HDL activates expression of genes stimulating cholesterol efflux in human monocyte-derived macrophages

High density lipoproteins (HDL) are key components of reverse cholesterol transport pathway. HDL removes excessive cholesterol from peripheral cells, including macrophages, providing protection from cholesterol accumulation and conversion into foam cells, which is a key event in pathogenesis of athe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental and molecular pathology 2018-10, Vol.105 (2), p.202-207
Hauptverfasser: Orekhov, Alexander N., Pushkarsky, Tatiana, Oishi, Yumiko, Nikiforov, Nikita G., Zhelankin, Andrey V., Dubrovsky, Larisa, Makeev, Vsevolod J., Foxx, Kathy, Jin, Xueting, Kruth, Howard S., Sobenin, Igor A., Sukhorukov, Vasily N., Zakiev, Emile R., Kontush, Anatol, Le Goff, Wilfried, Bukrinsky, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 207
container_issue 2
container_start_page 202
container_title Experimental and molecular pathology
container_volume 105
creator Orekhov, Alexander N.
Pushkarsky, Tatiana
Oishi, Yumiko
Nikiforov, Nikita G.
Zhelankin, Andrey V.
Dubrovsky, Larisa
Makeev, Vsevolod J.
Foxx, Kathy
Jin, Xueting
Kruth, Howard S.
Sobenin, Igor A.
Sukhorukov, Vasily N.
Zakiev, Emile R.
Kontush, Anatol
Le Goff, Wilfried
Bukrinsky, Michael
description High density lipoproteins (HDL) are key components of reverse cholesterol transport pathway. HDL removes excessive cholesterol from peripheral cells, including macrophages, providing protection from cholesterol accumulation and conversion into foam cells, which is a key event in pathogenesis of atherosclerosis. The mechanism of cellular cholesterol efflux stimulation by HDL involves interaction with the ABCA1 lipid transporter and ensuing transfer of cholesterol to HDL particles. In this study, we looked for additional proteins contributing to HDL-dependent cholesterol efflux. Using RNAseq, we analyzed mRNAs induced by HDL in human monocyte-derived macrophages and identified three genes, fatty acid desaturase 1 (FADS1), insulin induced gene 1 (INSIG1), and the low-density lipoprotein receptor (LDLR), expression of which was significantly upregulated by HDL. We individually knocked down these genes in THP-1 cells using gene silencing by siRNA, and measured cellular cholesterol efflux to HDL. Knock down of FADS1 did not significantly change cholesterol efflux (p = 0.70), but knockdown of INSIG1 and LDLR resulted in highly significant reduction of the efflux to HDL (67% and 75% of control, respectively, p 
doi_str_mv 10.1016/j.yexmp.2018.08.003
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6247801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014480018301692</els_id><sourcerecordid>2089857532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-8bece0122931f417e8b873ad6f4188a914e856f569ca0c1956fcb5faac4261283</originalsourceid><addsrcrecordid>eNp9UU2P0zAUtBCI7S78AiTkIxxSnu18OAeQVgtLkSpxgbPlOi-Nq8QOdhK1_x6XLivggPQk288z8-wZQl4xWDNg5bvD-oTHYVxzYHINqUA8ISsGdZlBnRdPyQqA5VkuAa7IdYwHAKiB8efkSgBjsgK-Iu3m45ZqM9lFTxgpHseAMVrvqG_pHl3qxckOc68n6_bUdL7HOGHwPcW27ecjtY5286AdHbzz5jRh1mCwCzZ00Cb4sdN7jC_Is1b3EV8-rDfk-_2nb3ebbPv185e7221m8lpMmdyhwfREXgvW5qxCuZOV0E2ZDlLqmuUoi7ItytpoMKxOe7MrWq1NzkvGpbghHy6647wbsDHopqB7NQY76HBSXlv1942zndr7RZU8rySwJPD2ItD9Q9vcbtW5B6LkBUC5nLFvHoYF_2NOtqjBRoN9rx36OSoOspZFVQieoOICTY7EGLB91Gagzmmqg_qVpjqnqSAViMR6_edvHjm_40uA9xcAJk8Xi0FFY9EZbGxAM6nG2_8O-AlZerQU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089857532</pqid></control><display><type>article</type><title>HDL activates expression of genes stimulating cholesterol efflux in human monocyte-derived macrophages</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Orekhov, Alexander N. ; Pushkarsky, Tatiana ; Oishi, Yumiko ; Nikiforov, Nikita G. ; Zhelankin, Andrey V. ; Dubrovsky, Larisa ; Makeev, Vsevolod J. ; Foxx, Kathy ; Jin, Xueting ; Kruth, Howard S. ; Sobenin, Igor A. ; Sukhorukov, Vasily N. ; Zakiev, Emile R. ; Kontush, Anatol ; Le Goff, Wilfried ; Bukrinsky, Michael</creator><creatorcontrib>Orekhov, Alexander N. ; Pushkarsky, Tatiana ; Oishi, Yumiko ; Nikiforov, Nikita G. ; Zhelankin, Andrey V. ; Dubrovsky, Larisa ; Makeev, Vsevolod J. ; Foxx, Kathy ; Jin, Xueting ; Kruth, Howard S. ; Sobenin, Igor A. ; Sukhorukov, Vasily N. ; Zakiev, Emile R. ; Kontush, Anatol ; Le Goff, Wilfried ; Bukrinsky, Michael</creatorcontrib><description>High density lipoproteins (HDL) are key components of reverse cholesterol transport pathway. HDL removes excessive cholesterol from peripheral cells, including macrophages, providing protection from cholesterol accumulation and conversion into foam cells, which is a key event in pathogenesis of atherosclerosis. The mechanism of cellular cholesterol efflux stimulation by HDL involves interaction with the ABCA1 lipid transporter and ensuing transfer of cholesterol to HDL particles. In this study, we looked for additional proteins contributing to HDL-dependent cholesterol efflux. Using RNAseq, we analyzed mRNAs induced by HDL in human monocyte-derived macrophages and identified three genes, fatty acid desaturase 1 (FADS1), insulin induced gene 1 (INSIG1), and the low-density lipoprotein receptor (LDLR), expression of which was significantly upregulated by HDL. We individually knocked down these genes in THP-1 cells using gene silencing by siRNA, and measured cellular cholesterol efflux to HDL. Knock down of FADS1 did not significantly change cholesterol efflux (p = 0.70), but knockdown of INSIG1 and LDLR resulted in highly significant reduction of the efflux to HDL (67% and 75% of control, respectively, p &lt; 0.001). Importantly, the suppression of cholesterol efflux was independent of known effects of these genes on cellular cholesterol content, as cells were loaded with cholesterol using acetylated LDL. These results indicate that HDL particles stimulate expression of genes that enhance cellular cholesterol transfer to HDL.</description><identifier>ISSN: 0014-4800</identifier><identifier>EISSN: 1096-0945</identifier><identifier>DOI: 10.1016/j.yexmp.2018.08.003</identifier><identifier>PMID: 30118702</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Atherosclerosis ; Atherosclerosis - physiopathology ; ATP Binding Cassette Transporter 1 - genetics ; Biological Transport ; Cholesterol ; Cholesterol efflux ; Cholesterol, HDL - genetics ; Cholesterol, HDL - metabolism ; Fatty Acid Desaturases - genetics ; Fatty Acid Desaturases - metabolism ; Foam Cells ; Gene Expression Profiling ; Gene Expression Regulation - genetics ; Gene Silencing ; HDL ; Humans ; Intracellular Signaling Peptides and Proteins - genetics ; Intracellular Signaling Peptides and Proteins - metabolism ; Life Sciences ; Lipid metabolism ; Lipoproteins, HDL - genetics ; Lipoproteins, HDL - metabolism ; Macrophages - metabolism ; Macrophages - physiology ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Monocyte-derived macrophages ; Receptors, LDL - genetics ; Receptors, LDL - metabolism ; RNA, Messenger ; RNA, Small Interfering ; THP-1 Cells ; Transcriptome analysis ; Up-Regulation</subject><ispartof>Experimental and molecular pathology, 2018-10, Vol.105 (2), p.202-207</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-8bece0122931f417e8b873ad6f4188a914e856f569ca0c1956fcb5faac4261283</citedby><cites>FETCH-LOGICAL-c493t-8bece0122931f417e8b873ad6f4188a914e856f569ca0c1956fcb5faac4261283</cites><orcidid>0000-0002-8593-0770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.yexmp.2018.08.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30118702$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03625006$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Orekhov, Alexander N.</creatorcontrib><creatorcontrib>Pushkarsky, Tatiana</creatorcontrib><creatorcontrib>Oishi, Yumiko</creatorcontrib><creatorcontrib>Nikiforov, Nikita G.</creatorcontrib><creatorcontrib>Zhelankin, Andrey V.</creatorcontrib><creatorcontrib>Dubrovsky, Larisa</creatorcontrib><creatorcontrib>Makeev, Vsevolod J.</creatorcontrib><creatorcontrib>Foxx, Kathy</creatorcontrib><creatorcontrib>Jin, Xueting</creatorcontrib><creatorcontrib>Kruth, Howard S.</creatorcontrib><creatorcontrib>Sobenin, Igor A.</creatorcontrib><creatorcontrib>Sukhorukov, Vasily N.</creatorcontrib><creatorcontrib>Zakiev, Emile R.</creatorcontrib><creatorcontrib>Kontush, Anatol</creatorcontrib><creatorcontrib>Le Goff, Wilfried</creatorcontrib><creatorcontrib>Bukrinsky, Michael</creatorcontrib><title>HDL activates expression of genes stimulating cholesterol efflux in human monocyte-derived macrophages</title><title>Experimental and molecular pathology</title><addtitle>Exp Mol Pathol</addtitle><description>High density lipoproteins (HDL) are key components of reverse cholesterol transport pathway. HDL removes excessive cholesterol from peripheral cells, including macrophages, providing protection from cholesterol accumulation and conversion into foam cells, which is a key event in pathogenesis of atherosclerosis. The mechanism of cellular cholesterol efflux stimulation by HDL involves interaction with the ABCA1 lipid transporter and ensuing transfer of cholesterol to HDL particles. In this study, we looked for additional proteins contributing to HDL-dependent cholesterol efflux. Using RNAseq, we analyzed mRNAs induced by HDL in human monocyte-derived macrophages and identified three genes, fatty acid desaturase 1 (FADS1), insulin induced gene 1 (INSIG1), and the low-density lipoprotein receptor (LDLR), expression of which was significantly upregulated by HDL. We individually knocked down these genes in THP-1 cells using gene silencing by siRNA, and measured cellular cholesterol efflux to HDL. Knock down of FADS1 did not significantly change cholesterol efflux (p = 0.70), but knockdown of INSIG1 and LDLR resulted in highly significant reduction of the efflux to HDL (67% and 75% of control, respectively, p &lt; 0.001). Importantly, the suppression of cholesterol efflux was independent of known effects of these genes on cellular cholesterol content, as cells were loaded with cholesterol using acetylated LDL. These results indicate that HDL particles stimulate expression of genes that enhance cellular cholesterol transfer to HDL.</description><subject>Atherosclerosis</subject><subject>Atherosclerosis - physiopathology</subject><subject>ATP Binding Cassette Transporter 1 - genetics</subject><subject>Biological Transport</subject><subject>Cholesterol</subject><subject>Cholesterol efflux</subject><subject>Cholesterol, HDL - genetics</subject><subject>Cholesterol, HDL - metabolism</subject><subject>Fatty Acid Desaturases - genetics</subject><subject>Fatty Acid Desaturases - metabolism</subject><subject>Foam Cells</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation - genetics</subject><subject>Gene Silencing</subject><subject>HDL</subject><subject>Humans</subject><subject>Intracellular Signaling Peptides and Proteins - genetics</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>Life Sciences</subject><subject>Lipid metabolism</subject><subject>Lipoproteins, HDL - genetics</subject><subject>Lipoproteins, HDL - metabolism</subject><subject>Macrophages - metabolism</subject><subject>Macrophages - physiology</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Monocyte-derived macrophages</subject><subject>Receptors, LDL - genetics</subject><subject>Receptors, LDL - metabolism</subject><subject>RNA, Messenger</subject><subject>RNA, Small Interfering</subject><subject>THP-1 Cells</subject><subject>Transcriptome analysis</subject><subject>Up-Regulation</subject><issn>0014-4800</issn><issn>1096-0945</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU2P0zAUtBCI7S78AiTkIxxSnu18OAeQVgtLkSpxgbPlOi-Nq8QOdhK1_x6XLivggPQk288z8-wZQl4xWDNg5bvD-oTHYVxzYHINqUA8ISsGdZlBnRdPyQqA5VkuAa7IdYwHAKiB8efkSgBjsgK-Iu3m45ZqM9lFTxgpHseAMVrvqG_pHl3qxckOc68n6_bUdL7HOGHwPcW27ecjtY5286AdHbzz5jRh1mCwCzZ00Cb4sdN7jC_Is1b3EV8-rDfk-_2nb3ebbPv185e7221m8lpMmdyhwfREXgvW5qxCuZOV0E2ZDlLqmuUoi7ItytpoMKxOe7MrWq1NzkvGpbghHy6647wbsDHopqB7NQY76HBSXlv1942zndr7RZU8rySwJPD2ItD9Q9vcbtW5B6LkBUC5nLFvHoYF_2NOtqjBRoN9rx36OSoOspZFVQieoOICTY7EGLB91Gagzmmqg_qVpjqnqSAViMR6_edvHjm_40uA9xcAJk8Xi0FFY9EZbGxAM6nG2_8O-AlZerQU</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Orekhov, Alexander N.</creator><creator>Pushkarsky, Tatiana</creator><creator>Oishi, Yumiko</creator><creator>Nikiforov, Nikita G.</creator><creator>Zhelankin, Andrey V.</creator><creator>Dubrovsky, Larisa</creator><creator>Makeev, Vsevolod J.</creator><creator>Foxx, Kathy</creator><creator>Jin, Xueting</creator><creator>Kruth, Howard S.</creator><creator>Sobenin, Igor A.</creator><creator>Sukhorukov, Vasily N.</creator><creator>Zakiev, Emile R.</creator><creator>Kontush, Anatol</creator><creator>Le Goff, Wilfried</creator><creator>Bukrinsky, Michael</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8593-0770</orcidid></search><sort><creationdate>20181001</creationdate><title>HDL activates expression of genes stimulating cholesterol efflux in human monocyte-derived macrophages</title><author>Orekhov, Alexander N. ; Pushkarsky, Tatiana ; Oishi, Yumiko ; Nikiforov, Nikita G. ; Zhelankin, Andrey V. ; Dubrovsky, Larisa ; Makeev, Vsevolod J. ; Foxx, Kathy ; Jin, Xueting ; Kruth, Howard S. ; Sobenin, Igor A. ; Sukhorukov, Vasily N. ; Zakiev, Emile R. ; Kontush, Anatol ; Le Goff, Wilfried ; Bukrinsky, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-8bece0122931f417e8b873ad6f4188a914e856f569ca0c1956fcb5faac4261283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atherosclerosis</topic><topic>Atherosclerosis - physiopathology</topic><topic>ATP Binding Cassette Transporter 1 - genetics</topic><topic>Biological Transport</topic><topic>Cholesterol</topic><topic>Cholesterol efflux</topic><topic>Cholesterol, HDL - genetics</topic><topic>Cholesterol, HDL - metabolism</topic><topic>Fatty Acid Desaturases - genetics</topic><topic>Fatty Acid Desaturases - metabolism</topic><topic>Foam Cells</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation - genetics</topic><topic>Gene Silencing</topic><topic>HDL</topic><topic>Humans</topic><topic>Intracellular Signaling Peptides and Proteins - genetics</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>Life Sciences</topic><topic>Lipid metabolism</topic><topic>Lipoproteins, HDL - genetics</topic><topic>Lipoproteins, HDL - metabolism</topic><topic>Macrophages - metabolism</topic><topic>Macrophages - physiology</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Monocyte-derived macrophages</topic><topic>Receptors, LDL - genetics</topic><topic>Receptors, LDL - metabolism</topic><topic>RNA, Messenger</topic><topic>RNA, Small Interfering</topic><topic>THP-1 Cells</topic><topic>Transcriptome analysis</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orekhov, Alexander N.</creatorcontrib><creatorcontrib>Pushkarsky, Tatiana</creatorcontrib><creatorcontrib>Oishi, Yumiko</creatorcontrib><creatorcontrib>Nikiforov, Nikita G.</creatorcontrib><creatorcontrib>Zhelankin, Andrey V.</creatorcontrib><creatorcontrib>Dubrovsky, Larisa</creatorcontrib><creatorcontrib>Makeev, Vsevolod J.</creatorcontrib><creatorcontrib>Foxx, Kathy</creatorcontrib><creatorcontrib>Jin, Xueting</creatorcontrib><creatorcontrib>Kruth, Howard S.</creatorcontrib><creatorcontrib>Sobenin, Igor A.</creatorcontrib><creatorcontrib>Sukhorukov, Vasily N.</creatorcontrib><creatorcontrib>Zakiev, Emile R.</creatorcontrib><creatorcontrib>Kontush, Anatol</creatorcontrib><creatorcontrib>Le Goff, Wilfried</creatorcontrib><creatorcontrib>Bukrinsky, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Experimental and molecular pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orekhov, Alexander N.</au><au>Pushkarsky, Tatiana</au><au>Oishi, Yumiko</au><au>Nikiforov, Nikita G.</au><au>Zhelankin, Andrey V.</au><au>Dubrovsky, Larisa</au><au>Makeev, Vsevolod J.</au><au>Foxx, Kathy</au><au>Jin, Xueting</au><au>Kruth, Howard S.</au><au>Sobenin, Igor A.</au><au>Sukhorukov, Vasily N.</au><au>Zakiev, Emile R.</au><au>Kontush, Anatol</au><au>Le Goff, Wilfried</au><au>Bukrinsky, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HDL activates expression of genes stimulating cholesterol efflux in human monocyte-derived macrophages</atitle><jtitle>Experimental and molecular pathology</jtitle><addtitle>Exp Mol Pathol</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>105</volume><issue>2</issue><spage>202</spage><epage>207</epage><pages>202-207</pages><issn>0014-4800</issn><eissn>1096-0945</eissn><abstract>High density lipoproteins (HDL) are key components of reverse cholesterol transport pathway. HDL removes excessive cholesterol from peripheral cells, including macrophages, providing protection from cholesterol accumulation and conversion into foam cells, which is a key event in pathogenesis of atherosclerosis. The mechanism of cellular cholesterol efflux stimulation by HDL involves interaction with the ABCA1 lipid transporter and ensuing transfer of cholesterol to HDL particles. In this study, we looked for additional proteins contributing to HDL-dependent cholesterol efflux. Using RNAseq, we analyzed mRNAs induced by HDL in human monocyte-derived macrophages and identified three genes, fatty acid desaturase 1 (FADS1), insulin induced gene 1 (INSIG1), and the low-density lipoprotein receptor (LDLR), expression of which was significantly upregulated by HDL. We individually knocked down these genes in THP-1 cells using gene silencing by siRNA, and measured cellular cholesterol efflux to HDL. Knock down of FADS1 did not significantly change cholesterol efflux (p = 0.70), but knockdown of INSIG1 and LDLR resulted in highly significant reduction of the efflux to HDL (67% and 75% of control, respectively, p &lt; 0.001). Importantly, the suppression of cholesterol efflux was independent of known effects of these genes on cellular cholesterol content, as cells were loaded with cholesterol using acetylated LDL. These results indicate that HDL particles stimulate expression of genes that enhance cellular cholesterol transfer to HDL.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>30118702</pmid><doi>10.1016/j.yexmp.2018.08.003</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8593-0770</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-4800
ispartof Experimental and molecular pathology, 2018-10, Vol.105 (2), p.202-207
issn 0014-4800
1096-0945
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6247801
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Atherosclerosis
Atherosclerosis - physiopathology
ATP Binding Cassette Transporter 1 - genetics
Biological Transport
Cholesterol
Cholesterol efflux
Cholesterol, HDL - genetics
Cholesterol, HDL - metabolism
Fatty Acid Desaturases - genetics
Fatty Acid Desaturases - metabolism
Foam Cells
Gene Expression Profiling
Gene Expression Regulation - genetics
Gene Silencing
HDL
Humans
Intracellular Signaling Peptides and Proteins - genetics
Intracellular Signaling Peptides and Proteins - metabolism
Life Sciences
Lipid metabolism
Lipoproteins, HDL - genetics
Lipoproteins, HDL - metabolism
Macrophages - metabolism
Macrophages - physiology
Membrane Proteins - genetics
Membrane Proteins - metabolism
Monocyte-derived macrophages
Receptors, LDL - genetics
Receptors, LDL - metabolism
RNA, Messenger
RNA, Small Interfering
THP-1 Cells
Transcriptome analysis
Up-Regulation
title HDL activates expression of genes stimulating cholesterol efflux in human monocyte-derived macrophages
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A33%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HDL%20activates%20expression%20of%20genes%20stimulating%20cholesterol%20efflux%20in%20human%20monocyte-derived%20macrophages&rft.jtitle=Experimental%20and%20molecular%20pathology&rft.au=Orekhov,%20Alexander%20N.&rft.date=2018-10-01&rft.volume=105&rft.issue=2&rft.spage=202&rft.epage=207&rft.pages=202-207&rft.issn=0014-4800&rft.eissn=1096-0945&rft_id=info:doi/10.1016/j.yexmp.2018.08.003&rft_dat=%3Cproquest_pubme%3E2089857532%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2089857532&rft_id=info:pmid/30118702&rft_els_id=S0014480018301692&rfr_iscdi=true