Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation

We apply integrative approaches to expression quantitative loci (eQTLs) from 44 tissues from the Genotype-Tissue Expression project and genome-wide association study data. About 60% of known trait-associated loci are in linkage disequilibrium with a cis -eQTL, over half of which were not found in pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature genetics 2018-07, Vol.50 (7), p.956-967
Hauptverfasser: Gamazon, Eric R., Segrè, Ayellet V., van de Bunt, Martijn, Wen, Xiaoquan, Xi, Hualin S., Hormozdiari, Farhad, Ongen, Halit, Konkashbaev, Anuar, Derks, Eske M., Aguet, François, Quan, Jie, Nicolae, Dan L., Eskin, Eleazar, Kellis, Manolis, Getz, Gad, McCarthy, Mark I., Dermitzakis, Emmanouil T., Cox, Nancy J., Ardlie, Kristin G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 967
container_issue 7
container_start_page 956
container_title Nature genetics
container_volume 50
creator Gamazon, Eric R.
Segrè, Ayellet V.
van de Bunt, Martijn
Wen, Xiaoquan
Xi, Hualin S.
Hormozdiari, Farhad
Ongen, Halit
Konkashbaev, Anuar
Derks, Eske M.
Aguet, François
Quan, Jie
Nicolae, Dan L.
Eskin, Eleazar
Kellis, Manolis
Getz, Gad
McCarthy, Mark I.
Dermitzakis, Emmanouil T.
Cox, Nancy J.
Ardlie, Kristin G.
description We apply integrative approaches to expression quantitative loci (eQTLs) from 44 tissues from the Genotype-Tissue Expression project and genome-wide association study data. About 60% of known trait-associated loci are in linkage disequilibrium with a cis -eQTL, over half of which were not found in previous large-scale whole blood studies. Applying polygenic analyses to metabolic, cardiovascular, anthropometric, autoimmune, and neurodegenerative traits, we find that eQTLs are significantly enriched for trait associations in relevant pathogenic tissues and explain a substantial proportion of the heritability (40–80%). For most traits, tissue-shared eQTLs underlie a greater proportion of trait associations, although tissue-specific eQTLs have a greater contribution to some traits, such as blood pressure. By integrating information from biological pathways with eQTL target genes and applying a gene-based approach, we validate previously implicated causal genes and pathways, and propose new variant and gene associations for several complex traits, which we replicate in the UK BioBank and BioVU. Integration of expression quantitative trait locus (eQTL) data from the Genotype-Tissue Expression project with genome-wide association study data shows that eQTLs are enriched for trait associations in disease-relevant tissues.
doi_str_mv 10.1038/s41588-018-0154-4
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6248311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A572669617</galeid><sourcerecordid>A572669617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c671t-6d8103700d5482c0c5241478e17e921e3fca5966c346e1dc144e7413aa5b70f13</originalsourceid><addsrcrecordid>eNqNkl1rFTEQhhdRbD36A7yRgDf1YmuSzWazN0IpfhQKBbXehjQ7u03Z3Rwz2VL_vXN6au0RBQkhIfPMm5nhLYqXgh8KXpm3qERtTMnFZteqVI-KfTp1KRphHtOda1EqXum94hniFedCKW6eFnuybetaGL5f4DmGeWBuZi6PDlns2QAzsATDMrocIgV8iohMKXa5TATmgLgAshxZmPuYJubjtB7hhnUBwSGUJNexnFzIpUOMPrgMHbt2KdwqPi-e9G5EeHF3rorzD--_Hn8qT88-nhwfnZZeNyKXujPUZcN5VysjPfe1VEI1BkQDrRRQ9d7Vrda-UhpE56k5aJSonKsvGt6LalW82-qul4sJOg8z1TTadQqTSz9sdMHuRuZwaYd4bbVUphIbgYM7gRS_U8vZTgE9jKObIS5oJdfSVFVLZa6K13-gV3FJM7VHVFtJoWv5gBrcCHYzPfrXb0TtUd1IrVstGqIO_0LR6mAKPs7QB3rfSXizk0BMhps8uAXRnnz5_P_s2bddVmzZWwck6O9nJ7jdONBuHWjJgXbjQKso59XDod9n_LIcAXILIIXmAdLvSf1b9SfYw-N3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2093216520</pqid></control><display><type>article</type><title>Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Gamazon, Eric R. ; Segrè, Ayellet V. ; van de Bunt, Martijn ; Wen, Xiaoquan ; Xi, Hualin S. ; Hormozdiari, Farhad ; Ongen, Halit ; Konkashbaev, Anuar ; Derks, Eske M. ; Aguet, François ; Quan, Jie ; Nicolae, Dan L. ; Eskin, Eleazar ; Kellis, Manolis ; Getz, Gad ; McCarthy, Mark I. ; Dermitzakis, Emmanouil T. ; Cox, Nancy J. ; Ardlie, Kristin G.</creator><creatorcontrib>Gamazon, Eric R. ; Segrè, Ayellet V. ; van de Bunt, Martijn ; Wen, Xiaoquan ; Xi, Hualin S. ; Hormozdiari, Farhad ; Ongen, Halit ; Konkashbaev, Anuar ; Derks, Eske M. ; Aguet, François ; Quan, Jie ; Nicolae, Dan L. ; Eskin, Eleazar ; Kellis, Manolis ; Getz, Gad ; McCarthy, Mark I. ; Dermitzakis, Emmanouil T. ; Cox, Nancy J. ; Ardlie, Kristin G. ; GTEx Consortium</creatorcontrib><description>We apply integrative approaches to expression quantitative loci (eQTLs) from 44 tissues from the Genotype-Tissue Expression project and genome-wide association study data. About 60% of known trait-associated loci are in linkage disequilibrium with a cis -eQTL, over half of which were not found in previous large-scale whole blood studies. Applying polygenic analyses to metabolic, cardiovascular, anthropometric, autoimmune, and neurodegenerative traits, we find that eQTLs are significantly enriched for trait associations in relevant pathogenic tissues and explain a substantial proportion of the heritability (40–80%). For most traits, tissue-shared eQTLs underlie a greater proportion of trait associations, although tissue-specific eQTLs have a greater contribution to some traits, such as blood pressure. By integrating information from biological pathways with eQTL target genes and applying a gene-based approach, we validate previously implicated causal genes and pathways, and propose new variant and gene associations for several complex traits, which we replicate in the UK BioBank and BioVU. Integration of expression quantitative trait locus (eQTL) data from the Genotype-Tissue Expression project with genome-wide association study data shows that eQTLs are enriched for trait associations in disease-relevant tissues.</description><identifier>ISSN: 1061-4036</identifier><identifier>ISSN: 1546-1718</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/s41588-018-0154-4</identifier><identifier>PMID: 29955180</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>38/43 ; 45/91 ; 631/114/2785 ; 631/208/191 ; 631/208/200 ; 631/208/205/2138 ; 692/308/2056 ; Agriculture ; Alzheimer's disease ; Animal Genetics and Genomics ; Anthropometry ; Biomedical and Life Sciences ; Biomedicine ; Blood pressure ; Cancer Research ; Cardiovascular disease ; Coronary vessels ; Diabetes ; Disease - genetics ; Gene Expression ; Gene Expression Profiling - methods ; Gene Expression Regulation ; Gene Function ; Gene regulation ; Genes ; Genetic regulation ; Genetic variation ; Genome-wide association studies ; Genome-Wide Association Study - methods ; Genomes ; Genomics ; Genotype ; Genotypes ; Health aspects ; Heritability ; Human Genetics ; Human tissues ; Humans ; Hypertension ; Linkage disequilibrium ; Loci ; Metabolism ; Phenotype ; Polygenic inheritance ; Polymorphism, Single Nucleotide ; Quantitative Trait Loci ; Quantitative Trait, Heritable ; Studies ; Tissues ; Tissues (Anatomy) ; Type 2 diabetes</subject><ispartof>Nature genetics, 2018-07, Vol.50 (7), p.956-967</ispartof><rights>The Author(s) 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c671t-6d8103700d5482c0c5241478e17e921e3fca5966c346e1dc144e7413aa5b70f13</citedby><cites>FETCH-LOGICAL-c671t-6d8103700d5482c0c5241478e17e921e3fca5966c346e1dc144e7413aa5b70f13</cites><orcidid>0000-0002-0936-0753 ; 0000-0003-4204-8734 ; 0000-0002-5617-6174 ; 0000-0002-6292-6883 ; 0000-0001-6806-5845 ; 0000-0002-4197-5790 ; 0000-0002-9302-6490 ; 0000-0002-6744-6125 ; 0000-0001-9414-300X ; 0000-0002-4393-0510</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41588-018-0154-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41588-018-0154-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29955180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gamazon, Eric R.</creatorcontrib><creatorcontrib>Segrè, Ayellet V.</creatorcontrib><creatorcontrib>van de Bunt, Martijn</creatorcontrib><creatorcontrib>Wen, Xiaoquan</creatorcontrib><creatorcontrib>Xi, Hualin S.</creatorcontrib><creatorcontrib>Hormozdiari, Farhad</creatorcontrib><creatorcontrib>Ongen, Halit</creatorcontrib><creatorcontrib>Konkashbaev, Anuar</creatorcontrib><creatorcontrib>Derks, Eske M.</creatorcontrib><creatorcontrib>Aguet, François</creatorcontrib><creatorcontrib>Quan, Jie</creatorcontrib><creatorcontrib>Nicolae, Dan L.</creatorcontrib><creatorcontrib>Eskin, Eleazar</creatorcontrib><creatorcontrib>Kellis, Manolis</creatorcontrib><creatorcontrib>Getz, Gad</creatorcontrib><creatorcontrib>McCarthy, Mark I.</creatorcontrib><creatorcontrib>Dermitzakis, Emmanouil T.</creatorcontrib><creatorcontrib>Cox, Nancy J.</creatorcontrib><creatorcontrib>Ardlie, Kristin G.</creatorcontrib><creatorcontrib>GTEx Consortium</creatorcontrib><title>Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>We apply integrative approaches to expression quantitative loci (eQTLs) from 44 tissues from the Genotype-Tissue Expression project and genome-wide association study data. About 60% of known trait-associated loci are in linkage disequilibrium with a cis -eQTL, over half of which were not found in previous large-scale whole blood studies. Applying polygenic analyses to metabolic, cardiovascular, anthropometric, autoimmune, and neurodegenerative traits, we find that eQTLs are significantly enriched for trait associations in relevant pathogenic tissues and explain a substantial proportion of the heritability (40–80%). For most traits, tissue-shared eQTLs underlie a greater proportion of trait associations, although tissue-specific eQTLs have a greater contribution to some traits, such as blood pressure. By integrating information from biological pathways with eQTL target genes and applying a gene-based approach, we validate previously implicated causal genes and pathways, and propose new variant and gene associations for several complex traits, which we replicate in the UK BioBank and BioVU. Integration of expression quantitative trait locus (eQTL) data from the Genotype-Tissue Expression project with genome-wide association study data shows that eQTLs are enriched for trait associations in disease-relevant tissues.</description><subject>38/43</subject><subject>45/91</subject><subject>631/114/2785</subject><subject>631/208/191</subject><subject>631/208/200</subject><subject>631/208/205/2138</subject><subject>692/308/2056</subject><subject>Agriculture</subject><subject>Alzheimer's disease</subject><subject>Animal Genetics and Genomics</subject><subject>Anthropometry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Blood pressure</subject><subject>Cancer Research</subject><subject>Cardiovascular disease</subject><subject>Coronary vessels</subject><subject>Diabetes</subject><subject>Disease - genetics</subject><subject>Gene Expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation</subject><subject>Gene Function</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Genetic regulation</subject><subject>Genetic variation</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study - methods</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Health aspects</subject><subject>Heritability</subject><subject>Human Genetics</subject><subject>Human tissues</subject><subject>Humans</subject><subject>Hypertension</subject><subject>Linkage disequilibrium</subject><subject>Loci</subject><subject>Metabolism</subject><subject>Phenotype</subject><subject>Polygenic inheritance</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Quantitative Trait Loci</subject><subject>Quantitative Trait, Heritable</subject><subject>Studies</subject><subject>Tissues</subject><subject>Tissues (Anatomy)</subject><subject>Type 2 diabetes</subject><issn>1061-4036</issn><issn>1546-1718</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkl1rFTEQhhdRbD36A7yRgDf1YmuSzWazN0IpfhQKBbXehjQ7u03Z3Rwz2VL_vXN6au0RBQkhIfPMm5nhLYqXgh8KXpm3qERtTMnFZteqVI-KfTp1KRphHtOda1EqXum94hniFedCKW6eFnuybetaGL5f4DmGeWBuZi6PDlns2QAzsATDMrocIgV8iohMKXa5TATmgLgAshxZmPuYJubjtB7hhnUBwSGUJNexnFzIpUOMPrgMHbt2KdwqPi-e9G5EeHF3rorzD--_Hn8qT88-nhwfnZZeNyKXujPUZcN5VysjPfe1VEI1BkQDrRRQ9d7Vrda-UhpE56k5aJSonKsvGt6LalW82-qul4sJOg8z1TTadQqTSz9sdMHuRuZwaYd4bbVUphIbgYM7gRS_U8vZTgE9jKObIS5oJdfSVFVLZa6K13-gV3FJM7VHVFtJoWv5gBrcCHYzPfrXb0TtUd1IrVstGqIO_0LR6mAKPs7QB3rfSXizk0BMhps8uAXRnnz5_P_s2bddVmzZWwck6O9nJ7jdONBuHWjJgXbjQKso59XDod9n_LIcAXILIIXmAdLvSf1b9SfYw-N3</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Gamazon, Eric R.</creator><creator>Segrè, Ayellet V.</creator><creator>van de Bunt, Martijn</creator><creator>Wen, Xiaoquan</creator><creator>Xi, Hualin S.</creator><creator>Hormozdiari, Farhad</creator><creator>Ongen, Halit</creator><creator>Konkashbaev, Anuar</creator><creator>Derks, Eske M.</creator><creator>Aguet, François</creator><creator>Quan, Jie</creator><creator>Nicolae, Dan L.</creator><creator>Eskin, Eleazar</creator><creator>Kellis, Manolis</creator><creator>Getz, Gad</creator><creator>McCarthy, Mark I.</creator><creator>Dermitzakis, Emmanouil T.</creator><creator>Cox, Nancy J.</creator><creator>Ardlie, Kristin G.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0936-0753</orcidid><orcidid>https://orcid.org/0000-0003-4204-8734</orcidid><orcidid>https://orcid.org/0000-0002-5617-6174</orcidid><orcidid>https://orcid.org/0000-0002-6292-6883</orcidid><orcidid>https://orcid.org/0000-0001-6806-5845</orcidid><orcidid>https://orcid.org/0000-0002-4197-5790</orcidid><orcidid>https://orcid.org/0000-0002-9302-6490</orcidid><orcidid>https://orcid.org/0000-0002-6744-6125</orcidid><orcidid>https://orcid.org/0000-0001-9414-300X</orcidid><orcidid>https://orcid.org/0000-0002-4393-0510</orcidid></search><sort><creationdate>20180701</creationdate><title>Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation</title><author>Gamazon, Eric R. ; Segrè, Ayellet V. ; van de Bunt, Martijn ; Wen, Xiaoquan ; Xi, Hualin S. ; Hormozdiari, Farhad ; Ongen, Halit ; Konkashbaev, Anuar ; Derks, Eske M. ; Aguet, François ; Quan, Jie ; Nicolae, Dan L. ; Eskin, Eleazar ; Kellis, Manolis ; Getz, Gad ; McCarthy, Mark I. ; Dermitzakis, Emmanouil T. ; Cox, Nancy J. ; Ardlie, Kristin G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c671t-6d8103700d5482c0c5241478e17e921e3fca5966c346e1dc144e7413aa5b70f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>38/43</topic><topic>45/91</topic><topic>631/114/2785</topic><topic>631/208/191</topic><topic>631/208/200</topic><topic>631/208/205/2138</topic><topic>692/308/2056</topic><topic>Agriculture</topic><topic>Alzheimer's disease</topic><topic>Animal Genetics and Genomics</topic><topic>Anthropometry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Blood pressure</topic><topic>Cancer Research</topic><topic>Cardiovascular disease</topic><topic>Coronary vessels</topic><topic>Diabetes</topic><topic>Disease - genetics</topic><topic>Gene Expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation</topic><topic>Gene Function</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Genetic regulation</topic><topic>Genetic variation</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study - methods</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Health aspects</topic><topic>Heritability</topic><topic>Human Genetics</topic><topic>Human tissues</topic><topic>Humans</topic><topic>Hypertension</topic><topic>Linkage disequilibrium</topic><topic>Loci</topic><topic>Metabolism</topic><topic>Phenotype</topic><topic>Polygenic inheritance</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Quantitative Trait Loci</topic><topic>Quantitative Trait, Heritable</topic><topic>Studies</topic><topic>Tissues</topic><topic>Tissues (Anatomy)</topic><topic>Type 2 diabetes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gamazon, Eric R.</creatorcontrib><creatorcontrib>Segrè, Ayellet V.</creatorcontrib><creatorcontrib>van de Bunt, Martijn</creatorcontrib><creatorcontrib>Wen, Xiaoquan</creatorcontrib><creatorcontrib>Xi, Hualin S.</creatorcontrib><creatorcontrib>Hormozdiari, Farhad</creatorcontrib><creatorcontrib>Ongen, Halit</creatorcontrib><creatorcontrib>Konkashbaev, Anuar</creatorcontrib><creatorcontrib>Derks, Eske M.</creatorcontrib><creatorcontrib>Aguet, François</creatorcontrib><creatorcontrib>Quan, Jie</creatorcontrib><creatorcontrib>Nicolae, Dan L.</creatorcontrib><creatorcontrib>Eskin, Eleazar</creatorcontrib><creatorcontrib>Kellis, Manolis</creatorcontrib><creatorcontrib>Getz, Gad</creatorcontrib><creatorcontrib>McCarthy, Mark I.</creatorcontrib><creatorcontrib>Dermitzakis, Emmanouil T.</creatorcontrib><creatorcontrib>Cox, Nancy J.</creatorcontrib><creatorcontrib>Ardlie, Kristin G.</creatorcontrib><creatorcontrib>GTEx Consortium</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gamazon, Eric R.</au><au>Segrè, Ayellet V.</au><au>van de Bunt, Martijn</au><au>Wen, Xiaoquan</au><au>Xi, Hualin S.</au><au>Hormozdiari, Farhad</au><au>Ongen, Halit</au><au>Konkashbaev, Anuar</au><au>Derks, Eske M.</au><au>Aguet, François</au><au>Quan, Jie</au><au>Nicolae, Dan L.</au><au>Eskin, Eleazar</au><au>Kellis, Manolis</au><au>Getz, Gad</au><au>McCarthy, Mark I.</au><au>Dermitzakis, Emmanouil T.</au><au>Cox, Nancy J.</au><au>Ardlie, Kristin G.</au><aucorp>GTEx Consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2018-07-01</date><risdate>2018</risdate><volume>50</volume><issue>7</issue><spage>956</spage><epage>967</epage><pages>956-967</pages><issn>1061-4036</issn><issn>1546-1718</issn><eissn>1546-1718</eissn><abstract>We apply integrative approaches to expression quantitative loci (eQTLs) from 44 tissues from the Genotype-Tissue Expression project and genome-wide association study data. About 60% of known trait-associated loci are in linkage disequilibrium with a cis -eQTL, over half of which were not found in previous large-scale whole blood studies. Applying polygenic analyses to metabolic, cardiovascular, anthropometric, autoimmune, and neurodegenerative traits, we find that eQTLs are significantly enriched for trait associations in relevant pathogenic tissues and explain a substantial proportion of the heritability (40–80%). For most traits, tissue-shared eQTLs underlie a greater proportion of trait associations, although tissue-specific eQTLs have a greater contribution to some traits, such as blood pressure. By integrating information from biological pathways with eQTL target genes and applying a gene-based approach, we validate previously implicated causal genes and pathways, and propose new variant and gene associations for several complex traits, which we replicate in the UK BioBank and BioVU. Integration of expression quantitative trait locus (eQTL) data from the Genotype-Tissue Expression project with genome-wide association study data shows that eQTLs are enriched for trait associations in disease-relevant tissues.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>29955180</pmid><doi>10.1038/s41588-018-0154-4</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0936-0753</orcidid><orcidid>https://orcid.org/0000-0003-4204-8734</orcidid><orcidid>https://orcid.org/0000-0002-5617-6174</orcidid><orcidid>https://orcid.org/0000-0002-6292-6883</orcidid><orcidid>https://orcid.org/0000-0001-6806-5845</orcidid><orcidid>https://orcid.org/0000-0002-4197-5790</orcidid><orcidid>https://orcid.org/0000-0002-9302-6490</orcidid><orcidid>https://orcid.org/0000-0002-6744-6125</orcidid><orcidid>https://orcid.org/0000-0001-9414-300X</orcidid><orcidid>https://orcid.org/0000-0002-4393-0510</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1061-4036
ispartof Nature genetics, 2018-07, Vol.50 (7), p.956-967
issn 1061-4036
1546-1718
1546-1718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6248311
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 38/43
45/91
631/114/2785
631/208/191
631/208/200
631/208/205/2138
692/308/2056
Agriculture
Alzheimer's disease
Animal Genetics and Genomics
Anthropometry
Biomedical and Life Sciences
Biomedicine
Blood pressure
Cancer Research
Cardiovascular disease
Coronary vessels
Diabetes
Disease - genetics
Gene Expression
Gene Expression Profiling - methods
Gene Expression Regulation
Gene Function
Gene regulation
Genes
Genetic regulation
Genetic variation
Genome-wide association studies
Genome-Wide Association Study - methods
Genomes
Genomics
Genotype
Genotypes
Health aspects
Heritability
Human Genetics
Human tissues
Humans
Hypertension
Linkage disequilibrium
Loci
Metabolism
Phenotype
Polygenic inheritance
Polymorphism, Single Nucleotide
Quantitative Trait Loci
Quantitative Trait, Heritable
Studies
Tissues
Tissues (Anatomy)
Type 2 diabetes
title Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A32%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20an%20atlas%20of%20gene%20regulation%20across%2044%20human%20tissues%20to%20inform%20complex%20disease-%20and%20trait-associated%20variation&rft.jtitle=Nature%20genetics&rft.au=Gamazon,%20Eric%20R.&rft.aucorp=GTEx%20Consortium&rft.date=2018-07-01&rft.volume=50&rft.issue=7&rft.spage=956&rft.epage=967&rft.pages=956-967&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/s41588-018-0154-4&rft_dat=%3Cgale_pubme%3EA572669617%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2093216520&rft_id=info:pmid/29955180&rft_galeid=A572669617&rfr_iscdi=true