a survey of the role and priorities for imaging informatics to help advance quantitative imaging in the era of precision medicine. While these recommendations were drawn from oncology, they are relevant and applicable to other clinical domains where imaging aids precision medicine.</description><subject>Algorithms</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Medical Informatics</subject><subject>Neoplasms - diagnostic imaging</subject><subject>Precision Medicine</subject><subject>Section 4: Sensor, Signal and Imaging Informatics</subject><issn>0943-4747</issn><issn>2364-0502</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>0U6</sourceid><sourceid>EIF</sourceid><recordid>eNptkE1LAzEQhoMottTePEvuuppk87G5CGWpulDRgx56Ctlstk3pZkvSCv57o9WiYC4TmGfeGR4AzjG6xoxwdlPNM4KwyBDFR2BIck4zxBA5BkMkaZ5RQcUAjGNcofQ4xpSIUzAgEvGcUTkE04mHkxhtjJ31W9i3sOr0wvkFrHzbh05vnYkw_eBzsMZF13v4aBtnnLfQeVhqb2w4AyetXkc7_q4j8Ho3fSkfstnTfVVOZpnJc4azGksuWVPXLWEN40VNtCmYNLzOsRCoaTBHnAoupRS8wAgbihLAjGlkUWCSj8DtPnezqzvbmHRy0Gu1Ca7T4V312qm_He-WatG_KU4YkpKngKt9gAl9jMG2h1mM1JdRVc3Vp1GVjCb84ve-A_zjLwGXe2C7dLazatXvgk8G_o_7AFXGfZ8</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Chennubhotla, C.</creator><creator>Clarke, L. P.</creator><creator>Fedorov, A.</creator><creator>Foran, D.</creator><creator>Harris, G.</creator><creator>Helton, E.</creator><creator>Nordstrom, R.</creator><creator>Prior, F.</creator><creator>Rubin, D.</creator><creator>Saltz, J. H.</creator><creator>Shalley, E.</creator><creator>Sharma, A.</creator><general>Georg Thieme Verlag KG</general><scope>0U6</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>201708</creationdate><title>An Assessment of Imaging Informatics for Precision Medicine in Cancer</title><author>Chennubhotla, C. ; Clarke, L. P. ; Fedorov, A. ; Foran, D. ; Harris, G. ; Helton, E. ; Nordstrom, R. ; Prior, F. ; Rubin, D. ; Saltz, J. H. ; Shalley, E. ; Sharma, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3351-b19695dbbf25d568b2ac859c6b31770dd1606476999768101c40c855ccd988123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Medical Informatics</topic><topic>Neoplasms - diagnostic imaging</topic><topic>Precision Medicine</topic><topic>Section 4: Sensor, Signal and Imaging Informatics</topic><toplevel>online_resources</toplevel><creatorcontrib>Chennubhotla, C.</creatorcontrib><creatorcontrib>Clarke, L. P.</creatorcontrib><creatorcontrib>Fedorov, A.</creatorcontrib><creatorcontrib>Foran, D.</creatorcontrib><creatorcontrib>Harris, G.</creatorcontrib><creatorcontrib>Helton, E.</creatorcontrib><creatorcontrib>Nordstrom, R.</creatorcontrib><creatorcontrib>Prior, F.</creatorcontrib><creatorcontrib>Rubin, D.</creatorcontrib><creatorcontrib>Saltz, J. H.</creatorcontrib><creatorcontrib>Shalley, E.</creatorcontrib><creatorcontrib>Sharma, A.</creatorcontrib><collection>Thieme Connect Journals Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Yearbook of medical informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chennubhotla, C.</au><au>Clarke, L. P.</au><au>Fedorov, A.</au><au>Foran, D.</au><au>Harris, G.</au><au>Helton, E.</au><au>Nordstrom, R.</au><au>Prior, F.</au><au>Rubin, D.</au><au>Saltz, J. H.</au><au>Shalley, E.</au><au>Sharma, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Assessment of Imaging Informatics for Precision Medicine in Cancer</atitle><jtitle>Yearbook of medical informatics</jtitle><addtitle>Yearb Med Inform</addtitle><date>2017-08</date><risdate>2017</risdate><volume>26</volume><issue>1</issue><spage>110</spage><epage>119</epage><pages>110-119</pages><issn>0943-4747</issn><eissn>2364-0502</eissn><abstract>Summary Objectives: Precision medicine requires the measurement, quantification, and cataloging of medical characteristics to identify the most effective medical intervention. However, the amount of available data exceeds our current capacity to extract meaningful information. We examine the informatics needs to achieve precision medicine from the perspective of quantitative imaging and oncology. Methods: The National Cancer Institute (NCI) organized several workshops on the topic of medical imaging and precision medicine. The observations and recommendations are summarized herein. Results: Recommendations include: use of standards in data collection and clinical correlates to promote interoperability; data sharing and validation of imaging tools; clinician’s feedback in all phases of research and development; use of open-source architecture to encourage reproducibility and reusability; use of challenges which simulate real-world situations to incentivize innovation; partnership with industry to facilitate commercialization; and education in academic communities regarding the challenges involved with translation of technology from the research domain to clinical utility and the benefits of doing so. Conclusions: This article provides a survey of the role and priorities for imaging informatics to help advance quantitative imaging in the era of precision medicine. While these recommendations were drawn from oncology, they are relevant and applicable to other clinical domains where imaging aids precision medicine.</abstract><cop>Stuttgart</cop><pub>Georg Thieme Verlag KG</pub><pmid>29063549</pmid><doi>10.15265/IY-2017-041</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0943-4747
ispartof Yearbook of medical informatics, 2017-08, Vol.26 (1), p.110-119
issn 0943-4747
2364-0502
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6250996
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Thieme Connect Journals Open Access; PubMed Central
subjects Algorithms
Humans
Machine Learning
Medical Informatics
Neoplasms - diagnostic imaging
Precision Medicine
Section 4: Sensor, Signal and Imaging Informatics
title An Assessment of Imaging Informatics for Precision Medicine in Cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T22%3A31%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Assessment%20of%20Imaging%20Informatics%20for%20Precision%20Medicine%20in%20Cancer&rft.jtitle=Yearbook%20of%20medical%20informatics&rft.au=Chennubhotla,%20C.&rft.date=2017-08&rft.volume=26&rft.issue=1&rft.spage=110&rft.epage=119&rft.pages=110-119&rft.issn=0943-4747&rft.eissn=2364-0502&rft_id=info:doi/10.15265/IY-2017-041&rft_dat=%3Cpubmed_cross%3E29063549%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29063549&rfr_iscdi=true