Multiple stable states in microbial communities explained by the stable marriage problem

Experimental studies of microbial communities routinely reveal that they have multiple stable states. While each of these states is generally resilient, certain perturbations such as antibiotics, probiotics, and diet shifts, result in transitions to other states. Can we reliably both predict such st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The ISME Journal 2018-12, Vol.12 (12), p.2823-2834
Hauptverfasser: Goyal, Akshit, Dubinkina, Veronika, Maslov, Sergei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2834
container_issue 12
container_start_page 2823
container_title The ISME Journal
container_volume 12
creator Goyal, Akshit
Dubinkina, Veronika
Maslov, Sergei
description Experimental studies of microbial communities routinely reveal that they have multiple stable states. While each of these states is generally resilient, certain perturbations such as antibiotics, probiotics, and diet shifts, result in transitions to other states. Can we reliably both predict such stable states as well as direct and control transitions between them? Here we present a new conceptual model—inspired by the stable marriage problem in game theory and economics—in which microbial communities naturally exhibit multiple stable states, each state with a different species’ abundance profile. Our model’s core ingredient is that microbes utilize nutrients one at a time while competing with each other. Using only two ranked tables, one with microbes’ nutrient preferences and one with their competitive abilities, we can determine all possible stable states as well as predict inter-state transitions, triggered by the removal or addition of a specific nutrient or microbe. Further, using an example of seven Bacteroides species common to the human gut utilizing nine polysaccharides, we predict that mutual complementarity in nutrient preferences enables these species to coexist at high abundances.
doi_str_mv 10.1038/s41396-018-0222-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6246551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2136224505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-5f40859d693ece00e66d569caa05bd81d91ec38c5afbf1a1bbb3ebee1e60b6b73</originalsourceid><addsrcrecordid>eNp1Uctq3TAQFaWhSW_7Ad0UQzfZuJ2RLdneBEpI2kJKNgl0JyR5fKMgPyLZ4ebvo-D09gFZjeA8dGYOYx8QPiMU9ZdYYtHIHLDOgXOe716xI6wE5lVRwev9W_JD9jbGWwBRSVm9YYcFJD4KecR-_Vz87CZPWZy1WcdMMXND1jsbRuO0z-zY98vgZpcA2k1eu4HazDxk881e1-sQnN5SNiWRp_4dO-i0j_T-eW7Y9fnZ1en3_OLy24_Trxe5LSuYc9GVUIumlU1BlgBIylbIxmoNwrQ1tg2SLWordGc61GiMKcgQIUkw0lTFhp2svtNiemotDXPQXk3BpUQPatRO_YsM7kZtx3sleSmFwGRw_GwQxruF4qx6Fy15rwcal6g4VBxrLlPCDfv0H_V2XMKQ1lMc05l5KUAkFq6sdL4YA3X7MAjqqTe19qZSb-qpN7VLmo9_b7FX_C4qEfhKiAkathT-fP2y6yOj5aZl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136224505</pqid></control><display><type>article</type><title>Multiple stable states in microbial communities explained by the stable marriage problem</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Goyal, Akshit ; Dubinkina, Veronika ; Maslov, Sergei</creator><creatorcontrib>Goyal, Akshit ; Dubinkina, Veronika ; Maslov, Sergei</creatorcontrib><description>Experimental studies of microbial communities routinely reveal that they have multiple stable states. While each of these states is generally resilient, certain perturbations such as antibiotics, probiotics, and diet shifts, result in transitions to other states. Can we reliably both predict such stable states as well as direct and control transitions between them? Here we present a new conceptual model—inspired by the stable marriage problem in game theory and economics—in which microbial communities naturally exhibit multiple stable states, each state with a different species’ abundance profile. Our model’s core ingredient is that microbes utilize nutrients one at a time while competing with each other. Using only two ranked tables, one with microbes’ nutrient preferences and one with their competitive abilities, we can determine all possible stable states as well as predict inter-state transitions, triggered by the removal or addition of a specific nutrient or microbe. Further, using an example of seven Bacteroides species common to the human gut utilizing nine polysaccharides, we predict that mutual complementarity in nutrient preferences enables these species to coexist at high abundances.</description><identifier>ISSN: 1751-7362</identifier><identifier>ISSN: 1751-7370</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/s41396-018-0222-x</identifier><identifier>PMID: 30022156</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/158/855 ; 631/326/2565/855 ; Antibiotics ; Bacteroides - growth &amp; development ; Bacteroides - physiology ; Biomedical and Life Sciences ; Communities ; Complementarity ; Ecology ; Economic models ; Evolutionary Biology ; Game theory ; Gastrointestinal Microbiome ; Gastrointestinal Tract - microbiology ; Humans ; Life Sciences ; Marriage ; Mathematical models ; Microbial activity ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Microbiomes ; Microorganisms ; Nutrients ; Polysaccharides ; Polysaccharides - metabolism ; Probiotics ; Saccharides ; Species ; Symbiosis</subject><ispartof>The ISME Journal, 2018-12, Vol.12 (12), p.2823-2834</ispartof><rights>International Society for Microbial Ecology 2018</rights><rights>Copyright Nature Publishing Group Dec 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-5f40859d693ece00e66d569caa05bd81d91ec38c5afbf1a1bbb3ebee1e60b6b73</citedby><cites>FETCH-LOGICAL-c470t-5f40859d693ece00e66d569caa05bd81d91ec38c5afbf1a1bbb3ebee1e60b6b73</cites><orcidid>0000-0002-9425-8269 ; 0000-0002-3701-492X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6246551/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6246551/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30022156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goyal, Akshit</creatorcontrib><creatorcontrib>Dubinkina, Veronika</creatorcontrib><creatorcontrib>Maslov, Sergei</creatorcontrib><title>Multiple stable states in microbial communities explained by the stable marriage problem</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>Experimental studies of microbial communities routinely reveal that they have multiple stable states. While each of these states is generally resilient, certain perturbations such as antibiotics, probiotics, and diet shifts, result in transitions to other states. Can we reliably both predict such stable states as well as direct and control transitions between them? Here we present a new conceptual model—inspired by the stable marriage problem in game theory and economics—in which microbial communities naturally exhibit multiple stable states, each state with a different species’ abundance profile. Our model’s core ingredient is that microbes utilize nutrients one at a time while competing with each other. Using only two ranked tables, one with microbes’ nutrient preferences and one with their competitive abilities, we can determine all possible stable states as well as predict inter-state transitions, triggered by the removal or addition of a specific nutrient or microbe. Further, using an example of seven Bacteroides species common to the human gut utilizing nine polysaccharides, we predict that mutual complementarity in nutrient preferences enables these species to coexist at high abundances.</description><subject>631/158/855</subject><subject>631/326/2565/855</subject><subject>Antibiotics</subject><subject>Bacteroides - growth &amp; development</subject><subject>Bacteroides - physiology</subject><subject>Biomedical and Life Sciences</subject><subject>Communities</subject><subject>Complementarity</subject><subject>Ecology</subject><subject>Economic models</subject><subject>Evolutionary Biology</subject><subject>Game theory</subject><subject>Gastrointestinal Microbiome</subject><subject>Gastrointestinal Tract - microbiology</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Marriage</subject><subject>Mathematical models</subject><subject>Microbial activity</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microbiomes</subject><subject>Microorganisms</subject><subject>Nutrients</subject><subject>Polysaccharides</subject><subject>Polysaccharides - metabolism</subject><subject>Probiotics</subject><subject>Saccharides</subject><subject>Species</subject><subject>Symbiosis</subject><issn>1751-7362</issn><issn>1751-7370</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1Uctq3TAQFaWhSW_7Ad0UQzfZuJ2RLdneBEpI2kJKNgl0JyR5fKMgPyLZ4ebvo-D09gFZjeA8dGYOYx8QPiMU9ZdYYtHIHLDOgXOe716xI6wE5lVRwev9W_JD9jbGWwBRSVm9YYcFJD4KecR-_Vz87CZPWZy1WcdMMXND1jsbRuO0z-zY98vgZpcA2k1eu4HazDxk881e1-sQnN5SNiWRp_4dO-i0j_T-eW7Y9fnZ1en3_OLy24_Trxe5LSuYc9GVUIumlU1BlgBIylbIxmoNwrQ1tg2SLWordGc61GiMKcgQIUkw0lTFhp2svtNiemotDXPQXk3BpUQPatRO_YsM7kZtx3sleSmFwGRw_GwQxruF4qx6Fy15rwcal6g4VBxrLlPCDfv0H_V2XMKQ1lMc05l5KUAkFq6sdL4YA3X7MAjqqTe19qZSb-qpN7VLmo9_b7FX_C4qEfhKiAkathT-fP2y6yOj5aZl</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Goyal, Akshit</creator><creator>Dubinkina, Veronika</creator><creator>Maslov, Sergei</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9425-8269</orcidid><orcidid>https://orcid.org/0000-0002-3701-492X</orcidid></search><sort><creationdate>20181201</creationdate><title>Multiple stable states in microbial communities explained by the stable marriage problem</title><author>Goyal, Akshit ; Dubinkina, Veronika ; Maslov, Sergei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-5f40859d693ece00e66d569caa05bd81d91ec38c5afbf1a1bbb3ebee1e60b6b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/158/855</topic><topic>631/326/2565/855</topic><topic>Antibiotics</topic><topic>Bacteroides - growth &amp; development</topic><topic>Bacteroides - physiology</topic><topic>Biomedical and Life Sciences</topic><topic>Communities</topic><topic>Complementarity</topic><topic>Ecology</topic><topic>Economic models</topic><topic>Evolutionary Biology</topic><topic>Game theory</topic><topic>Gastrointestinal Microbiome</topic><topic>Gastrointestinal Tract - microbiology</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Marriage</topic><topic>Mathematical models</topic><topic>Microbial activity</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microbiomes</topic><topic>Microorganisms</topic><topic>Nutrients</topic><topic>Polysaccharides</topic><topic>Polysaccharides - metabolism</topic><topic>Probiotics</topic><topic>Saccharides</topic><topic>Species</topic><topic>Symbiosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goyal, Akshit</creatorcontrib><creatorcontrib>Dubinkina, Veronika</creatorcontrib><creatorcontrib>Maslov, Sergei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goyal, Akshit</au><au>Dubinkina, Veronika</au><au>Maslov, Sergei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple stable states in microbial communities explained by the stable marriage problem</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>12</volume><issue>12</issue><spage>2823</spage><epage>2834</epage><pages>2823-2834</pages><issn>1751-7362</issn><issn>1751-7370</issn><eissn>1751-7370</eissn><abstract>Experimental studies of microbial communities routinely reveal that they have multiple stable states. While each of these states is generally resilient, certain perturbations such as antibiotics, probiotics, and diet shifts, result in transitions to other states. Can we reliably both predict such stable states as well as direct and control transitions between them? Here we present a new conceptual model—inspired by the stable marriage problem in game theory and economics—in which microbial communities naturally exhibit multiple stable states, each state with a different species’ abundance profile. Our model’s core ingredient is that microbes utilize nutrients one at a time while competing with each other. Using only two ranked tables, one with microbes’ nutrient preferences and one with their competitive abilities, we can determine all possible stable states as well as predict inter-state transitions, triggered by the removal or addition of a specific nutrient or microbe. Further, using an example of seven Bacteroides species common to the human gut utilizing nine polysaccharides, we predict that mutual complementarity in nutrient preferences enables these species to coexist at high abundances.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30022156</pmid><doi>10.1038/s41396-018-0222-x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9425-8269</orcidid><orcidid>https://orcid.org/0000-0002-3701-492X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-7362
ispartof The ISME Journal, 2018-12, Vol.12 (12), p.2823-2834
issn 1751-7362
1751-7370
1751-7370
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6246551
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central
subjects 631/158/855
631/326/2565/855
Antibiotics
Bacteroides - growth & development
Bacteroides - physiology
Biomedical and Life Sciences
Communities
Complementarity
Ecology
Economic models
Evolutionary Biology
Game theory
Gastrointestinal Microbiome
Gastrointestinal Tract - microbiology
Humans
Life Sciences
Marriage
Mathematical models
Microbial activity
Microbial Ecology
Microbial Genetics and Genomics
Microbiology
Microbiomes
Microorganisms
Nutrients
Polysaccharides
Polysaccharides - metabolism
Probiotics
Saccharides
Species
Symbiosis
title Multiple stable states in microbial communities explained by the stable marriage problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A01%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20stable%20states%20in%20microbial%20communities%20explained%20by%20the%20stable%20marriage%20problem&rft.jtitle=The%20ISME%20Journal&rft.au=Goyal,%20Akshit&rft.date=2018-12-01&rft.volume=12&rft.issue=12&rft.spage=2823&rft.epage=2834&rft.pages=2823-2834&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/s41396-018-0222-x&rft_dat=%3Cproquest_pubme%3E2136224505%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2136224505&rft_id=info:pmid/30022156&rfr_iscdi=true