Predicting Division Planes of Three-Dimensional Cells by Soap-Film Minimization

One key aspect of cell division in multicellular organisms is the orientation of the division plane. Proper division plane establishment contributes to normal plant body organization. To determine the importance of cell geometry in division plane orientation, we designed a three-dimensional probabil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant cell 2018-10, Vol.30 (10), p.2255-2266
Hauptverfasser: Martinez, Pablo, Allsman, Lindy A., Brakke, Kenneth A., Hoyt, Christopher, Hayes, Jordan, Liang, Hong, Neher, Wesley, Rui, Yue, Roberts, Allyson M., Moradifam, Amir, Goldstein, Bob, Anderson, Charles T., Rasmussen, Carolyn G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2266
container_issue 10
container_start_page 2255
container_title The Plant cell
container_volume 30
creator Martinez, Pablo
Allsman, Lindy A.
Brakke, Kenneth A.
Hoyt, Christopher
Hayes, Jordan
Liang, Hong
Neher, Wesley
Rui, Yue
Roberts, Allyson M.
Moradifam, Amir
Goldstein, Bob
Anderson, Charles T.
Rasmussen, Carolyn G.
description One key aspect of cell division in multicellular organisms is the orientation of the division plane. Proper division plane establishment contributes to normal plant body organization. To determine the importance of cell geometry in division plane orientation, we designed a three-dimensional probabilistic mathematical model to directly test the century-old hypothesis that cell divisions mimic soap-film minima. According to this hypothesis, daughter cells have equal volume and the division plane occurs where the surface area is at a minimum. We compared predicted division planes to a plant microtubule array that marks the division site, the preprophase band (PPB). PPB location typically matched one of the predicted divisions. Predicted divisions offset from the PPB occurred when a neighboring cell wall or PPB was directly adjacent to the predicted division site to avoid creating a potentially structurally unfavorable four-way junction. By comparing divisions of differently shaped plant cells (maize [Zea mays] epidermal cells and developing ligule cells and Arabidopsis thaliana guard cells) and animal cells (Caenorhabditis elegans embryonic cells) to divisions simulated in silico, we demonstrate the generality of this model to accurately predict in vivo division. This powerful model can be used to separate the contribution of geometry from mechanical stresses or developmental regulation in predicting division plane orientation.
doi_str_mv 10.1105/tpc.18.00401
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6241264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90026096</jstor_id><sourcerecordid>90026096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-1e4dae02ea3660547a4b8705d8cfc8cd474313be9ddf491823116d3cc79c83e13</originalsourceid><addsrcrecordid>eNpVkUtLxDAUhYMovndulS5d2PHeJE3bjSDjExQFR3AXMmnqZGibMekI-uuNzjjo6oZ7Pk5ycgg5QBggQnbaz_QAiwEAB1wj25gxmtKyeFmP57hLuchwi-yEMAUAzLHcJFsMMAOGdJs8PHpTWd3b7jW5sO82WNclj43qTEhcnYwm3pj0wram-1ZUkwxN04Rk_JE8OTVLr2zTJve2s639VH0k9shGrZpg9pdzlzxfXY6GN-ndw_Xt8Pwu1TynfYqGV8oANYoJARnPFR8XOWRVoWtd6IrnnCEbm7Kqal5iQRmiqJjWeakLZpDtkrOF72w-bk2lTdd71ciZt63yH9IpK_8rnZ3IV_cuBeVIBY8Gx0sD797mJvSytUHHcDG6mwdJocwyBiwXET1ZoNq7ELypV9cgyO8OZOxAYiF_Ooj40d-nreDfT4_A4QKYht75lV4CUAGlYF9SAYy9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2095530376</pqid></control><display><type>article</type><title>Predicting Division Planes of Three-Dimensional Cells by Soap-Film Minimization</title><source>MEDLINE</source><source>Oxford Journals Online</source><source>EZB-FREE-00999 freely available EZB journals</source><source>JSTOR</source><creator>Martinez, Pablo ; Allsman, Lindy A. ; Brakke, Kenneth A. ; Hoyt, Christopher ; Hayes, Jordan ; Liang, Hong ; Neher, Wesley ; Rui, Yue ; Roberts, Allyson M. ; Moradifam, Amir ; Goldstein, Bob ; Anderson, Charles T. ; Rasmussen, Carolyn G.</creator><creatorcontrib>Martinez, Pablo ; Allsman, Lindy A. ; Brakke, Kenneth A. ; Hoyt, Christopher ; Hayes, Jordan ; Liang, Hong ; Neher, Wesley ; Rui, Yue ; Roberts, Allyson M. ; Moradifam, Amir ; Goldstein, Bob ; Anderson, Charles T. ; Rasmussen, Carolyn G.</creatorcontrib><description>One key aspect of cell division in multicellular organisms is the orientation of the division plane. Proper division plane establishment contributes to normal plant body organization. To determine the importance of cell geometry in division plane orientation, we designed a three-dimensional probabilistic mathematical model to directly test the century-old hypothesis that cell divisions mimic soap-film minima. According to this hypothesis, daughter cells have equal volume and the division plane occurs where the surface area is at a minimum. We compared predicted division planes to a plant microtubule array that marks the division site, the preprophase band (PPB). PPB location typically matched one of the predicted divisions. Predicted divisions offset from the PPB occurred when a neighboring cell wall or PPB was directly adjacent to the predicted division site to avoid creating a potentially structurally unfavorable four-way junction. By comparing divisions of differently shaped plant cells (maize [Zea mays] epidermal cells and developing ligule cells and Arabidopsis thaliana guard cells) and animal cells (Caenorhabditis elegans embryonic cells) to divisions simulated in silico, we demonstrate the generality of this model to accurately predict in vivo division. This powerful model can be used to separate the contribution of geometry from mechanical stresses or developmental regulation in predicting division plane orientation.</description><identifier>ISSN: 1040-4651</identifier><identifier>ISSN: 1532-298X</identifier><identifier>EISSN: 1532-298X</identifier><identifier>DOI: 10.1105/tpc.18.00401</identifier><identifier>PMID: 30150312</identifier><language>eng</language><publisher>England: American Society of Plant Biologists</publisher><subject>Animals ; Arabidopsis - cytology ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; BREAKTHROUGH REPORT ; Breakthrough Reports ; Caenorhabditis elegans - cytology ; Caenorhabditis elegans - embryology ; Cell Division ; Embryo, Nonmammalian - cytology ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Microtubules - metabolism ; Microtubules - ultrastructure ; Models, Biological ; Plant Cells - physiology ; Plant Leaves - cytology ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Soaps - chemistry ; Time-Lapse Imaging ; Zea mays - cytology</subject><ispartof>The Plant cell, 2018-10, Vol.30 (10), p.2255-2266</ispartof><rights>American Society of Plant Biologists</rights><rights>2018 American Society of Plant Biologists. All rights reserved.</rights><rights>2018 American Society of Plant Biologists. All rights reserved. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-1e4dae02ea3660547a4b8705d8cfc8cd474313be9ddf491823116d3cc79c83e13</citedby><orcidid>0000-0002-0190-9086 ; 0000-0001-7481-3571 ; 0000-0002-5454-7998 ; 0000-0003-4846-4958 ; 0000-0002-6810-0783 ; 0000-0002-4354-6295 ; 0000-0002-9983-9935 ; 0000-0001-6983-4503 ; 0000-0001-9897-4716 ; 0000-0003-1671-4174 ; 0000-0002-0291-0062 ; 0000-0002-4940-4124 ; 0000-0001-6961-675X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/90026096$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/90026096$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30150312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martinez, Pablo</creatorcontrib><creatorcontrib>Allsman, Lindy A.</creatorcontrib><creatorcontrib>Brakke, Kenneth A.</creatorcontrib><creatorcontrib>Hoyt, Christopher</creatorcontrib><creatorcontrib>Hayes, Jordan</creatorcontrib><creatorcontrib>Liang, Hong</creatorcontrib><creatorcontrib>Neher, Wesley</creatorcontrib><creatorcontrib>Rui, Yue</creatorcontrib><creatorcontrib>Roberts, Allyson M.</creatorcontrib><creatorcontrib>Moradifam, Amir</creatorcontrib><creatorcontrib>Goldstein, Bob</creatorcontrib><creatorcontrib>Anderson, Charles T.</creatorcontrib><creatorcontrib>Rasmussen, Carolyn G.</creatorcontrib><title>Predicting Division Planes of Three-Dimensional Cells by Soap-Film Minimization</title><title>The Plant cell</title><addtitle>Plant Cell</addtitle><description>One key aspect of cell division in multicellular organisms is the orientation of the division plane. Proper division plane establishment contributes to normal plant body organization. To determine the importance of cell geometry in division plane orientation, we designed a three-dimensional probabilistic mathematical model to directly test the century-old hypothesis that cell divisions mimic soap-film minima. According to this hypothesis, daughter cells have equal volume and the division plane occurs where the surface area is at a minimum. We compared predicted division planes to a plant microtubule array that marks the division site, the preprophase band (PPB). PPB location typically matched one of the predicted divisions. Predicted divisions offset from the PPB occurred when a neighboring cell wall or PPB was directly adjacent to the predicted division site to avoid creating a potentially structurally unfavorable four-way junction. By comparing divisions of differently shaped plant cells (maize [Zea mays] epidermal cells and developing ligule cells and Arabidopsis thaliana guard cells) and animal cells (Caenorhabditis elegans embryonic cells) to divisions simulated in silico, we demonstrate the generality of this model to accurately predict in vivo division. This powerful model can be used to separate the contribution of geometry from mechanical stresses or developmental regulation in predicting division plane orientation.</description><subject>Animals</subject><subject>Arabidopsis - cytology</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>BREAKTHROUGH REPORT</subject><subject>Breakthrough Reports</subject><subject>Caenorhabditis elegans - cytology</subject><subject>Caenorhabditis elegans - embryology</subject><subject>Cell Division</subject><subject>Embryo, Nonmammalian - cytology</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Microtubules - metabolism</subject><subject>Microtubules - ultrastructure</subject><subject>Models, Biological</subject><subject>Plant Cells - physiology</subject><subject>Plant Leaves - cytology</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Soaps - chemistry</subject><subject>Time-Lapse Imaging</subject><subject>Zea mays - cytology</subject><issn>1040-4651</issn><issn>1532-298X</issn><issn>1532-298X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUtLxDAUhYMovndulS5d2PHeJE3bjSDjExQFR3AXMmnqZGibMekI-uuNzjjo6oZ7Pk5ycgg5QBggQnbaz_QAiwEAB1wj25gxmtKyeFmP57hLuchwi-yEMAUAzLHcJFsMMAOGdJs8PHpTWd3b7jW5sO82WNclj43qTEhcnYwm3pj0wram-1ZUkwxN04Rk_JE8OTVLr2zTJve2s639VH0k9shGrZpg9pdzlzxfXY6GN-ndw_Xt8Pwu1TynfYqGV8oANYoJARnPFR8XOWRVoWtd6IrnnCEbm7Kqal5iQRmiqJjWeakLZpDtkrOF72w-bk2lTdd71ciZt63yH9IpK_8rnZ3IV_cuBeVIBY8Gx0sD797mJvSytUHHcDG6mwdJocwyBiwXET1ZoNq7ELypV9cgyO8OZOxAYiF_Ooj40d-nreDfT4_A4QKYht75lV4CUAGlYF9SAYy9</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Martinez, Pablo</creator><creator>Allsman, Lindy A.</creator><creator>Brakke, Kenneth A.</creator><creator>Hoyt, Christopher</creator><creator>Hayes, Jordan</creator><creator>Liang, Hong</creator><creator>Neher, Wesley</creator><creator>Rui, Yue</creator><creator>Roberts, Allyson M.</creator><creator>Moradifam, Amir</creator><creator>Goldstein, Bob</creator><creator>Anderson, Charles T.</creator><creator>Rasmussen, Carolyn G.</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0190-9086</orcidid><orcidid>https://orcid.org/0000-0001-7481-3571</orcidid><orcidid>https://orcid.org/0000-0002-5454-7998</orcidid><orcidid>https://orcid.org/0000-0003-4846-4958</orcidid><orcidid>https://orcid.org/0000-0002-6810-0783</orcidid><orcidid>https://orcid.org/0000-0002-4354-6295</orcidid><orcidid>https://orcid.org/0000-0002-9983-9935</orcidid><orcidid>https://orcid.org/0000-0001-6983-4503</orcidid><orcidid>https://orcid.org/0000-0001-9897-4716</orcidid><orcidid>https://orcid.org/0000-0003-1671-4174</orcidid><orcidid>https://orcid.org/0000-0002-0291-0062</orcidid><orcidid>https://orcid.org/0000-0002-4940-4124</orcidid><orcidid>https://orcid.org/0000-0001-6961-675X</orcidid></search><sort><creationdate>20181001</creationdate><title>Predicting Division Planes of Three-Dimensional Cells by Soap-Film Minimization</title><author>Martinez, Pablo ; Allsman, Lindy A. ; Brakke, Kenneth A. ; Hoyt, Christopher ; Hayes, Jordan ; Liang, Hong ; Neher, Wesley ; Rui, Yue ; Roberts, Allyson M. ; Moradifam, Amir ; Goldstein, Bob ; Anderson, Charles T. ; Rasmussen, Carolyn G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-1e4dae02ea3660547a4b8705d8cfc8cd474313be9ddf491823116d3cc79c83e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Arabidopsis - cytology</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>BREAKTHROUGH REPORT</topic><topic>Breakthrough Reports</topic><topic>Caenorhabditis elegans - cytology</topic><topic>Caenorhabditis elegans - embryology</topic><topic>Cell Division</topic><topic>Embryo, Nonmammalian - cytology</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Microtubules - metabolism</topic><topic>Microtubules - ultrastructure</topic><topic>Models, Biological</topic><topic>Plant Cells - physiology</topic><topic>Plant Leaves - cytology</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Soaps - chemistry</topic><topic>Time-Lapse Imaging</topic><topic>Zea mays - cytology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martinez, Pablo</creatorcontrib><creatorcontrib>Allsman, Lindy A.</creatorcontrib><creatorcontrib>Brakke, Kenneth A.</creatorcontrib><creatorcontrib>Hoyt, Christopher</creatorcontrib><creatorcontrib>Hayes, Jordan</creatorcontrib><creatorcontrib>Liang, Hong</creatorcontrib><creatorcontrib>Neher, Wesley</creatorcontrib><creatorcontrib>Rui, Yue</creatorcontrib><creatorcontrib>Roberts, Allyson M.</creatorcontrib><creatorcontrib>Moradifam, Amir</creatorcontrib><creatorcontrib>Goldstein, Bob</creatorcontrib><creatorcontrib>Anderson, Charles T.</creatorcontrib><creatorcontrib>Rasmussen, Carolyn G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martinez, Pablo</au><au>Allsman, Lindy A.</au><au>Brakke, Kenneth A.</au><au>Hoyt, Christopher</au><au>Hayes, Jordan</au><au>Liang, Hong</au><au>Neher, Wesley</au><au>Rui, Yue</au><au>Roberts, Allyson M.</au><au>Moradifam, Amir</au><au>Goldstein, Bob</au><au>Anderson, Charles T.</au><au>Rasmussen, Carolyn G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Division Planes of Three-Dimensional Cells by Soap-Film Minimization</atitle><jtitle>The Plant cell</jtitle><addtitle>Plant Cell</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>30</volume><issue>10</issue><spage>2255</spage><epage>2266</epage><pages>2255-2266</pages><issn>1040-4651</issn><issn>1532-298X</issn><eissn>1532-298X</eissn><abstract>One key aspect of cell division in multicellular organisms is the orientation of the division plane. Proper division plane establishment contributes to normal plant body organization. To determine the importance of cell geometry in division plane orientation, we designed a three-dimensional probabilistic mathematical model to directly test the century-old hypothesis that cell divisions mimic soap-film minima. According to this hypothesis, daughter cells have equal volume and the division plane occurs where the surface area is at a minimum. We compared predicted division planes to a plant microtubule array that marks the division site, the preprophase band (PPB). PPB location typically matched one of the predicted divisions. Predicted divisions offset from the PPB occurred when a neighboring cell wall or PPB was directly adjacent to the predicted division site to avoid creating a potentially structurally unfavorable four-way junction. By comparing divisions of differently shaped plant cells (maize [Zea mays] epidermal cells and developing ligule cells and Arabidopsis thaliana guard cells) and animal cells (Caenorhabditis elegans embryonic cells) to divisions simulated in silico, we demonstrate the generality of this model to accurately predict in vivo division. This powerful model can be used to separate the contribution of geometry from mechanical stresses or developmental regulation in predicting division plane orientation.</abstract><cop>England</cop><pub>American Society of Plant Biologists</pub><pmid>30150312</pmid><doi>10.1105/tpc.18.00401</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0190-9086</orcidid><orcidid>https://orcid.org/0000-0001-7481-3571</orcidid><orcidid>https://orcid.org/0000-0002-5454-7998</orcidid><orcidid>https://orcid.org/0000-0003-4846-4958</orcidid><orcidid>https://orcid.org/0000-0002-6810-0783</orcidid><orcidid>https://orcid.org/0000-0002-4354-6295</orcidid><orcidid>https://orcid.org/0000-0002-9983-9935</orcidid><orcidid>https://orcid.org/0000-0001-6983-4503</orcidid><orcidid>https://orcid.org/0000-0001-9897-4716</orcidid><orcidid>https://orcid.org/0000-0003-1671-4174</orcidid><orcidid>https://orcid.org/0000-0002-0291-0062</orcidid><orcidid>https://orcid.org/0000-0002-4940-4124</orcidid><orcidid>https://orcid.org/0000-0001-6961-675X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1040-4651
ispartof The Plant cell, 2018-10, Vol.30 (10), p.2255-2266
issn 1040-4651
1532-298X
1532-298X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6241264
source MEDLINE; Oxford Journals Online; EZB-FREE-00999 freely available EZB journals; JSTOR
subjects Animals
Arabidopsis - cytology
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
BREAKTHROUGH REPORT
Breakthrough Reports
Caenorhabditis elegans - cytology
Caenorhabditis elegans - embryology
Cell Division
Embryo, Nonmammalian - cytology
Luminescent Proteins - genetics
Luminescent Proteins - metabolism
Microtubules - metabolism
Microtubules - ultrastructure
Models, Biological
Plant Cells - physiology
Plant Leaves - cytology
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Soaps - chemistry
Time-Lapse Imaging
Zea mays - cytology
title Predicting Division Planes of Three-Dimensional Cells by Soap-Film Minimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A44%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Division%20Planes%20of%20Three-Dimensional%20Cells%20by%20Soap-Film%20Minimization&rft.jtitle=The%20Plant%20cell&rft.au=Martinez,%20Pablo&rft.date=2018-10-01&rft.volume=30&rft.issue=10&rft.spage=2255&rft.epage=2266&rft.pages=2255-2266&rft.issn=1040-4651&rft.eissn=1532-298X&rft_id=info:doi/10.1105/tpc.18.00401&rft_dat=%3Cjstor_pubme%3E90026096%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2095530376&rft_id=info:pmid/30150312&rft_jstor_id=90026096&rfr_iscdi=true