Gene-guided discovery and engineering of branched cyclic peptides in plants

The plant kingdom contains vastly untapped natural product chemistry, which has been traditionally explored through the activity-guided approach. Here, we describe a gene-guided approach to discover and engineer a class of plant ribosomal peptides, the branched cyclic lyciumins. Initially isolated f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2018-11, Vol.115 (46), p.E10961-E10969
Hauptverfasser: Kersten, Roland D., Weng, Jing-Ke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E10969
container_issue 46
container_start_page E10961
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Kersten, Roland D.
Weng, Jing-Ke
description The plant kingdom contains vastly untapped natural product chemistry, which has been traditionally explored through the activity-guided approach. Here, we describe a gene-guided approach to discover and engineer a class of plant ribosomal peptides, the branched cyclic lyciumins. Initially isolated from the Chinese wolfberry Lycium barbarum, lyciumins are protease-inhibiting peptides featuring an N-terminal pyroglutamate and a macrocyclic bond between a tryptophan-indole nitrogen and a glycine α-carbon. We report the identification of a lyciumin precursor gene from L. barbarum, which encodes a BURP domain and repetitive lyciumin precursor peptide motifs. Genome mining enabled by this initial finding revealed rich lyciumin genotypes and chemotypes widespread in flowering plants. We establish a biosynthetic framework of lyciumins and demonstrate the feasibility of producing diverse natural and unnatural lyciumins in transgenic tobacco. With rapidly expanding plant genome resources, our approach will complement bioactivity-guided approaches to unlock and engineer hidden plant peptide chemistry for pharmaceutical and agrochemical applications.
doi_str_mv 10.1073/pnas.1813993115
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6243238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26563815</jstor_id><sourcerecordid>26563815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-d35759ac89a0a6c30310d1967ad1e722e203cfc913119178aeae59124ab0860d3</originalsourceid><addsrcrecordid>eNpdkU1rGzEQhkVpaRy3555aFnrJZZMZaT-kSyGEJA0J9NKehSyNHZm1tJV2A_73VXDqfpzmMM-8zMPL2AeEc4ReXIzB5HOUKJQSiO0rtkBQWHeNgtdsAcD7Wja8OWGnOW8BQLUS3rITAaIXUsCC3d9SoHoze0eucj7b-ERpX5ngKgobH4iSD5sqrqtVMsE-Fsru7eBtNdI4latc-VCNgwlTfsferM2Q6f3LXLIfN9ffr77WD99u764uH2rbgppqJ9q-VcZKZcB0tvyC4FB1vXFIPefEQdi1VViMFPbSkKFWIW_MCmQHTizZl0PuOK925CyFKZlBj8nvTNrraLz-dxP8o97EJ93xRvDivWRnLwEp_pwpT3pXzGkoFhTnrDnyngMg5wX9_B-6jXMKRa9Qou2gkaWHJbs4UDbFnBOtj88g6Oei9HNR-k9R5eLT3w5H_nczBfh4ALZ5ium4513bCVkCfgHCzphI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2135604807</pqid></control><display><type>article</type><title>Gene-guided discovery and engineering of branched cyclic peptides in plants</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Kersten, Roland D. ; Weng, Jing-Ke</creator><creatorcontrib>Kersten, Roland D. ; Weng, Jing-Ke</creatorcontrib><description>The plant kingdom contains vastly untapped natural product chemistry, which has been traditionally explored through the activity-guided approach. Here, we describe a gene-guided approach to discover and engineer a class of plant ribosomal peptides, the branched cyclic lyciumins. Initially isolated from the Chinese wolfberry Lycium barbarum, lyciumins are protease-inhibiting peptides featuring an N-terminal pyroglutamate and a macrocyclic bond between a tryptophan-indole nitrogen and a glycine α-carbon. We report the identification of a lyciumin precursor gene from L. barbarum, which encodes a BURP domain and repetitive lyciumin precursor peptide motifs. Genome mining enabled by this initial finding revealed rich lyciumin genotypes and chemotypes widespread in flowering plants. We establish a biosynthetic framework of lyciumins and demonstrate the feasibility of producing diverse natural and unnatural lyciumins in transgenic tobacco. With rapidly expanding plant genome resources, our approach will complement bioactivity-guided approaches to unlock and engineer hidden plant peptide chemistry for pharmaceutical and agrochemical applications.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1813993115</identifier><identifier>PMID: 30373830</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological activity ; Biological Sciences ; Engineers ; Feasibility studies ; Flowering ; Genes ; Genomes ; Genotype &amp; phenotype ; Genotypes ; Glycine ; Lycium barbarum ; Natural products ; Nitrogen ; Organic chemistry ; Peptides ; Physical Sciences ; Plants (botany) ; PNAS Plus ; Precursors ; Tobacco ; Transgenic plants ; Tryptophan</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-11, Vol.115 (46), p.E10961-E10969</ispartof><rights>Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Nov 13, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-d35759ac89a0a6c30310d1967ad1e722e203cfc913119178aeae59124ab0860d3</citedby><cites>FETCH-LOGICAL-c509t-d35759ac89a0a6c30310d1967ad1e722e203cfc913119178aeae59124ab0860d3</cites><orcidid>0000-0003-3059-0075 ; 0000-0001-5811-7330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26563815$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26563815$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30373830$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kersten, Roland D.</creatorcontrib><creatorcontrib>Weng, Jing-Ke</creatorcontrib><title>Gene-guided discovery and engineering of branched cyclic peptides in plants</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The plant kingdom contains vastly untapped natural product chemistry, which has been traditionally explored through the activity-guided approach. Here, we describe a gene-guided approach to discover and engineer a class of plant ribosomal peptides, the branched cyclic lyciumins. Initially isolated from the Chinese wolfberry Lycium barbarum, lyciumins are protease-inhibiting peptides featuring an N-terminal pyroglutamate and a macrocyclic bond between a tryptophan-indole nitrogen and a glycine α-carbon. We report the identification of a lyciumin precursor gene from L. barbarum, which encodes a BURP domain and repetitive lyciumin precursor peptide motifs. Genome mining enabled by this initial finding revealed rich lyciumin genotypes and chemotypes widespread in flowering plants. We establish a biosynthetic framework of lyciumins and demonstrate the feasibility of producing diverse natural and unnatural lyciumins in transgenic tobacco. With rapidly expanding plant genome resources, our approach will complement bioactivity-guided approaches to unlock and engineer hidden plant peptide chemistry for pharmaceutical and agrochemical applications.</description><subject>Biological activity</subject><subject>Biological Sciences</subject><subject>Engineers</subject><subject>Feasibility studies</subject><subject>Flowering</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genotype &amp; phenotype</subject><subject>Genotypes</subject><subject>Glycine</subject><subject>Lycium barbarum</subject><subject>Natural products</subject><subject>Nitrogen</subject><subject>Organic chemistry</subject><subject>Peptides</subject><subject>Physical Sciences</subject><subject>Plants (botany)</subject><subject>PNAS Plus</subject><subject>Precursors</subject><subject>Tobacco</subject><subject>Transgenic plants</subject><subject>Tryptophan</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkU1rGzEQhkVpaRy3555aFnrJZZMZaT-kSyGEJA0J9NKehSyNHZm1tJV2A_73VXDqfpzmMM-8zMPL2AeEc4ReXIzB5HOUKJQSiO0rtkBQWHeNgtdsAcD7Wja8OWGnOW8BQLUS3rITAaIXUsCC3d9SoHoze0eucj7b-ERpX5ngKgobH4iSD5sqrqtVMsE-Fsru7eBtNdI4latc-VCNgwlTfsferM2Q6f3LXLIfN9ffr77WD99u764uH2rbgppqJ9q-VcZKZcB0tvyC4FB1vXFIPefEQdi1VViMFPbSkKFWIW_MCmQHTizZl0PuOK925CyFKZlBj8nvTNrraLz-dxP8o97EJ93xRvDivWRnLwEp_pwpT3pXzGkoFhTnrDnyngMg5wX9_B-6jXMKRa9Qou2gkaWHJbs4UDbFnBOtj88g6Oei9HNR-k9R5eLT3w5H_nczBfh4ALZ5ium4513bCVkCfgHCzphI</recordid><startdate>20181113</startdate><enddate>20181113</enddate><creator>Kersten, Roland D.</creator><creator>Weng, Jing-Ke</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3059-0075</orcidid><orcidid>https://orcid.org/0000-0001-5811-7330</orcidid></search><sort><creationdate>20181113</creationdate><title>Gene-guided discovery and engineering of branched cyclic peptides in plants</title><author>Kersten, Roland D. ; Weng, Jing-Ke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-d35759ac89a0a6c30310d1967ad1e722e203cfc913119178aeae59124ab0860d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biological activity</topic><topic>Biological Sciences</topic><topic>Engineers</topic><topic>Feasibility studies</topic><topic>Flowering</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genotype &amp; phenotype</topic><topic>Genotypes</topic><topic>Glycine</topic><topic>Lycium barbarum</topic><topic>Natural products</topic><topic>Nitrogen</topic><topic>Organic chemistry</topic><topic>Peptides</topic><topic>Physical Sciences</topic><topic>Plants (botany)</topic><topic>PNAS Plus</topic><topic>Precursors</topic><topic>Tobacco</topic><topic>Transgenic plants</topic><topic>Tryptophan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kersten, Roland D.</creatorcontrib><creatorcontrib>Weng, Jing-Ke</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kersten, Roland D.</au><au>Weng, Jing-Ke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene-guided discovery and engineering of branched cyclic peptides in plants</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-11-13</date><risdate>2018</risdate><volume>115</volume><issue>46</issue><spage>E10961</spage><epage>E10969</epage><pages>E10961-E10969</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The plant kingdom contains vastly untapped natural product chemistry, which has been traditionally explored through the activity-guided approach. Here, we describe a gene-guided approach to discover and engineer a class of plant ribosomal peptides, the branched cyclic lyciumins. Initially isolated from the Chinese wolfberry Lycium barbarum, lyciumins are protease-inhibiting peptides featuring an N-terminal pyroglutamate and a macrocyclic bond between a tryptophan-indole nitrogen and a glycine α-carbon. We report the identification of a lyciumin precursor gene from L. barbarum, which encodes a BURP domain and repetitive lyciumin precursor peptide motifs. Genome mining enabled by this initial finding revealed rich lyciumin genotypes and chemotypes widespread in flowering plants. We establish a biosynthetic framework of lyciumins and demonstrate the feasibility of producing diverse natural and unnatural lyciumins in transgenic tobacco. With rapidly expanding plant genome resources, our approach will complement bioactivity-guided approaches to unlock and engineer hidden plant peptide chemistry for pharmaceutical and agrochemical applications.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>30373830</pmid><doi>10.1073/pnas.1813993115</doi><orcidid>https://orcid.org/0000-0003-3059-0075</orcidid><orcidid>https://orcid.org/0000-0001-5811-7330</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-11, Vol.115 (46), p.E10961-E10969
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6243238
source PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR
subjects Biological activity
Biological Sciences
Engineers
Feasibility studies
Flowering
Genes
Genomes
Genotype & phenotype
Genotypes
Glycine
Lycium barbarum
Natural products
Nitrogen
Organic chemistry
Peptides
Physical Sciences
Plants (botany)
PNAS Plus
Precursors
Tobacco
Transgenic plants
Tryptophan
title Gene-guided discovery and engineering of branched cyclic peptides in plants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A19%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene-guided%20discovery%20and%20engineering%20of%20branched%20cyclic%20peptides%20in%20plants&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kersten,%20Roland%20D.&rft.date=2018-11-13&rft.volume=115&rft.issue=46&rft.spage=E10961&rft.epage=E10969&rft.pages=E10961-E10969&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1813993115&rft_dat=%3Cjstor_pubme%3E26563815%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2135604807&rft_id=info:pmid/30373830&rft_jstor_id=26563815&rfr_iscdi=true