Insights into the genotype‐phenotype correlation and molecular function of SLC25A46

Recessive SLC25A46 mutations cause a spectrum of neurodegenerative disorders with optic atrophy as a core feature. We report a patient with optic atrophy, peripheral neuropathy, ataxia, but not cerebellar atrophy, who is on the mildest end of the phenotypic spectrum. By studying seven different nont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human mutation 2018-12, Vol.39 (12), p.1995-2007
Hauptverfasser: Abrams, Alexander J., Fontanesi, Flavia, Tan, Natalie B. L., Buglo, Elena, Campeanu, Ion J., Rebelo, Adriana P., Kornberg, Andrew J., Phelan, Dean G., Stark, Zornitza, Zuchner, Stephan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2007
container_issue 12
container_start_page 1995
container_title Human mutation
container_volume 39
creator Abrams, Alexander J.
Fontanesi, Flavia
Tan, Natalie B. L.
Buglo, Elena
Campeanu, Ion J.
Rebelo, Adriana P.
Kornberg, Andrew J.
Phelan, Dean G.
Stark, Zornitza
Zuchner, Stephan
description Recessive SLC25A46 mutations cause a spectrum of neurodegenerative disorders with optic atrophy as a core feature. We report a patient with optic atrophy, peripheral neuropathy, ataxia, but not cerebellar atrophy, who is on the mildest end of the phenotypic spectrum. By studying seven different nontruncating mutations, we found that the stability of the SLC25A46 protein inversely correlates with the severity of the disease and the patient's variant does not markedly destabilize the protein. SLC25A46 belongs to the mitochondrial transporter family, but it is not known to have transport function. Apart from this possible function, SLC25A46 forms molecular complexes with proteins involved in mitochondrial dynamics and cristae remodeling. We demonstrate that the patient's mutation directly affects the SLC25A46 interaction with MIC60. Furthermore, we mapped all of the reported substitutions in the protein onto a 3D model and found that half of them fall outside of the signature carrier motifs associated with transport function. We thus suggest that there are two distinct molecular mechanisms in SLC25A46‐associated pathogenesis, one that destabilizes the protein while the other alters the molecular interactions of the protein. These results have the potential to inform clinical prognosis of such patients and indicate a pathway to drug target development. This study identifies a novel missense mutation in the SLC25A46 gene causing optic atrophy, peripheral neuropathy, ataxia, but not cerebellar atrophy. Stability of the SLC25A46 protein inversely correlates with disease severity. The patient's p.R257Q variant does not markedly destabilize the protein. Instead, it affects the SLC25A46 interaction with MIC60 involved in mitochondrial dynamics and cristae remodeling. These results provide further insight into the genotype‐phenotype correlation for mutations in the gene and may inform clinical prognosis of such patients.
doi_str_mv 10.1002/humu.23639
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6240357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2134435221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4489-52a7d2e3ab30834cb66e19aa2614908151b19ff56d6fbcbcd048dc7bb83085f23</originalsourceid><addsrcrecordid>eNp9kc1Kw0AQxxdR_KhefAAJeBEhup9J9iKUorZQ8aA9L5vNpokku3U3UXrzEXxGn8S0qaIePM0w8-PHDH8AjhG8QBDiy6Kt2wtMIsK3wD6CPAm7Md1e9YyHcczpHjjw_glCmDBGdsEegShOGMT7YDYxvpwXjQ9K09igKXQw18Y2y4X-eHtfFJs-UNY5XcmmtCaQJgtqW2nVVtIFeWvUemzz4GE6wmxIo0Owk8vK66NNHYDZzfXjaBxO728no-E0VJQmPGRYxhnWRKYEJoSqNIo04lLiCFEOE8RQiniesyiL8lSlKoM0yVScpknHsxyTAbjqvYs2rXWmtGmcrMTClbV0S2FlKX5vTFmIuX0REaaQsLgTnG0Ezj632jeiLr3SVSWNtq0XGHJOCYnX6Okf9Mm2znTvCYwIpYThrg7AeU8pZ713Ov8-BkGxSkus0hLrtDr45Of53-hXPB2AeuC1rPTyH5UYz-5mvfQTKaWhVA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2134435221</pqid></control><display><type>article</type><title>Insights into the genotype‐phenotype correlation and molecular function of SLC25A46</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Abrams, Alexander J. ; Fontanesi, Flavia ; Tan, Natalie B. L. ; Buglo, Elena ; Campeanu, Ion J. ; Rebelo, Adriana P. ; Kornberg, Andrew J. ; Phelan, Dean G. ; Stark, Zornitza ; Zuchner, Stephan</creator><creatorcontrib>Abrams, Alexander J. ; Fontanesi, Flavia ; Tan, Natalie B. L. ; Buglo, Elena ; Campeanu, Ion J. ; Rebelo, Adriana P. ; Kornberg, Andrew J. ; Phelan, Dean G. ; Stark, Zornitza ; Zuchner, Stephan</creatorcontrib><description>Recessive SLC25A46 mutations cause a spectrum of neurodegenerative disorders with optic atrophy as a core feature. We report a patient with optic atrophy, peripheral neuropathy, ataxia, but not cerebellar atrophy, who is on the mildest end of the phenotypic spectrum. By studying seven different nontruncating mutations, we found that the stability of the SLC25A46 protein inversely correlates with the severity of the disease and the patient's variant does not markedly destabilize the protein. SLC25A46 belongs to the mitochondrial transporter family, but it is not known to have transport function. Apart from this possible function, SLC25A46 forms molecular complexes with proteins involved in mitochondrial dynamics and cristae remodeling. We demonstrate that the patient's mutation directly affects the SLC25A46 interaction with MIC60. Furthermore, we mapped all of the reported substitutions in the protein onto a 3D model and found that half of them fall outside of the signature carrier motifs associated with transport function. We thus suggest that there are two distinct molecular mechanisms in SLC25A46‐associated pathogenesis, one that destabilizes the protein while the other alters the molecular interactions of the protein. These results have the potential to inform clinical prognosis of such patients and indicate a pathway to drug target development. This study identifies a novel missense mutation in the SLC25A46 gene causing optic atrophy, peripheral neuropathy, ataxia, but not cerebellar atrophy. Stability of the SLC25A46 protein inversely correlates with disease severity. The patient's p.R257Q variant does not markedly destabilize the protein. Instead, it affects the SLC25A46 interaction with MIC60 involved in mitochondrial dynamics and cristae remodeling. These results provide further insight into the genotype‐phenotype correlation for mutations in the gene and may inform clinical prognosis of such patients.</description><identifier>ISSN: 1059-7794</identifier><identifier>EISSN: 1098-1004</identifier><identifier>DOI: 10.1002/humu.23639</identifier><identifier>PMID: 30178502</identifier><language>eng</language><publisher>United States: Hindawi Limited</publisher><subject>Ataxia ; Atrophy ; Cerebellum ; Cristae ; Genotypes ; Mitochondria ; Molecular modelling ; Mutation ; Neurodegenerative diseases ; Optic atrophy ; Peripheral neuropathy ; Phenotypes ; Proteins ; SLC25A46</subject><ispartof>Human mutation, 2018-12, Vol.39 (12), p.1995-2007</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4489-52a7d2e3ab30834cb66e19aa2614908151b19ff56d6fbcbcd048dc7bb83085f23</citedby><cites>FETCH-LOGICAL-c4489-52a7d2e3ab30834cb66e19aa2614908151b19ff56d6fbcbcd048dc7bb83085f23</cites><orcidid>0000-0001-7543-6464</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhumu.23639$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhumu.23639$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30178502$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abrams, Alexander J.</creatorcontrib><creatorcontrib>Fontanesi, Flavia</creatorcontrib><creatorcontrib>Tan, Natalie B. L.</creatorcontrib><creatorcontrib>Buglo, Elena</creatorcontrib><creatorcontrib>Campeanu, Ion J.</creatorcontrib><creatorcontrib>Rebelo, Adriana P.</creatorcontrib><creatorcontrib>Kornberg, Andrew J.</creatorcontrib><creatorcontrib>Phelan, Dean G.</creatorcontrib><creatorcontrib>Stark, Zornitza</creatorcontrib><creatorcontrib>Zuchner, Stephan</creatorcontrib><title>Insights into the genotype‐phenotype correlation and molecular function of SLC25A46</title><title>Human mutation</title><addtitle>Hum Mutat</addtitle><description>Recessive SLC25A46 mutations cause a spectrum of neurodegenerative disorders with optic atrophy as a core feature. We report a patient with optic atrophy, peripheral neuropathy, ataxia, but not cerebellar atrophy, who is on the mildest end of the phenotypic spectrum. By studying seven different nontruncating mutations, we found that the stability of the SLC25A46 protein inversely correlates with the severity of the disease and the patient's variant does not markedly destabilize the protein. SLC25A46 belongs to the mitochondrial transporter family, but it is not known to have transport function. Apart from this possible function, SLC25A46 forms molecular complexes with proteins involved in mitochondrial dynamics and cristae remodeling. We demonstrate that the patient's mutation directly affects the SLC25A46 interaction with MIC60. Furthermore, we mapped all of the reported substitutions in the protein onto a 3D model and found that half of them fall outside of the signature carrier motifs associated with transport function. We thus suggest that there are two distinct molecular mechanisms in SLC25A46‐associated pathogenesis, one that destabilizes the protein while the other alters the molecular interactions of the protein. These results have the potential to inform clinical prognosis of such patients and indicate a pathway to drug target development. This study identifies a novel missense mutation in the SLC25A46 gene causing optic atrophy, peripheral neuropathy, ataxia, but not cerebellar atrophy. Stability of the SLC25A46 protein inversely correlates with disease severity. The patient's p.R257Q variant does not markedly destabilize the protein. Instead, it affects the SLC25A46 interaction with MIC60 involved in mitochondrial dynamics and cristae remodeling. These results provide further insight into the genotype‐phenotype correlation for mutations in the gene and may inform clinical prognosis of such patients.</description><subject>Ataxia</subject><subject>Atrophy</subject><subject>Cerebellum</subject><subject>Cristae</subject><subject>Genotypes</subject><subject>Mitochondria</subject><subject>Molecular modelling</subject><subject>Mutation</subject><subject>Neurodegenerative diseases</subject><subject>Optic atrophy</subject><subject>Peripheral neuropathy</subject><subject>Phenotypes</subject><subject>Proteins</subject><subject>SLC25A46</subject><issn>1059-7794</issn><issn>1098-1004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kc1Kw0AQxxdR_KhefAAJeBEhup9J9iKUorZQ8aA9L5vNpokku3U3UXrzEXxGn8S0qaIePM0w8-PHDH8AjhG8QBDiy6Kt2wtMIsK3wD6CPAm7Md1e9YyHcczpHjjw_glCmDBGdsEegShOGMT7YDYxvpwXjQ9K09igKXQw18Y2y4X-eHtfFJs-UNY5XcmmtCaQJgtqW2nVVtIFeWvUemzz4GE6wmxIo0Owk8vK66NNHYDZzfXjaBxO728no-E0VJQmPGRYxhnWRKYEJoSqNIo04lLiCFEOE8RQiniesyiL8lSlKoM0yVScpknHsxyTAbjqvYs2rXWmtGmcrMTClbV0S2FlKX5vTFmIuX0REaaQsLgTnG0Ezj632jeiLr3SVSWNtq0XGHJOCYnX6Okf9Mm2znTvCYwIpYThrg7AeU8pZ713Ov8-BkGxSkus0hLrtDr45Of53-hXPB2AeuC1rPTyH5UYz-5mvfQTKaWhVA</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Abrams, Alexander J.</creator><creator>Fontanesi, Flavia</creator><creator>Tan, Natalie B. L.</creator><creator>Buglo, Elena</creator><creator>Campeanu, Ion J.</creator><creator>Rebelo, Adriana P.</creator><creator>Kornberg, Andrew J.</creator><creator>Phelan, Dean G.</creator><creator>Stark, Zornitza</creator><creator>Zuchner, Stephan</creator><general>Hindawi Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7543-6464</orcidid></search><sort><creationdate>201812</creationdate><title>Insights into the genotype‐phenotype correlation and molecular function of SLC25A46</title><author>Abrams, Alexander J. ; Fontanesi, Flavia ; Tan, Natalie B. L. ; Buglo, Elena ; Campeanu, Ion J. ; Rebelo, Adriana P. ; Kornberg, Andrew J. ; Phelan, Dean G. ; Stark, Zornitza ; Zuchner, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4489-52a7d2e3ab30834cb66e19aa2614908151b19ff56d6fbcbcd048dc7bb83085f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ataxia</topic><topic>Atrophy</topic><topic>Cerebellum</topic><topic>Cristae</topic><topic>Genotypes</topic><topic>Mitochondria</topic><topic>Molecular modelling</topic><topic>Mutation</topic><topic>Neurodegenerative diseases</topic><topic>Optic atrophy</topic><topic>Peripheral neuropathy</topic><topic>Phenotypes</topic><topic>Proteins</topic><topic>SLC25A46</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abrams, Alexander J.</creatorcontrib><creatorcontrib>Fontanesi, Flavia</creatorcontrib><creatorcontrib>Tan, Natalie B. L.</creatorcontrib><creatorcontrib>Buglo, Elena</creatorcontrib><creatorcontrib>Campeanu, Ion J.</creatorcontrib><creatorcontrib>Rebelo, Adriana P.</creatorcontrib><creatorcontrib>Kornberg, Andrew J.</creatorcontrib><creatorcontrib>Phelan, Dean G.</creatorcontrib><creatorcontrib>Stark, Zornitza</creatorcontrib><creatorcontrib>Zuchner, Stephan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human mutation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abrams, Alexander J.</au><au>Fontanesi, Flavia</au><au>Tan, Natalie B. L.</au><au>Buglo, Elena</au><au>Campeanu, Ion J.</au><au>Rebelo, Adriana P.</au><au>Kornberg, Andrew J.</au><au>Phelan, Dean G.</au><au>Stark, Zornitza</au><au>Zuchner, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into the genotype‐phenotype correlation and molecular function of SLC25A46</atitle><jtitle>Human mutation</jtitle><addtitle>Hum Mutat</addtitle><date>2018-12</date><risdate>2018</risdate><volume>39</volume><issue>12</issue><spage>1995</spage><epage>2007</epage><pages>1995-2007</pages><issn>1059-7794</issn><eissn>1098-1004</eissn><abstract>Recessive SLC25A46 mutations cause a spectrum of neurodegenerative disorders with optic atrophy as a core feature. We report a patient with optic atrophy, peripheral neuropathy, ataxia, but not cerebellar atrophy, who is on the mildest end of the phenotypic spectrum. By studying seven different nontruncating mutations, we found that the stability of the SLC25A46 protein inversely correlates with the severity of the disease and the patient's variant does not markedly destabilize the protein. SLC25A46 belongs to the mitochondrial transporter family, but it is not known to have transport function. Apart from this possible function, SLC25A46 forms molecular complexes with proteins involved in mitochondrial dynamics and cristae remodeling. We demonstrate that the patient's mutation directly affects the SLC25A46 interaction with MIC60. Furthermore, we mapped all of the reported substitutions in the protein onto a 3D model and found that half of them fall outside of the signature carrier motifs associated with transport function. We thus suggest that there are two distinct molecular mechanisms in SLC25A46‐associated pathogenesis, one that destabilizes the protein while the other alters the molecular interactions of the protein. These results have the potential to inform clinical prognosis of such patients and indicate a pathway to drug target development. This study identifies a novel missense mutation in the SLC25A46 gene causing optic atrophy, peripheral neuropathy, ataxia, but not cerebellar atrophy. Stability of the SLC25A46 protein inversely correlates with disease severity. The patient's p.R257Q variant does not markedly destabilize the protein. Instead, it affects the SLC25A46 interaction with MIC60 involved in mitochondrial dynamics and cristae remodeling. These results provide further insight into the genotype‐phenotype correlation for mutations in the gene and may inform clinical prognosis of such patients.</abstract><cop>United States</cop><pub>Hindawi Limited</pub><pmid>30178502</pmid><doi>10.1002/humu.23639</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7543-6464</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-7794
ispartof Human mutation, 2018-12, Vol.39 (12), p.1995-2007
issn 1059-7794
1098-1004
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6240357
source Wiley Online Library Journals Frontfile Complete
subjects Ataxia
Atrophy
Cerebellum
Cristae
Genotypes
Mitochondria
Molecular modelling
Mutation
Neurodegenerative diseases
Optic atrophy
Peripheral neuropathy
Phenotypes
Proteins
SLC25A46
title Insights into the genotype‐phenotype correlation and molecular function of SLC25A46
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T15%3A44%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20the%20genotype%E2%80%90phenotype%20correlation%20and%20molecular%20function%20of%20SLC25A46&rft.jtitle=Human%20mutation&rft.au=Abrams,%20Alexander%20J.&rft.date=2018-12&rft.volume=39&rft.issue=12&rft.spage=1995&rft.epage=2007&rft.pages=1995-2007&rft.issn=1059-7794&rft.eissn=1098-1004&rft_id=info:doi/10.1002/humu.23639&rft_dat=%3Cproquest_pubme%3E2134435221%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2134435221&rft_id=info:pmid/30178502&rfr_iscdi=true